Citation: Xie Tinghui, Jiang Xiaoying, Mi Zhisheng, Li Xue, Xu Xiaohe, Bai Renren, Shuai Qi, Xie Yuanyuan. Iron/O2-Promoted C-H Bond Functionalization for the Exclusive Synthesis of 2-Quinoline Carboxaldehydes under Microwave Irradiation[J]. Chinese Journal of Organic Chemistry, ;2019, 39(11): 3294-3298. doi: 10.6023/cjoc201903007 shu

Iron/O2-Promoted C-H Bond Functionalization for the Exclusive Synthesis of 2-Quinoline Carboxaldehydes under Microwave Irradiation

  • Corresponding author: Xie Yuanyuan, xyycz@zjut.edu.cn
  • Received Date: 4 March 2019
    Revised Date: 25 April 2019
    Available Online: 9 November 2019

    Fund Project: the National Natural Science Foundation of China 20150281Project supported by the National Natural Science Foundation of China (No. 21576239)

Figures(4)

  • An one-pot iron-catalyzed oxidative formylation of 2-methylquinolines to produce 2-quinoline carboxaldehydes under microwave irradiation has been achieved by employing O2 as the oxygen donor. The reaction was general for the substrates with a wide range of functional groups, providing a yield of 48%~80%. The preliminary mechanistic studies revealed that the reaction underwent a radical pathway. Advantages of this method include the easy operation, short reaction time and good selectivity.
  • 加载中
    1. [1]

      (a) Li, Z.; Wu, S.-S.; Luo, Z.-G.; Liu, W.-K.; Feng, C.-T.; Ma, S.-T. J. Org. Chem. 2016, 81, 4386.
      (b) Xu, L.-B.; Shao, Z.-Z.; Wang, L.; Zhao, H.-L.; Xiao, J. Tetrahedron Lett. 2014, 55, 6856.
      (c) Thirunavukkarasu, V. S.; Kozhushkov S. I.; Ackermann, L. Chem. Commun. 2014, 50, 29.

    2. [2]

      (a) Derong, D.; Linda, P. D.; Peter, A. C. Tetrahedron Lett. 2013. 54, 5211.
      (b) Jiang, L.; Huang, Y.-Y.; Yan, Y.-Y.; Xie, Y.-Y. Tetrahedron Lett. 2016, 57, 4149.

    3. [3]

      Guo, S.-J.; Wan, G.; Sun, S.; Jiang, Y.; Yu, J.-T.; Cheng, J. Chem. Commun. 2015, 51, 5085.  doi: 10.1039/C5CC01024A

    4. [4]

      Xie, Y.-Y.; Li, L.-H. Tetrahedron Lett. 2014, 55, 3892.  doi: 10.1016/j.tetlet.2014.04.023

    5. [5]

      (a) Adsule, S.; Barve, V.; Chen, D.; Ahmed, F.; Dou, Q. P.; Padhye, S.; Sarkar, F. H. J. Med. Chem. 2006, 49, 7242.
      (b) Teguh, S. C.; Klonis, N.; Duffy, S.; Lucantoni, L.; Avery, V. M.; Hutton, C. A.; Baell, J. B.; Tilley, L. J. Med. Chem. 2013, 56, 6200.

    6. [6]

      (a) Pokhrel, L.; Kim, Y.; Nguyen, T. D. T.; Prior, A. M.; Lu, J. Y.; Chang, K. O.; Hua, D. H. Bioorg. Med. Chem. Lett. 2012, 22, 3480.
      (b) Dai, Q.; Yu, J.-T.; Feng, X.-M.; Jiang, Y.; Yang, H.-T.; Cheng, J. Adv. Synth. Catal. 2014, 356, 3341.
      (c) Gopinath, V. S.; Pinjari, J.; Dere, R. T.; Verma, A.; Vishwakarma, P.; Shivahare, R.; Moger, M.; Goud, P. S. K.; Ramanathan, V.; Bose, P.; Rao, M. V. S.; Gupta, S.; Puri, S. K.; Launay, D.; Martin, D. Eur. J. Med. Chem. 2013, 69, 527.

