Citation: Ma Rong, Song Gege, Xi Qiuzhen, Yang Liu, Li Er-Qing, Duan Zheng. Phosphine-Catalyzed[3+2] Annulations with γ-Methyl Allenoates[J]. Chinese Journal of Organic Chemistry, ;2019, 39(8): 2196-2202. doi: 10.6023/cjoc201901040 shu

Phosphine-Catalyzed[3+2] Annulations with γ-Methyl Allenoates

  • Corresponding author: Li Er-Qing, lierqing@zzu.edu.cn Duan Zheng, duanzheng@zzu.edu.cn
  • Received Date: 25 January 2019
    Revised Date: 22 March 2019
    Available Online: 9 August 2019

    Fund Project: the National Natural Science Foundation of China 21272218the National Natural Science Foundation of China 21702189the China Postdoctoral Science Foundation 2018T110737the Postdoctoral Research Grant in Henan Province 001701006Project supported by the National Natural Science Foundation of China (Nos. 21702189, 21672193, 21272218), the China Postdoctoral Science Foundation (Nos. 2017M610458, 2018T110737) and the Postdoctoral Research Grant in Henan Province (No. 001701006)the National Natural Science Foundation of China 21672193the China Postdoctoral Science Foundation 2017M610458

Figures(2)

  • The phosphine-catalyzed[3+2] annulation of γ-methyl allenoates with 2-arylidene-1H-indene-1, 3(2H)-diones is reported. In the reaction, a series of highly functionalized spiro[4.4]dec-6-ene skeletons were obtained in moderate to good yields and high diastereoselectivities. It should be noted that the perfect α-regioselective annulation adducts were obtained with simple PPh3 catalyst.
  • 加载中
    1. [1]

      (a) Tan, B.; Candeias, N. R.; Barbas Ⅲ, C. F. Nat. Chem. 2011, 3, 473.
      (b) Tan, B.; Candeias, N. R.; Barbas Ⅲ, C. F. J. Am. Chem. Soc. 2011, 133, 4672.
      (c) Tan, B.; Hernandez-Torres, G.; Barbas Ⅲ, C. F. J. Am. Chem. Soc. 2011, 133, 12354.
      (d) Cao, Y.; Jiang, X.; Liu, L.; Shen, F.; Zhang, F.; Wang, R. Angew. Chem., Int. Ed. 2011, 50, 9124.
      (e) Zhong, F.; Han, X.; Wang, Y.; Lu, Y. Angew. Chem., Int. Ed. 2011, 50, 7837.
      (f) Bencivenni, G.; Wu, L.-Y.; Mazzanti, A.; Giannichi, B.; Pesciaioli, F.; Song, M.-P.; Bartoli, G.; Melchiorre, P. Angew. Chem., Int. Ed. 2009, 48, 7200.

    2. [2]

      (a) Hojo, D.; Noguchi, K.; Tanaka, K. Angew. Chem., Int. Ed. 2009, 48, 8129.
      (b) Tanaka, K.; Otake, Y.; Sagae, H.; Noguchi, K.; Hirano, M. Angew. Chem., Int. Ed. 2008, 47, 1312.
      (c) Trost, B. M.; Cramer, N.; Silverman, S. M. J. Am. Chem. Soc. 2007, 129, 12396.

    3. [3]

      (a) Zhang, C.; Lu, X. J. Org. Chem. 1995, 60, 2906.
      (b) Lu, Z.; Zheng, S.; Zhang, X.; Lu, X. Org. Lett. 2008, 10, 3267.
      (c) Zhang, B.; He, Z.; Xu, S.; Wu, G.; He, Z. Tetrahedron 2008, 64, 9471.
      (d) Tian, J.; He, Z. Chem. Commun. 2013, 49, 2058.

    4. [4]

    5. [5]

      (a) Zhu, X.-F.; Lan, J.; Kwon, O. J. Am. Chem. Soc. 2003, 125, 4716.
      (b) Tran, Y. S.; Kwon, O. J. Am. Chem. Soc. 2007, 129, 12632.
      (c) Chen, R.; Fan, X.; Xu, Z.; He, Z. Chin. J. Chem. 2017, 35, 1469.

