Citation: Wang Maochang, Zhang Baohua, Ding Kai. Radical Oxidation of α-Hydroxyl Ester Initiated by Sodium Hypochlorite[J]. Chinese Journal of Organic Chemistry, ;2019, 39(7): 1996-2000. doi: 10.6023/cjoc201901019 shu

Radical Oxidation of α-Hydroxyl Ester Initiated by Sodium Hypochlorite

Figures(3)

  • Sodium hypochlorite has been used as a green oxidant in oxidation of alcohols. However, the oxidation of a-hydroxyl ester via sodium hypochloriteis difficult under the same conditions. Herein, an efficient method is developed for the oxidation of a-hydroxyl ester with sodium hypochlorite in the presence of hydrogenbromide. In this case, a reaction mechanism was proposed with the formation of free radicals as reactive intermediates, which was different from the mechanism of traditional Stevens oxidation. The method is also applied to the oxidation of common secondary alcohol and has good selectivity for multi-hydroxyl compounds.
  • 加载中
    1. [1]

      (a) Stevens, R. V.; Chapman, K. T.; Weller, H. N. J. Org. Chem. 1980, 45, 2030.
      (b) Hirashita, T.; Sugihara, Y.; Ishikawa, S.; Naito, Y.; Matsukawa, Y.; Araki, S. Synlett 2018, 29, 2404.

    2. [2]

      (a) Mirafzal, G. A.; Lozeva, A. M. Tetrahedron Lett. 1998, 39, 7263.
      (b) Zhang, Y. J.; Born, S. C.; Jensen, K. F. Org. Process Res. Dev. 2014, 18, 1476.
      (c) Leduc, A. B.; Jamison, T. F. Org. Process Res. Dev. 2012, 16, 1082.

    3. [3]

      (a) Wolfe, S.; Hasan, S. K.; Campbell, J. R. J. Chem. Soc., Chem. Commun. 1970, 1420.
      (b) Yamaoka, H.; Moriya, N.; Ikunaka, M. Org. Process Res. Dev. 2004, 8, 931.

    4. [4]

      (a) Anelli, P. L.; Biffi, C.; Montanari, F.; Quici, S. J. Org. Chem. 1987, 52, 2559.
      (b) Kloth, K.; Brunjes, M.; Kunst, E.; Joge, T.; Gallier, F.; Adibekian, A.; Kirschning, A. Adv. Synth. Catal. 2005, 347, 1423.
      (c) Reddy, S. R.; Chadha, A. RSC Adv. 2013, 3, 14929.

    5. [5]

      (a) Larsen, R. D.; Corley, E. G.; Davis, P.; Reider, P. J.; Grabowski, E. J. J. J. Am. Chem. Soc. 1989, 111, 7650.
      (b) Gu, X.; Wang, L.; Gao, Y. F.; Ma, W.; Li, Y. M.; Gong, P. Tetrahedron: Asymmetry 2014, 25, 1573.

    6. [6]

      (a) Stiller, E. T.; Harris, S. A.; Finkelstein, J.; Keresztesy, J. C.; Folkers, K. J. Am. Chem. Soc. 1940, 62, 1785.
      (b) Parke, H. C.; Lawson, E. J. J. Am. Chem. Soc. 1941, 63, 2869.
      (c) Mouterde, L. M. M.; Stewart, J. D. Org. Process Res. Dev. 2016, 20, 954.

    7. [7]

      (a) Lipton, S. H.; Strong, F. M. J. Am. Chem. Soc. 1949, 71, 2364.
      (b) Synoradzki, L.; Rowicki, T.; Wlostowski, M. Org. Process Res. Dev. 2006, 10, 103.
      (c) Markert, M.; Scheffler, U.; Mahrwald, R. J. Am. Chem. Soc. 2009, 131, 16642.
      (d) Heidlindemann, M.; Hammel, M.; Scheffler, U.; Mahrwald, R.; Hummel, W.; Berkessel, A.; Groger, H. J. Org. Chem. 2015, 80, 3387.

    8. [8]

      (a) Boaz, N. W.; Mackenzie, E. B.; Debenham, S. D.; Large, S. E.; Ponasik, J. A. J. Org. Chem. 2005, 70, 1872.
      (b) Pasquier, C.; Naili, S.; Pelinski, L.; Brocard, J.; Mortreux, A.; Agbossou, F. Tetrahedron: Asymmetry 1998, 9, 193.
      (c) Shimizu, S.; Yamada, H.; Hata, H.; Morishita, T.; Akutsu, S.; Kawamura, M. Agric. Biol. Chem. 1987, 51, 289.

    9. [9]

      (a) Iwahashi, M.; Naganawa, A.; Kinoshita, A.; Shimabukuro, A.; Nishiyama, T.; Ogawa, S.; Matsunaga, Y.; Tsukamoto, K.; Okada, Y.; Matsumoto, R.; Nambu, F.; Oumi, R.; Odagaki, Y.; Katagi, J.; Yano, K.; Tani, K.; Nakai, H.; Toda, M. Bioorg. Med. Chem. 2011, 19, 6935.
      (b) Leduc, A. B.; Jamison, T. F. Org. Process Res. Dev. 2012, 16, 1082.
      (c) Furukawa, I.; Sasaki, M.; Inoue, T.; Ohta, T. Phosphorus Sulfur Silicon Relat. Elem. 1998, 143, 85.
      (d) Maekawa, H.; Ishino, Y.; Nishiguchi, I. Chem. Lett. 1994, 1017.
      (e) Chang, H. S.; Woo, J. C.; Lee, K. M.; Ko, Y. K.; Moon, S. S.; Kim, D. W. Synth. Commun. 2002, 32, 31.

    10. [10]

      Filler, R. Chem. Rev. 1963, 63, 21.  doi: 10.1021/cr60221a002

    11. [11]

      Moriyama, K.; Takemura, M.; Togo, H. Org. Lett. 2012, 14, 2414.  doi: 10.1021/ol300853z

    12. [12]

      Griesbaum, K.; Meister, M. Chem. Ber. 1987, 120, 1573.  doi: 10.1002/cber.19871200916

    13. [13]

      Thiede, S.; Wosniok, P. R.; Herkommer, D.; Schulz-Fincke, A.-C.; Gütschow, M.; Menche, D. Org. Lett. 2016, 18, 3964.  doi: 10.1021/acs.orglett.6b01724

    14. [14]

      Grison, C.; Petek, S.; Coutrot, P. Tetrahedron 2005, 61, 7193.  doi: 10.1016/j.tet.2005.05.031

    15. [15]

      Lappalainen, K.; Kolehmainen, E.; Kaartinen, M.; Kauppinen, R.; Seppaelae, R.; Vatanen, V. Magn. Reson. Chem. 1994, 32, 786.  doi: 10.1002/mrc.1260321213

    16. [16]

      Zhao, Z.-G.; Yan, P.; Liu, X.-L.; