Citation: Chen Xiaoling, Chen Jingwen, Bao Zongbi, Yang Qiwei, Yang Yiwen, Ren Qilong, Zhang Zhiguo. MIL-101(Cr)-SO3H Catalyzed Transfer Hydrogenation of 2-Substituted Quinoline Derivatives[J]. Chinese Journal of Organic Chemistry, ;2019, 39(6): 1681-1687. doi: 10.6023/cjoc201902028 shu

MIL-101(Cr)-SO3H Catalyzed Transfer Hydrogenation of 2-Substituted Quinoline Derivatives

  • Corresponding author: Zhang Zhiguo, zhiguo.zhang@zju.edu.cn
  • Received Date: 25 February 2019
    Revised Date: 12 April 2019
    Available Online: 6 June 2019

    Fund Project: the National Natural Science Foundation of China 21722609Project supported by the National Key R & D Program of China (No. 2016YFA0202900), and the National Natural Science Foundation of China (Nos. 21878266, 21722609)the National Key R & D Program of China 2016YFA0202900the National Natural Science Foundation of China 21878266

Figures(6)

  • The 2-substituted-1, 2, 3, 4-tetrahydroquinoline skeletons are widely found in natural products and have shown antimalarial, antioxidant as well as other biological activities. In this work, MIL-101(Cr)-SO3H is an efficient heterogeneous catalyst for the transfer hydrogenation of a series of 2-substituted quinoline derivatives with Hantzsch ester as the hydrogen source. This protocol operates under mild conditions, tolerates a wide range of 2-substituted quinoline derivatives, and the catalyst could be recovered and reused four times without considerable loss of catalytic activities, which provides a new catalytic system for the construction of 2-substituted-1, 2, 3, 4-tetrahydroquinoline derivatives.
  • 加载中
    1. [1]

      Katritzky, A. R.; Rachwal, S.; Rachwal, B. Tetrahedron 1996, 52, 15031.  doi: 10.1016/S0040-4020(96)00911-8

    2. [2]

      Yang, P.-Y.; Zhou, Y.-G. Tetrahedron:Asymmetry 2004, 15, 1145.  doi: 10.1016/j.tetasy.2004.02.012

    3. [3]

      Kouznetsov, V. V.; Melendez Gomez, C. M.; Luna Parada, L. K.; Bermudez, J. H.; Vargas Mendez, L. Y.; Munoz Acevedo, A. Mol. Diversity 2011, 15, 1007.  doi: 10.1007/s11030-011-9330-5

    4. [4]

      (a) Glorius, F. Org. Biomol. Chem. 2005, 3, 4171. (b) Wang, D.-S.; Chen, Q.-A.; Lu, S.-M.; Zhou, Y.-G. Chem. Rev. 2012, 112, 2557.
      (c) Giustra, Z. X.; Ishibashi, J. S. A.; Liu, S.-Y. Coord. Chem. Rev. 2016, 314, 134.

    5. [5]

      (a) Wang, W.-B.; Lu, S.-M.; Yang, P.-Y.; Han, X.-W.; Zhou, Y.-G. J. Am. Chem. Soc. 2003, 125, 10536.
      (b) Wang, D.-W.; Wang, X.-B.; Wang, D.-S.; Lu, S.-M.; Zhou, Y.-G.; Li, Y.-X. J. Org. Chem. 2009, 74, 2780.

    6. [6]

      (a) Zhou, H.-F.; Li, Z.-W.; Wang, Z.-J.; Wang, T.-L.; Xu, L.-J.; He, Y.-M.; Fan, Q.-H.; Pan, J.; Gu, L.-Q.; Chan, A. S. C. Angew. Chem., Int. Ed. 2008, 47, 8464;
      (b) Wang, Z.-J.; Zhou, H.-F.; Wang, T.-L.; He, Y.-M.; Fan, Q.-H. Green Chem. 2009, 11, 767.

    7. [7]

      (a) Brieger, G.; Nestrick, T. J. Chem. Rev. 1974, 74, 567.
      (b) Everaere, K.; Mortreux, A.; Carpentier, J. F. Adv. Synth. Catal. 2003, 345, 67.
      (c) Wang, D.; Astruc, D. Chem. Rev. 2015, 115, 6621.
      (d) Yan, M.; Jin, T.; Chen, Q.; Ho, H. E.; Fujita, T.; Chen, L.-Y.; Bao, M.; Chen, M.-W.; Asao, N.; Yamamoto, Y. Org. Lett. 2013, 15, 1484.
      (e) Liu, R.; Cheng, T.; Kong, L.; Chen, C.; Liu, G.; Li, H. J. Catal. 2013, 307, 55.
      (f) Tao, L.; Zhang, Q.; Li, S.-S.; Liu, X.; Liu, Y.-M.; Cao, Y. Adv. Synth. Catal. 2015, 357, 753.
      (g) Zhang, J.-F.; Zhong, R.; Zhou, Q.; Hong, X.; Huang, S.; Cui, H.-Z.; Hou, X.-F. ChemCatChem 2017, 9, 2496.
      (h) Han, Y.; Wang, Z.; Xu, R.; Zhang, W.; Chen, W.; Zheng, L.; Zhang, J.; Luo, J.; Wu, K.; Zhu, Y.; Chen, C.; Peng, Q.; Liu, Q.; Hu, P.; Wang, D.; Li, Y. Angew. Chem., Int. Ed. 2018, 57, 11262.
      (i) Zheng, C.; You, S.-L. Chem. Soc. Rev. 2012, 41, 2498.

    8. [8]

      Faisca Phillips, A. M.; Pombeiro, A. J. L. Org. Biomol. Chem. 2017, 15, 2307.

    9. [9]

      Rueping, M.; Theissmann, T.; Antonchick, A. P. Synlett 2006, 1071.

    10. [10]

      Guo, Q.-S.; Du, D.-M.; Xu, J.-X. Angew. Chem., Int. Ed. 2008, 47, 759.  doi: 10.1002/(ISSN)1521-3773

    11. [11]

      Qiao, X.; Zhang, Z.-G.; Bao, Z.-B.; Su, B.-G.; Xing, H.-B.; Yang, Q.-W.; Ren, Q.-L. RSC Adv. 2014, 4, 42566.  doi: 10.1039/C4RA05854B

    12. [12]

      Qiao, X.; El-Shahat, M.; Ullah, B.; Bao, Z.-B.; Xing, H.-B.; Xiao, L.; Ren, Q.-L.; Zhang, Z.-G. Tetrahedron Lett. 2017, 58, 2050.  doi: 10.1016/j.tetlet.2017.04.038

    13. [13]

      (a) Ferey, G.; Mellot-Draznieks, C.; Serre, C.; Millange, F.; Dutour, J.; Surble, S.; Margiolaki, I. Science 2005, 309, 2040.
      (b) Zhao, M.-T.; Yuan, K.; Wang, Y.; Li, G.-D.; Guo, J.; Gu, L.; Hu, W.-P.; Zhao, H.-J.; Tang, Z.-Y. Nature 2016, 539, 76.
      (c) Sun, X.-J.; Xia, Q.-B.; Zhao, Z.-X.; Li, Y.-W.; Li, Z. Chem. Eng. J. 2014, 239, 226.

    14. [14]

      Jiang, J.-C.; Yaghi, O. M. Chem. Rev. 2015, 115, 6966.  doi: 10.1021/acs.chemrev.5b00221

    15. [15]

      Chen, J.-W.; Zhang, Z.-G.; Bao, Z.-B.; Su, Y.; Xing, H.-B.; Yang, Q.-W.; Ren, Q.-L. ACS Appl. Mater. Inter. 2017, 9, 9772.  doi: 10.1021/acsami.7b00562

    16. [16]

      Juan-Alcaniz, J.; Gielisse, R.; Lago, A. B.; Ramos-Fernandez, E. V.; Serra-Crespo, P.; Devic, T.; Guillou, N.; Serre, C.; Kapteijn, F.; Gascon, J. Catal. Sci. Technol. 2013, 3, 2311.  doi: 10.1039/c3cy00272a

    17. [17]

      Tu, X.-F.; Gong, L.-Z. Angew. Chem., Int. Ed. 2012, 51, 11346.  doi: 10.1002/anie.201204179

    18. [18]

      Wang, T.-L.; Zhuo, L.-G.; Li, Z.-W.; Chen, F.; Ding, Z.-Y.; He, Y.-M.; Fan, Q.-H.; Xiang, J.-F.; Yu, Z.-X.; Chan, A. S. C. J. Am. Chem. Soc. 2011, 133, 9878.  doi: 10.1021/ja2023042

  • 加载中
    1. [1]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

    2. [2]

      Chunchun WangChangjun YouKe RongChuqi ShenFang YangShijie Li . An S-Scheme MIL-101(Fe)-on-BiOCl Heterostructure with Oxygen Vacancies for Boosting Photocatalytic Removal of Cr(Ⅵ). Acta Physico-Chimica Sinica, 2024, 40(7): 2307045-0. doi: 10.3866/PKU.WHXB202307045

    3. [3]

      Jiajie CaiChang ChengBowen LiuJianjun ZhangChuanjia JiangBei Cheng . CdS/DBTSO-BDTO S-scheme photocatalyst for H2 production and its charge transfer dynamics. Acta Physico-Chimica Sinica, 2025, 41(8): 100084-0. doi: 10.1016/j.actphy.2025.100084

    4. [4]

      Jingzhao ChengShiyu GaoBei ChengKai YangWang WangShaowen Cao . Construction of 4-Amino-1H-imidazole-5-carbonitrile Modified Carbon Nitride-Based Donor-Acceptor Photocatalyst for Efficient Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(11): 2406026-0. doi: 10.3866/PKU.WHXB202406026

    5. [5]

      Xun ZhuChenchen ZhangYingying LiYin LuNa HuangDawei Wang . Degradation of perfluorooctanoic acid by inductively heated Fenton-like process over the Fe3O4/MIL-101 composite. Chinese Chemical Letters, 2024, 35(12): 109753-. doi: 10.1016/j.cclet.2024.109753

    6. [6]

      Ran YuChen HuRuili GuoRuonan LiuLixing XiaCenyu YangJianglan Shui . Catalytic Effect of H3PW12O40 on Hydrogen Storage of MgH2. Acta Physico-Chimica Sinica, 2025, 41(1): 100001-0. doi: 10.3866/PKU.WHXB202308032

    7. [7]

      Yifeng TANPing CAOKai MAJingtong LIYuheng WANG . Synthesis of pentaerythritol tetra(2-ethylthylhexoate) catalyzed by h-MoO3/SiO2. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2155-2162. doi: 10.11862/CJIC.20240147

    8. [8]

      Haitao WangLianglang YuJizhou JiangArramelJing Zou . S-Doping of the N-Sites of g-C3N4 to Enhance Photocatalytic H2 Evolution Activity. Acta Physico-Chimica Sinica, 2024, 40(5): 2305047-0. doi: 10.3866/PKU.WHXB202305047

    9. [9]

      Linfeng XiaoWanlu RenShishi ShenMengshan ChenRunhua LiaoYingtang ZhouXibao Li . Enhancing Photocatalytic Hydrogen Evolution through Electronic Structure and Wettability Adjustment of ZnIn2S4/Bi2O3 S-Scheme Heterojunction. Acta Physico-Chimica Sinica, 2024, 40(8): 2308036-0. doi: 10.3866/PKU.WHXB202308036

    10. [10]

      Renxiao Liang Zhe Zhong Zhangling Jin Lijuan Shi Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024

    11. [11]

      Qi WuChanghua WangYingying LiXintong Zhang . Enhanced photocatalytic synthesis of H2O2 by triplet electron transfer at g-C3N4@BN van der Waals heterojunction interface. Acta Physico-Chimica Sinica, 2025, 41(9): 100107-0. doi: 10.1016/j.actphy.2025.100107

    12. [12]

      Tong ZhouXue LiuLiang ZhaoMingtao QiaoWanying Lei . Efficient Photocatalytic H2O2 Production and Cr(Ⅵ) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-0. doi: 10.3866/PKU.WHXB202309020

    13. [13]

      Jiawei HuKai XiaAo YangZhihao ZhangWen XiaoChao LiuQinfang Zhang . Interfacial Engineering of Ultrathin 2D/2D NiPS3/C3N5 Heterojunctions for Boosting Photocatalytic H2 Evolution. Acta Physico-Chimica Sinica, 2024, 40(5): 2305043-0. doi: 10.3866/PKU.WHXB202305043

    14. [14]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    15. [15]

      Hao GUOTong WEIQingqing SHENAnqi HONGZeting DENGZheng FANGJichao SHIRenhong LI . Electrocatalytic decoupling of urea solution for hydrogen production by nickel foam-supported Co9S8/Ni3S2 heterojunction. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2141-2154. doi: 10.11862/CJIC.20240085

    16. [16]

      Wei SunYongjing WangKun XiangSaishuai BaiHaitao WangJing ZouArramelJizhou Jiang . CoP Decorated on Ti3C2Tx MXene Nanocomposites as Robust Electrocatalyst for Hydrogen Evolution Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2308015-0. doi: 10.3866/PKU.WHXB202308015

    17. [17]

      Jianyin HeLiuyun ChenXinling XieZuzeng QinHongbing JiTongming Su . Construction of ZnCoP/CdLa2S4 Schottky Heterojunctions for Enhancing Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-0. doi: 10.3866/PKU.WHXB202404030

    18. [18]

      Yajin LiHuimin LiuLan MaJiaxiong LiuDehua He . Photothermal Synthesis of Glycerol Carbonate via Glycerol Carbonylation with CO2 over Au/Co3O4-ZnO Catalyst. Acta Physico-Chimica Sinica, 2024, 40(9): 2308005-0. doi: 10.3866/PKU.WHXB202308005

    19. [19]

      Linjie ZHUXufeng LIU . Electrocatalytic hydrogen evolution performance of tetra-iron complexes with bridging diphosphine ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 321-328. doi: 10.11862/CJIC.20240207

    20. [20]

      Xi YANGChunxiang CHANGYingpeng XIEYang LIYuhui CHENBorao WANGLudong YIZhonghao HAN . Co-catalyst Ni3N supported Al-doped SrTiO3: Synthesis and application to hydrogen evolution from photocatalytic water splitting. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 440-452. doi: 10.11862/CJIC.20240371

Metrics
  • PDF Downloads(1)
  • Abstract views(1032)
  • HTML views(179)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return