    6. [6]

      Zhang, Q.; Yang, L.; Tong, X. J. Am. Chem. Soc. 2010, 132, 2550.  doi: 10.1021/ja100432m

    7. [7]

      (a) Xu, S.; Zhou, L.; Ma, R.; Song, H.; He, Z. Chem.-Eur. J. 2009, 15, 8698.
      (b) Meng, X.; Huang, Y.; Zhao, H.; Xie, P.; Ma, J.; Chen, R. Org. Lett. 2009, 11, 991.
      (c) Zhao, H.; Meng, X.; Huang, Y. Chem. Commun. 2013, 49, 10513.
      (d) Li, E.; Jia, P.; Liang, L.; Huang, Y. ACS Catal. 2014, 4, 600.
      (e) Li, E.; Chang, M.; Liang, L.; Huang, Y. Eur. J. Org. Chem. 2015, 710.
      (f) Li, E.; Jin, H.; Huang, Y. ChemistrySelect 2018, 3, 12007.

    8. [8]

      Zhang, X.-C.; Cao, S.-H.; Wei, Y.; Shi, M. Chem. Commun. 2011, 47, 1548.  doi: 10.1039/C0CC04289G

    9. [9]

      Gomez, C.; Gicquel, M.; Carry, J.-C.; Schio, L.; Retailleau, P.; Voituriez, A.; Marinetti, A. J. Org. Chem. 2013, 78, 1488.  doi: 10.1021/jo302460d

    10. [10]

      Li, E.; Huang, Y.; Liang, L.; Xie, P. Org. Lett. 2013, 15, 3138.  doi: 10.1021/ol401249e

    11. [11]

      CCDC 1579810 (3e) contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre.

    12. [12]

      (a) Liang, Y.; Liu, S.; Xia, Y.; Li, Y.; Yu, Z.-X. Chem.-Eur. J. 2008, 14, 4361.
      (b) Mercier, E.; Fonovic, B.; Henry, C.; Kwon, O.; Dudding, T. Tetrahedron Lett. 2007, 48, 3617.
      (c) Xia, Y.; Liang, Y.; Chen, Y.; Wang, M.; Jiao, L.; Huang, F.; Liu, S.; Li, Y.; Yu, Z.-X. J. Am. Chem. Soc. 2007, 129, 3470.
      (d) Dudding, T.; Kwon, O.; Mercier, E. Org. Lett. 2006, 8, 3643.
      (e) Zhu, X.-F.; Henry, C. E.; Kwon, O. J. Am. Chem. Soc. 2007, 129, 6722.

    13. [13]

      Goswami, P.; Das, B. Tetrahedron Lett. 2009, 50, 897.  doi: 10.1016/j.tetlet.2008.12.036

    14. [14]

      Lang, R. W.; Hansen, H.-J. Org. Synth. 1990, 62, 202.

  • 加载中
    1. [1]

      Junyuan Zhang Zhiwei Miao . 有机磷杀虫剂的前世今生. University Chemistry, 2025, 40(6): 129-138. doi: 10.12461/PKU.DXHX202408118

    2. [2]

      Jiajie Li Xiaocong Ma Jufang Zheng Qiang Wan Xiaoshun Zhou Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117

    3. [3]

      Qilong Fang Yiqi Li Jiangyihui Sheng Quan Yuan Jie Tan . Magical Pesticide Residue Detection Test Strips: Aptamer-based Lateral Flow Test Strips for Organophosphorus Pesticide Detection. University Chemistry, 2024, 39(5): 80-89. doi: 10.3866/PKU.DXHX202310004

    4. [4]

      Qianlang Wang Jijun Sun Qian Chen Quanqin Zhao Baojuan Xi . The Appeal of Organophosphorus Compounds: Clearing Their Name. University Chemistry, 2025, 40(4): 299-306. doi: 10.12461/PKU.DXHX202405205

    5. [5]

      Fengxiao Wang Zhiwei Miao Yaofeng Yuan . 有机磷化学与化学教学. University Chemistry, 2025, 40(8): 158-168. doi: 10.12461/PKU.DXHX202410077

    6. [6]

      Ke LiChuang LiuJingping LiGuohong WangKai Wang . Architecting Inorganic/Organic S-Scheme Heterojunction of Bi4Ti3O12 Coupling with g-C3N4 for Photocatalytic H2O2 Production from Pure Water. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-0. doi: 10.3866/PKU.WHXB202403009

    7. [7]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    8. [8]

      Dan Liu . 可见光-有机小分子协同催化的不对称自由基反应研究进展. University Chemistry, 2025, 40(6): 118-128. doi: 10.12461/PKU.DXHX202408101

    9. [9]

      Yan KongWei WeiLekai XuChen Chen . Electrochemical Synthesis of Organonitrogen Compounds from N-integrated CO2 Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2307049-0. doi: 10.3866/PKU.WHXB202307049

    10. [10]

      Shuai Yuan Yaofeng Yuan . Academician Chengye Yuan and Organic Phosphorus Chemistry. University Chemistry, 2025, 40(7): 393-400. doi: 10.12461/PKU.DXHX202409123

    11. [11]

      Shuang CaoBo ZhongChuanbiao BieBei ChengFeiyan Xu . Insights into Photocatalytic Mechanism of H2 Production Integrated with Organic Transformation over WO3/Zn0.5Cd0.5S S-Scheme Heterojunction. Acta Physico-Chimica Sinica, 2024, 40(5): 2307016-0. doi: 10.3866/PKU.WHXB202307016

    12. [12]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    13. [13]

      Yan Qi Yueqin Yu Weisi Guo Yongjun Liu . 过渡金属参与的有机反应案例教学与实践探索. University Chemistry, 2025, 40(6): 111-117. doi: 10.12461/PKU.DXHX202411021

    14. [14]

      Jiaojiao Yu Bo Sun Na Li Cong Wen Wei Li . Improvement of Classical Organic Experiment Based on the “Reverse-Step Optimization Method”: Taking Synthesis of Ethyl Acetate as an Example. University Chemistry, 2025, 40(3): 333-341. doi: 10.12461/PKU.DXHX202405177

    15. [15]

      Hui-Ying ChenHao-Lin ZhuPei-Qin LiaoXiao-Ming Chen . Integration of Ru(Ⅱ)-Bipyridyl and Zinc(Ⅱ)-Porphyrin Moieties in a Metal-Organic Framework for Efficient Overall CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306046-0. doi: 10.3866/PKU.WHXB202306046

    16. [16]

      Yawen GuoDawei LiYang GaoCuihong Li . Recent Progress on Stability of Organic Solar Cells Based on Non-Fullerene Acceptors. Acta Physico-Chimica Sinica, 2024, 40(6): 2306050-0. doi: 10.3866/PKU.WHXB202306050

    17. [17]

      Aiyi Xin Jiawei Li Xinyang Ran Chuanjiang Fu Zhiguo Wang . Collaborative Science and Education Based Experimental Design in Organic Chemistry: A Case Study of the Nucleophilic Substitution Reaction of 2-Hydroxymethyl-4,6-Di-Tert-Butylphenol. University Chemistry, 2025, 40(5): 366-375. doi: 10.12461/PKU.DXHX202407031

    18. [18]

      Yuanqing WangYusong PanHongwu ZhuYanlei XiangRong HanRun HuangChao DuChengling Pan . Enhanced Catalytic Activity of Bi2WO6 for Organic Pollutants Degradation under the Synergism between Advanced Oxidative Processes and Visible Light Irradiation. Acta Physico-Chimica Sinica, 2024, 40(4): 2304050-0. doi: 10.3866/PKU.WHXB202304050

    19. [19]

      Mengyang LIHao XUZhonghao NIUChunhua GONGWeihui ZHONGJingli XIE . Highly effective catalytic synthesis of β-amino alcohols by using viologen-polyoxometalate hybrid materials. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1294-1300. doi: 10.11862/CJIC.20250080

    20. [20]

      Yukun Chang Haoqin Huang Baolei Wang . Preparation of Trans-Cinnamic Acid via “One-Pot” Protocol of Aldol Condensation-Hydrolysis Reaction: Recommending an Improved Organic Synthesis Experiment. University Chemistry, 2024, 39(4): 322-328. doi: 10.3866/PKU.DXHX202309095

Metrics
  • PDF Downloads(8)
  • Abstract views(1225)
  • HTML views(117)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return