    7. [7]

      Holzapfel, C. W.; Ferreira, A. C.; Marais, W. J. Chem. Res., Synop. 2002, 5, 218.

    8. [8]

      Ding, D.; Dwoskin, L. P.; Crooks, P. A. Tetrahedron Lett. 2013, 54, 5211.  doi: 10.1016/j.tetlet.2013.07.067

    9. [9]

      Minisci, F.; Vismara, E.; Levi, S. J. Org. Chem. 1986, 51, 536.  doi: 10.1021/jo00354a026

    10. [10]

      Zheng, G.; Liu, H.; Wang, M. Chin. J. Chem. 2016, 34, 519.  doi: 10.1002/cjoc.201500918

    11. [11]

      (a) Sindhu, K. S.; Abi, T. G.; Mathai, G.; Anilkumar, G. Polyhedron 2019, 158, 270.
      (b) Wusiman, A.; Hudabaierdi, R. Tetrahedron Lett. 2019, 60, 681.
      (c) Wang, X.-Z.; Zeng, C.-C. Tetrahedron 2019, 75, 1425.
      (d) Ding, X.-Y.; Xu, F. Chin. J. Org. Chem. 2018, 38, 3345 (in Chinese).
      (丁晓友, 徐凡, 有机化学, 2018, 38, 3345.)

    12. [12]

      (a) Ma, S.-M.; Liu, J.-X.; Li, S.-H.; Chen, B.; Cheng, J.-J.; Kuang, J.-Q.; Liu, Y.; Wan, B.-Q.; Wang, Y.-L.; Ye, J.-T.; Yu, Q.; Yuan, W. M.; Yu, S.-C. Adv. Synth. Catal. 2011, 353, 1005.
      (b) Silva, M. J.; Carari, D. M. Catal. Lett. 2014, 144, 615.
      (c) Tanaka, S.; Kon, Y.; Uesaka, Y.; Morioka, R.; Tamura, M.; Sato, K. Chem. Lett. 2016, 45, 188.
      (d) Xu, X.-H.; Sun, J.; Cheng, J.-Y.; Li, P.-P.; Jiang, X.-Y.; Bai, R.-R.; Xie, Y.-Y. Eur. J. Org. Chem. 2017, 47, 7160.
      (e) Amaya, T.; Fujimoto, H. Tetrahedron Lett. 2018, 59, 2657.
      (f) Wen, J.; Zhang, J.; Chen, S.-Y.; Li, J.; Yu, X.-Q. Angew. Chem. Int. Ed. 2008, 47, 8897.
      (g) Namboodiri, V. V.; Polshettiwar, V.; Varma, R. S. Tetrahedron Lett. 2007, 48, 8839.

    13. [13]

      (a) Jiang, K.; Pi, D.-W.; Zhou, H.-F.; Liu, S.-S.; Zou, K. Tetrahedron. 2014, 70, 3056.
      (b) Rao, N. N.; Meshram, H. M.; Tetrahedron Lett. 2013, 54, 1315.
      (c) Li, Q.; Huang, Y.; Chen, T.-Q.; Zhou, Y.-B.; Xu, Q.; Yin, S.-F.; Han, L.-B. Org. Lett. 2014, 16, 3672.

    14. [14]

      Yasunari, M.; Kanoko, Y.; Takashi, T.; Takayuki, A.; Tomohiro, M.; Kosaku, H.; Hironao, S. Heterocycles 2010, 80, 737.

    15. [15]

      Mathes, W.; Sauermilch, W. Chem. Ber. 1957, 90, 758.  doi: 10.1002/cber.19570900519

    16. [16]

      Chen, X.-Y.; Shi, J.; Li, Y.-M.; Wang, F.-L.; Wu, X.; Guo, Q.-X.; Liu, L. Org. Lett. 2009, 11, 4421.

    17. [17]

      Brown, B. R.; Hammick, D. L. J. Chem. Soc. 1950, 628.  doi: 10.1039/jr9500000628

    18. [18]

      Buehler, C. A.; Edwards, S. P. J. Am. Chem. Soc. 1952, 74(4), 977.

    19. [19]

      Ballesteros, G. R.; Leroux, F. R.; Ballesteros, R. Tetrahedron 2009, 65(22), 4410.  doi: 10.1016/j.tet.2009.03.058

    20. [20]

      Janina, B. PL 56421, 1968[Chem. Abstr. 1968, 70, 115023].

    21. [21]

      Wang, L.; Hou, X.-B.; Fu, H.-S.; Pan, X.-L.; Xu, W.-F.; Tang, W.-P; Fang, H. Bioorg. Med. Chem. 2015, 15(23), 4364.

    22. [22]

      Leese, C. L.; Rydon, H. N. J. Chem. Soc. 1956, 303.  doi: 10.1039/jr9560000303

  • 加载中
    1. [1]

      Yi LuoLin Dong . Multicomponent remote C(sp2)-H bond addition by Ru catalysis: An efficient access to the alkylarylation of 2H-imidazoles. Chinese Chemical Letters, 2024, 35(10): 109648-. doi: 10.1016/j.cclet.2024.109648

    2. [2]

      Tingting LiuPengfei SunWei ZhaoYingshuang LiLujun ChengJiahai FanXiaohui BiXiaoping Dong . Magnesium doping to improve the light to heat conversion of OMS-2 for formaldehyde oxidation under visible light irradiation. Chinese Chemical Letters, 2024, 35(4): 108813-. doi: 10.1016/j.cclet.2023.108813

    3. [3]

      Jialin HuangLiying FuZhanyong TangXiaoqiang MaXingda ZhaoDepeng Zhao . Cross-coupling of trifluoromethylarenes with alkynes C(sp)-H bonds and azoles C(sp2)-H bonds via photoredox/copper dual catalysis. Chinese Chemical Letters, 2025, 36(7): 110505-. doi: 10.1016/j.cclet.2024.110505

    4. [4]

      Xiangyang JiYishuang ChenPeng ZhangShaojia SongJian LiuWeiyu Song . Boosting the first C–H bond activation of propane on rod-like V/CeO2 catalyst by photo-assisted thermal catalysis. Chinese Chemical Letters, 2025, 36(5): 110719-. doi: 10.1016/j.cclet.2024.110719

    5. [5]

      Wei-Bin LiXiao-Chao HuangPei LiuJie KongGuo-Ping Yang . Recent advances in directing group assisted transition metal catalyzed para-selective C-H functionalization. Chinese Chemical Letters, 2025, 36(6): 110543-. doi: 10.1016/j.cclet.2024.110543

    6. [6]

      Qiao SongXue PengZhouyu WangLeyong Wang . Iron-catalyzed C–H activation: A sustainable approach to efficient organic synthesis. Chinese Chemical Letters, 2025, 36(5): 110869-. doi: 10.1016/j.cclet.2025.110869

    7. [7]

      Haoran ShiJiaxin WangYuqin ZhuHongyang LiGuodong JuLanlan ZhangChao Wang . Highly selective α-C(sp3)-H arylation of alkenyl amides via nickel chain-walking catalysis. Chinese Chemical Letters, 2024, 35(7): 109333-. doi: 10.1016/j.cclet.2023.109333

    8. [8]

      Shulei HuYu ZhangXiong XieLuhan LiKaixian ChenHong LiuJiang Wang . Rh(Ⅲ)-catalyzed late-stage C-H alkenylation and macrolactamization for the synthesis of cyclic peptides with unique Trp(C7)-alkene crosslinks. Chinese Chemical Letters, 2024, 35(8): 109408-. doi: 10.1016/j.cclet.2023.109408

    9. [9]

      Chunwei LeiJian LiBo XuYu XieYun LingJuhua LuoWei Zhang . Synthesis of Ni/MnO/C nano-microspheres with synergistic effects of dielectric and magnetic loss for efficient microwave absorption. Chinese Chemical Letters, 2025, 36(7): 110419-. doi: 10.1016/j.cclet.2024.110419

