Citation: Yang Siqi, Li Xin, Peng Zhuojin, Yu Wenyan, Wang Guangxu, Jin Yalan, Zheng Bingbing, Dai Hongxue, Bai Dachang. Synthesis of Pentafluoroethylated Pyridines via Cu-Catalyzed[3+3] Cycloaddition Reaction of Oxime Acetates[J]. Chinese Journal of Organic Chemistry, ;2019, 39(6): 1623-1629. doi: 10.6023/cjoc201902025 shu

Synthesis of Pentafluoroethylated Pyridines via Cu-Catalyzed[3+3] Cycloaddition Reaction of Oxime Acetates

  • Corresponding author: Bai Dachang, baidachang@126.com
  • Received Date: 23 February 2019
    Revised Date: 16 May 2019
    Available Online: 28 June 2019

    Fund Project: the Start-Up Fund from Henan Normal University qd17108the National Natural Science Foundation of China 21801067the Research Fund from Henan Normal University 5101034011009Project supported by the National Natural Science Foundation of China (No. 21801067), the Research Fund from Henan Normal University (No. 5101034011009), the Natural Science Research Program of Education Department of Henan Province (No. 18A150010), and the Start-Up Fund from Henan Normal University (No. qd17108)the Natural Science Research Program of Education Department of Henan Province 18A150010

Figures(3)

  • An improved method for the synthesis of pentafluoroethylated pyridines through Cu-catalyzed[3+3] cyclo-addition reaction of oxime acetates is reported. The starting materials are more readily available, and these reactions occurred under mild conditions with broad substrate scope and excellent regioselectivity. Mechanistic studies have also been preformed.
  • 加载中
    1. [1]

      (a) Wong, D. T.; Perry, K. W.; Bymaster, F. P. Nat. Rev. Drug Discovery 2005, 4, 764.
      (b) Purser, S.; Moore, P. R.; Swallow, S.; Gouverneur, V. Chem. Soc. Rev. 2008, 37, 320.
      (c) Hagmann, W. K. J.Med. Chem. 2008, 51, 4359.
      (d) O'Hagan, D. J. Fluorine Chem.2010, 131, 1071.
      (e) Meanwell, N. A. J. Med. Chem. 2011, 54, 2529.
      (f) Wang, J.; Sánchez-Roselló, M.; Aceñ a, J.; Pozo, C.; Sorochinsky, A. E.; Fustero, S.; Soloshonok, V. A.; Liu, H. Chem. Rev. 2014, 114, 2432.

    2. [2]

      For selected reports/reviews: (a) Varela, J. A.; Saa, C. Chem. Rev. 2003, 103, 3787.
      (b) Manning, J. R.; Davies, H. M. L. J. Am. Chem. Soc. 2008, 130, 8602.
      (c) Zard, S. Z. Chem. Soc. Rev. 2008, 37, 1603.
      (d) Wang, Y.-F.; Chiba, S. J. Am. Chem. Soc. 2009, 131, 12570.
      (e) Ackermann, L. Chem. Rev. 2011, 111, 1315.
      (f) McMurray, L.; O'Hara, F.; Gaunt, M. J. Chem. Soc. Rev. 2011, 40, 1885.
      (g) Kumar, P.; Prescher, S.; Louie, J. Angew. Chem., Int. Ed. 2011, 50, 10694.
      (h) Too, P. C.; Noji, T.; Lim, Y. J.; Li, X.; Chiba, S. Synlett 2011, 2789.
      (i) Chinnagolla, R. K.; Pimparkar, S.; Jeganmohan, M. Org. Lett. 2012, 14, 3032.
      (j) Pi, C.; Cui, X.-L.; Liu, X.-Y.; Guo, M-X.; Zhang, H.-Y.; Wu, Y.-J. Org. Lett. 2014, 16, 5164.
      (k) Huang, H.-W.; Ji, X.-C.; Wu, W.-Q.; Jiang, H.-F. Chem. Soc. Rev. 2015, 44, 1155.
      (l) Xu, Y.; Hu, W.; Tang, X.; Zhao, J.; Wu, W.; Jiang, H. Chem. Commun. 2015, 51, 6843.
      (m) Zhao, M.-N.; Ren, Z.-H.; Yu, L.; Wang, Y.-Y.; Guan, Z.-H. Org. Lett. 2016, 18, 1194.
      (n) Hille, T.; Irrgang, T.; Kempe, R. Angew. Chem., Int. Ed. 2017, 56, 371.

