Citation: Yan Jianfeng, Zhang Ruiqi, Yuan Ye, Yuan Yaofeng. 4, 4'-Dimethoxy-triphenylamine Conjugated Azobenzene Photochromic Switches:Synthesis, Electrochemical and Photoisomerization Studies[J]. Chinese Journal of Organic Chemistry, ;2019, 39(7): 2009-2017. doi: 10.6023/cjoc201902015 shu

4, 4'-Dimethoxy-triphenylamine Conjugated Azobenzene Photochromic Switches:Synthesis, Electrochemical and Photoisomerization Studies

  • Corresponding author: Yuan Yaofeng, yaofeng_yuan@fzu.edu.cn
  • Received Date: 18 February 2019
    Revised Date: 10 March 2019
    Available Online: 21 July 2019

    Fund Project: the National Natural Science Foundation of China 21772023Project supported by the National Natural Science Foundation of China (No. 21772023), the Research Fund for the State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences (No. 20180020) and the Valuable Instrument and Equipment Open Test Fund of Fuzhou University (No. 2018T006)the Research Fund for the State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences 20180020the Valuable Instrument and Equipment Open Test Fund of Fuzhou University 2018T006

Figures(13)

  • Three azobenzenes 4~6 conjugated with 4, 4'-dimethoxy-triphenylamine redox center have been synthesized by palladium-catalyzed Sonogashira coupling reactions in moderate yield after column chromatographic purification. They are all stable when exposed in air and moisture in both the solid and solution state. The 1H NMR spectra of 4~6 showned that the azobenzene groups are in the trans configuration. The UV/Vis spectra of the target molecule were studied. The UV/Vis absorption bands of 4~6 are less clearly separated, which is similar to those for aminoazobenzen or pseudostilbene. The absorption bands at the π→π* band of 4 and 6 are redshifted, due to the strong electronic interaction between the azobenzene unit and the para-triphenylamine unit, which results in the formation of a longer conjugation system than the corresponding meta isomers. Electrochemical and spectroelectrochemical studies indicate excellent redox reversibility of these compounds. Significant spectra change upon the process of redox makes these compounds have potential applications of electrochemical switching. Among the derivatives, compound 4 exhibits the highest cis form (45%) in the photostationary state (PSS) upon light irradiation at 435 nm. The photoisomerization studies indicate that the photochemistry properties is strongly influenced by the substituted position of the triphenylamine moiety. Photoisomerization studies showed that these compounds have fast photoisomerization rate due to the higher photoisomerization quantum yield, which is an order of magnitude larger than that of ferrocenyl (ethynyl) azobenzenes. Both compounds 4 and 6 exhibit excellent fatigue resistance and reversibility under several repeated reversible isomerization cycles. The cis-to-trans photoisomerization of 4 can be not only achieved by irradiation at UV lignt, but also realized by a more efficient way of change the state of redox center. Our study will provide a good basis for research in design new type of multiple-response molecular switches.
  • 加载中
    1. [1]

      (a) Klajn, R.; Stoddart, J. F.; Grzybowski, B. A. Chem. Soc. Rev. 2010, 39(6), 2203.
      (b) Natali, M.; Giordani, S. Chem. Soc. Rev. 2012, 41(10), 4010.
      (c) Bleger, D.; Hecht, S., Angew. Chem., Int. Ed. 2015, 54(39), 11338.

    2. [2]

    3. [3]

      (a) Sakamoto, A.; Hirooka, A.; Namiki, K.; Kurihara, M.; Murata, M.; Sugimoto, M.; Nishihara, H. Inorg. Chem. 2005, 44, 7547.
      (b) Kume, S.; Nishihara, H. Metal-based Photoswitches Derived from Photoisomerization Photofunctional Transition Metal Complexes, Ed.: Yam, V., Springer Berlin/Heidelberg, 2007, Vol. 123, p. 79.
      (c) Bianchi, A.; Delgado-Pinar, E.; García-España, E.; Giorgi, C.; Pina, F. Coord. Chem. Rev. 2013, 260, 156.
      (d) Moustafa, M. E.; McCready, M. S.; Puddephatt, R. J. Organometallics 2013, 32, 2552.
      (e) Samanta, A.; Ravoo, B. J. Chem. Eur. J. 2014, 20, 4966.

    4. [4]

      (a) Maciejewski, A.; Jaworska-Augustyniak, A.; Szeluga, Z.; Wojtczak, J.; Karolczak, J. Chem. Phys. Lett. 1988, 153, 227.
      (b) Kikuchi, M.; Kikuchi, K.; Kokubun, H. Bull. Chem. Soc. Jpn. 1974, 47, 1331.
      (c) Farmilo, A.; Wilkinson, F. Chem. Phys. Lett. 1975, 34, 575.
      (d) Lee, E. J.; Wrighton, M. S. J. Am. Chem. Soc. 1991, 113, 8562.
      (e) Fery-Forgues, S.; Delavaux-Nicot, B. J. Photochem. Photobiol., A 2000, 132, 137.

    5. [5]

      Sakamoto, R.; Kume, S.; Nishihara, H. Chem. Eur. J. 2008, 14(23), 6978.

    6. [6]

      (a) Seo, E. T.; Nelson, R. F.; Fritsch, J. M.; Marcoux, L. S.; Leedy, D. W.; Adams, R. N. J. Am. Chem. Soc. 1966, 88, 3498.
      (b) Reynolds, R.; Line, L. L.; Nelson, R. F. J. Am. Chem. Soc. 1974, 96(4), 1087.

    7. [7]

      Gritzner, G.; Kuta, J. Pure Appl. Chem. 1984, 56(4), 461.  doi: 10.1351/pac198456040461

    8. [8]

      Dei, D. K.; Lund, B. R.; Wu, J.; Simon, D.; Ware, T.; Voit, W. E.; MacFarlane, D.; Liff, S. M.; Smith, D. W. ACS Macro Lett. 2012, 2, 35.

    9. [9]

      Tanino, T.; Yoshikawa, S.; Ujike, T.; Nagahama, D.; Moriwaki, K.; Takahashi, T.; Kotani, Y.; Nakano, H.; Shirota, Y. J. Mater. Chem. 2007, 17, 4953.  doi: 10.1039/b711542c

    10. [10]

      (a) Blevins, A. A.; Blanchard, G. J. J. Phys. Chem. B 2004, 108, 4962.
      (b) Rau, H. In Photochromism, Ed.: Dürr, H.; Bouas-Laurent, H., Elsevier Science, Amsterdam, 2003, p. 165.

    11. [11]

    12. [12]

      (a) Moustafa, M. E.; McCready, M. S.; Puddephatt, R. J. Organometallics 2012, 31, 6262.
      (b) Wazzan, N. A.; Richardson, P. R.; Jones, A. C. Photochem. Photobiol. Sci. 2010, 9, 968.

    13. [13]

      Yan, J.-F.; Lin, D.-Q.; Wang, X.-G.; Wu, K.-Q.; Xie, L.-L.; Yuan, Y.-F., Chem. Asian J. 2015, 10, 614.  doi: 10.1002/asia.201403327

    14. [14]

      Horie, M.; Sakano, T.; Osakada, K.; Nakao, H. Organometallics 2004, 23, 18.  doi: 10.1021/om034163i

    15. [15]

      Asano, T.; Okada, T.; Shinkai, S.; Shigematsu, K.; Kusano, Y.; Manabe, O. J. Am. Chem. Soc. 1981, 103, 5161.  doi: 10.1021/ja00407a034

    16. [16]

      (a) Helmut, K. In CRC Handbook of Organic Photochemistry and Photobiology, Vols. 1& 2, CRC Press, Boca Raton, 2003.
      (b) Yager, K. G.; Barrett, C. J. In Intelligent Materials, Chapter 17, The Royal Society of Chemistry, Cambridge, 2008, p. 424.
      (c) García-Amorós, J.; Velasco, D. Beilstein J. Org. Chem. 2012, 8, 1003.