    10. [10]

      Bicheng Zhu Jingsan Xu . S-scheme heterojunction photocatalyst for H2 evolution coupled with organic oxidation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100327-100327. doi: 10.1016/j.cjsc.2024.100327

    11. [11]

      Tong LiLeping PanYan ZhangJihu SuKai LiKuiliang LiHu ChenQi SunZhiyong Wang . Electrochemical construction of 2,5-diaryloxazoles via N–H and C(sp3)-H functionalization. Chinese Chemical Letters, 2024, 35(4): 108897-. doi: 10.1016/j.cclet.2023.108897

    12. [12]

      Liang Ma Zhou Li Zhiqiang Jiang Xiaofeng Wu Shixin Chang Sónia A. C. Carabineiro Kangle Lv . Effect of precursors on the structure and photocatalytic performance of g-C3N4 for NO oxidation and CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100416-100416. doi: 10.1016/j.cjsc.2024.100416

    13. [13]

      Ke-Ai Zhou Lian Huang Xing-Ping Fu Li-Ling Zhang Yu-Ling Wang Qing-Yan Liu . Fluorinated metal-organic framework for methane purification from a ternary CH4/C2H6/C3H8 mixture. Chinese Journal of Structural Chemistry, 2023, 42(11): 100172-100172. doi: 10.1016/j.cjsc.2023.100172

    14. [14]

      Huixin ChenChen ZhaoHongjun YueGuiming ZhongXiang HanLiang YinDing Chen . Unraveling the reaction mechanism of high reversible capacity CuP2/C anode with native oxidation POx component for sodium-ion batteries. Chinese Chemical Letters, 2025, 36(1): 109650-. doi: 10.1016/j.cclet.2024.109650

    15. [15]

      Mengjun Zhao Yuhao Guo Na Li Tingjiang Yan . Deciphering the structural evolution and real active ingredients of iron oxides in photocatalytic CO2 hydrogenation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100348-100348. doi: 10.1016/j.cjsc.2024.100348

    16. [16]

      Zhen ZhangXue-ling ChenXiu-Mei XieTian-Yu GaoJing QinJun-Jie LiChao FengDa-Gang Yu . Iron-promoted carbonylation–rearrangement of α-aminoaryl-tethered alkylidenecyclopropanes with CO2: Facile synthesis of quinolinofurans. Chinese Chemical Letters, 2025, 36(4): 110056-. doi: 10.1016/j.cclet.2024.110056

    17. [17]

      Yongheng Ren Yang Chen Hongwei Chen Lu Zhang Jiangfeng Yang Qi Shi Lin-Bing Sun Jinping Li Libo Li . Electrostatically driven kinetic Inverse CO2/C2H2 separation in LTA-type zeolites. Chinese Journal of Structural Chemistry, 2024, 43(10): 100394-100394. doi: 10.1016/j.cjsc.2024.100394

    18. [18]

      Huirong Chen Yingzhi He Yan Han Jianbo Hu Jiantang Li Yunjia Jiang Basem Keshta Lingyao Wang Yuanbin Zhang . A new SIFSIX anion pillared cage MOF with crs topological structure for efficient C2H2/CO2 separation. Chinese Journal of Structural Chemistry, 2025, 44(2): 100508-100508. doi: 10.1016/j.cjsc.2024.100508

    19. [19]

      Yuhao Guo Na Li Tingjiang Yan . Tandem catalysis for photoreduction of CO2 into multi-carbon fuels on atomically thin dual-metal phosphochalcogenides. Chinese Journal of Structural Chemistry, 2024, 43(7): 100320-100320. doi: 10.1016/j.cjsc.2024.100320

    20. [20]

      Zhao GuYunhui YangSong YeCongyang Wang . 2,3-Arylacylation of allenes through synergetic catalysis of palladium and N-heterocyclic carbene. Chinese Chemical Letters, 2025, 36(5): 110334-. doi: 10.1016/j.cclet.2024.110334

Metrics
  • PDF Downloads(5)
  • Abstract views(778)
  • HTML views(76)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return