    3. [3]

      (a) Shevchenko, N. E.; Nenajdenko, V. G.; Röschenthaler, G.-V. J. Fluorine Chem. 2008, 129, 390.
      (b) Prakash, G. K. S.; Wang, Y.; Mogi, R.; Hu, J.-B.; Mathew, T.; Olah, G. A. Org. Lett. 2010, 12, 2932.
      (c) Tomashenko, O. A.; Grushin, V. V. Chem. Rev. 2011, 111, 4475. (d) Mu, X; Chen, S. J, ; Zhen, X. L.; Liu, G. S. Chem.-Eur. J. 2011, 17, 6039.
      (d) Liu, T.; Shen, Q. Org. Lett. 2011, 13, 2342.
      (e) Zhang, C. P.; Wang, Z. L.; Chen, Q. Y.; Zhang, C. T.; Gu, Y. C.; Xiao, J. C. Angew. Chem., Int. Ed. 2011, 50, 1896.
      (f) Liang, T.; Neumann, C. N.; Ritter, T. Angew. Chem., Int. Ed. 2013, 52, 8214.
      (g) Chu, L. L.; Qing, F. L. Acc. Chem. Res. 2014, 47, 1513.
      (h) Landelle, G.; Panossian, A.; Pazenok, S.; Vors, J.-P.; Leroux, F. R. Beilstein J. Org. Chem. 2013, 9, 2476.
      (i) Yu, Y. B.; Wang, Z.; Zhang, X. G. Sci. China Chem. 2014, 57, 276.
      (j) Shao, X.-X.; Xu, C.-F.; Lu, L.; Shen, Q. Acc. Chem. Res. 2015, 48. 1227.
      (k) Rong, J.; Deng, Li.; Tan, P.; Ni, C. F; Gu, Y. C.; Hu, J. B. Angew. Chem., Int. Ed. 2016, 55, 274.
      (l) Ni, C. F.; Hu, M. Y.; Hu, J. B. Chem. Rev. 2015, 115, 765.
      (m) Feng, Z.; Xiao, Y. L.; Zhang, X. G. Acc. Chem. Res., 2018, 51, 2264.
      (n) Wang, F.; Chen, P. H.; Liu, G. S. Acc. Chem. Res. 2018, 51, 2036.
      (o) Yang, B.; Yu, D. H.; Xu, X. H.; Qing, F. L. ACS Catal. 2018, 8, 2839.

    4. [4]

      (a) Langlois, B. R.; Roques, N. J. Fluorine Chem. 2007, 128, 1318.
      (b) Kremlev, M. M.; Tyrra, W.; Mushta, A. I.; Naumann, D.; Yaguposkii, Y. L. J. Fluorine Chem. 2010, 131, 212.
      (c) Popov, I.; Lindeman, S.; Daugulis, O. J. Am. Chem. Soc. 2011, 133, 9286.
      (d) Serizawa, H.; Aikawa, K.; Mikami, K. Org. Lett. 2014, 16, 3456.

    5. [5]

      Yagupoi'skii, L. M.; II'chenko, A. Y.; Kondratenko, N. V. Russ. Chem. Rev. 1974, 43, 32.  doi: 10.1070/RC1974v043n01ABEH001787

    6. [6]

      (a) Kobayashi, Y. J. Chem. Soc., Perkin Trans. 1 1980, 661.
      (b) Wiermers, D. M.; Burton, D. J. J. Am. Soc. Chem. 1986, 108, 832.
      (c) Urata, H.; Fuchikami, T. Tetrahedron Lett. 1991, 32, 91.
      (d) Carr, G. E.; Chambers, R. D.; Holmes, T. F.; Parker, D. G. J. Chem. Soc., Perkin Trans. 1 1988, 921.