  • 加载中
    1. [1]

      Yuting DUJing YUANPeiyao DENG . Synthesis and application of a fluorescent probe for the detection of reduced glutathione. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1331-1337. doi: 10.11862/CJIC.20240461

    2. [2]

      Meijin Li Xirong Fu Xue Zheng Yuhan Liu Bao Li . The Marvel of NAD+: Nicotinamide Adenine Dinucleotide. University Chemistry, 2024, 39(9): 35-39. doi: 10.12461/PKU.DXHX202401027

    3. [3]

      Hui-Ying ChenHao-Lin ZhuPei-Qin LiaoXiao-Ming Chen . Integration of Ru(Ⅱ)-Bipyridyl and Zinc(Ⅱ)-Porphyrin Moieties in a Metal-Organic Framework for Efficient Overall CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306046-0. doi: 10.3866/PKU.WHXB202306046

    4. [4]

      Yunting Shang Yue Dai Jianxin Zhang Nan Zhu Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050

    5. [5]

      Wanmin Cheng Juan Du Peiwen Liu Yiyun Jiang Hong Jiang . Photoinitiated Grignard Reagent Synthesis and Experimental Improvement in Triphenylmethanol Preparation. University Chemistry, 2024, 39(5): 238-242. doi: 10.3866/PKU.DXHX202311066

    6. [6]

      Xichen YAOShuxian WANGYun WANGCheng WANGChuang ZHANG . Oxygen reduction performance of self?supported Fe/N/C three-dimensional aerogel catalyst layers. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1387-1396. doi: 10.11862/CJIC.20240384

    7. [7]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    8. [8]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    9. [9]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    10. [10]

      Hui Shi Shuangyan Huan Yuzhi Wang . Ideological and Political Design of Potassium Permanganate Oxidation-Reduction Titration Experiment. University Chemistry, 2024, 39(2): 175-180. doi: 10.3866/PKU.DXHX202308042

    11. [11]

      Tong Zhou Jun Li Zitian Wen Yitian Chen Hailing Li Zhonghong Gao Wenyun Wang Fang Liu Qing Feng Zhen Li Jinyi Yang Min Liu Wei Qi . Experiment Improvement of “Redox Reaction and Electrode Potential” Based on the New Medical Concept. University Chemistry, 2024, 39(8): 276-281. doi: 10.3866/PKU.DXHX202401005

    12. [12]

      Ji-Quan Liu Huilin Guo Ying Yang Xiaohui Guo . Calculation and Discussion of Electrode Potentials in Redox Reactions of Water. University Chemistry, 2024, 39(8): 351-358. doi: 10.3866/PKU.DXHX202401031

    13. [13]

      Zhuoyan LvYangming DingLeilei KangLin LiXiao Yan LiuAiqin WangTao Zhang . Light-Enhanced Direct Epoxidation of Propylene by Molecular Oxygen over CuOx/TiO2 Catalyst. Acta Physico-Chimica Sinica, 2025, 41(4): 2408015-0. doi: 10.3866/PKU.WHXB202408015

    14. [14]

      Runhua ChenQiong WuJingchen LuoXiaolong ZuShan ZhuYongfu Sun . Defective Ultrathin Two-Dimensional Materials for Photo-/Electrocatalytic CO2 Reduction: Fundamentals and Perspectives. Acta Physico-Chimica Sinica, 2025, 41(3): 2308052-0. doi: 10.3866/PKU.WHXB202308052

    15. [15]

      Xiaofeng ZhuBingbing XiaoJiaxin SuShuai WangQingran ZhangJun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-0. doi: 10.3866/PKU.WHXB202407005

    16. [16]

      Qiang ZhangYuanbiao HuangRong Cao . Imidazolium-Based Materials for CO2 Electroreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306040-0. doi: 10.3866/PKU.WHXB202306040

    17. [17]

      Zilin HuYaoshen NiuXiaohui RongYongsheng Hu . Suppression of Voltage Decay through Ni3+ Barrier in Anionic-Redox Active Cathode for Na-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(6): 2306005-0. doi: 10.3866/PKU.WHXB202306005

    18. [18]

      Zhaoyu WenNa HanYanguang Li . Recent Progress towards the Production of H2O2 by Electrochemical Two-Electron Oxygen Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(2): 2304001-0. doi: 10.3866/PKU.WHXB202304001

    19. [19]

      CCS Chemistry 综述推荐│绿色氧化新思路:光/电催化助力有机物高效升级

      . CCS Chemistry, 2025, 7(10.31635/ccschem.024.202405369): -.

    20. [20]

      Kaihui HuangDejun ChenXin ZhangRongchen ShenPeng ZhangDifa XuXin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-0. doi: 10.3866/PKU.WHXB202407020

Metrics
  • PDF Downloads(18)
  • Abstract views(1555)
  • HTML views(352)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return