    7. [7]

      (a) Litvinas, N. D.; Fier, P. S.; Hartwig, J. F. Angew. Chem., Int. Ed. 2012, 51, 536.
      (b) Mormino, M. G.; Fier, P. S.; Hartwig, J. F. Org. Lett. 2014, 16, 1744.

    8. [8]

      (a) Lishchynskyi, A.; Grushin, V. V. J. Am. Chem. Soc. 2013, 135, 12584.
      (b) Serizawa, H.; Aikawa, K.; Mikami, K. Org. Lett. 2014, 16, 3456.

    9. [9]

      (a) Lin, Q.-Y.; Xu, X.-H.; Qing, F.-L. J. Org. Chem. 2014, 79, 10434.
      (b) Zhu, J. S.; Li, Y. G.; Ni, C. F.; Shen, Q. L. Chin. J. Chem. 2016, 34, 662.
      (c) Liu, Y. F.; Ge, H.M.; Lu, L.; Shen, Q. L. Chin. J. Org. Chem. 2019, 39, 257.

    10. [10]

      Xie, Q. Q.; Li, L. C.; Zhu, Z. Y.; Zhang, R. Y.; Ni, C. F.; Hu, J. B. Angew. Chem., Int. Ed. 2018, 57, 13211.  doi: 10.1002/anie.201807873

    11. [11]

      Bai, D. C.; Wang, X. L.; Zheng, G. F.; Li, X. W. Angew. Chem., Int. Ed. 2018, 57, 6633.  doi: 10.1002/anie.v57.22

    12. [12]

      (a) Tang, X.-D.; Huang, L.-B.; Qi, C.-R.; Wu, W.-Q.; Jiang, H.-F. Chem. Commun. 2013, 49, 9597.
      (b) Ran, L.-F.; Ren, Z.-H.; Wang, Y.-Y.; Guan, Z.-H. Green Chem. 2014, 16, 112.
      (c) Du, W.; Zhao, M.-N.; Ren, Z.-H.; Wang, Y.-Y.; Guan, Z.-H. Chem. Commun. 2014, 50, 7437.
      (d) Faulkner, A.; Race, N. J.; Scott, J. S.; Bower, J. F. Chem. Sci. 2014, 5, 2416.
      (e) Zhu, C.-L.; Zeng, H.; Chen, F.-L.; Liu, C.; Zhu, R.; Wu, W.-Q.; Jiang, H.-F. Org. Chem. Front. 2018, 5, 571.
      (f) Tang, X. D.; Wu, W. Q.; Zeng, W.; Jiang, H. F. Acc. Chem. Res. 2018, 51, 1092.

  • 加载中
    1. [1]

      Pengzi Wang Wenjing Xiao Jiarong Chen . Copper-Catalyzed C―O Bond Formation by Kharasch-Sosnovsky-Type Reaction. University Chemistry, 2025, 40(4): 239-244. doi: 10.12461/PKU.DXHX202406090

    2. [2]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    3. [3]

      Hui-Ying ChenHao-Lin ZhuPei-Qin LiaoXiao-Ming Chen . Integration of Ru(Ⅱ)-Bipyridyl and Zinc(Ⅱ)-Porphyrin Moieties in a Metal-Organic Framework for Efficient Overall CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306046-0. doi: 10.3866/PKU.WHXB202306046

    4. [4]

      Feng Han Fuxian Wan Ying Li Congcong Zhang Yuanhong Zhang Chengxia Miao . Comprehensive Organic Chemistry Experiment: Phosphotungstic Acid-Catalyzed Direct Conversion of Triphenylmethanol for the Synthesis of Oxime Ethers. University Chemistry, 2025, 40(3): 342-348. doi: 10.12461/PKU.DXHX202405181

    5. [5]

      Yue Zhao Yanfei Li Tao Xiong . Copper Hydride-Catalyzed Nucleophilic Additions of Unsaturated Hydrocarbons to Aldehydes and Ketones. University Chemistry, 2024, 39(4): 280-285. doi: 10.3866/PKU.DXHX202309001

    6. [6]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    7. [7]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    8. [8]

      Zhiquan ZhangBaker RhimiZheyang LiuMin ZhouGuowei DengWei WeiLiang MaoHuaming LiZhifeng Jiang . Insights into the Development of Copper-Based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-0. doi: 10.3866/PKU.WHXB202406029

    9. [9]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

    10. [10]

      Haoyu SunDun LiYuanyuan MinYingying WangYanyun MaYiqun ZhengHongwen Huang . Hierarchical Palladium-Copper-Silver Porous Nanoflowers as Efficient Electrocatalysts for CO2 Reduction to C2+ Products. Acta Physico-Chimica Sinica, 2024, 40(6): 2307007-0. doi: 10.3866/PKU.WHXB202307007

    11. [11]

      Chengqian Mao Yanghan Chen Haotong Bai Junru Huang Junpeng Zhuang . Photodimerization of Styrylpyridinium Salt and Its Application in Silk Screen Printing. University Chemistry, 2024, 39(5): 354-362. doi: 10.3866/PKU.DXHX202312014

    12. [12]

      Xiao SANGQi LIUJianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158

    13. [13]

      Qiaowen CHANGKe ZHANGGuangying HUANGNuonan LIWeiping LIUFuquan BAICaixian YANYangyang FENGChuan ZUO . Syntheses, structures, and photo-physical properties of iridium phosphorescent complexes with phenylpyridine derivatives bearing different substituting groups. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 235-244. doi: 10.11862/CJIC.20240311

    14. [14]

      Hongjie SHENHaozhe MIAOYuhe YANGYinghua LIDeguang HUANGXiaofeng ZHANG . Synthesis, crystal structure, and fluorescence properties of two Cu(Ⅰ) complexes based on pyridyl ligand. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 855-863. doi: 10.11862/CJIC.20250009

    15. [15]

      Xiaotong LUPan ZHANGZijie ZHAOLei HUANGHongwei ZUOLili LIANG . Antitumor and antibacterial activities of pyridyl Schiff base indium and dysprosium complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1523-1532. doi: 10.11862/CJIC.20250073

    16. [16]

      Lili Jiang Shaoyu Zheng Xuejiao Liu Xiaomin Xie . Copper-Catalyzed Oxidative Coupling Reactions for the Synthesis of Aryl Sulfones: A Fundamental and Exploratory Experiment for Undergraduate Teaching. University Chemistry, 2025, 40(7): 267-276. doi: 10.12461/PKU.DXHX202408004

    17. [17]

      Xue DongXiaofu SunShuaiqiang JiaShitao HanDawei ZhouTing YaoMin WangMinghui FangHaihong WuBuxing Han . Electrochemical CO2 Reduction to C2+ Products with Ampere-Level Current on Carbon-Modified Copper Catalysts. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-0. doi: 10.3866/PKU.WHXB202404012

    18. [18]

      Yi DINGPeiyu LIAOJianhua JIAMingliang TONG . Structure and photoluminescence modulation of silver(Ⅰ)-tetra(pyridin-4-yl)ethene metal-organic frameworks by substituted benzoates. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 141-148. doi: 10.11862/CJIC.20240393

    19. [19]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . 基于激发态手性铜催化的烯烃EZ异构的动力学拆分——推荐一个本科生综合化学实验. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

    20. [20]

      Dong XiangKunzhen LiKanghua MiaoRan LongYujie XiongXiongwu Kang . Amine-Functionalized Copper Catalysts: Hydrogen Bonding Mediated Electrochemical CO2 Reduction to C2 Products and Superior Rechargeable Zn-CO2 Battery Performance. Acta Physico-Chimica Sinica, 2024, 40(8): 2308027-0. doi: 10.3866/PKU.WHXB202308027

Metrics
  • PDF Downloads(6)
  • Abstract views(786)
  • HTML views(82)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return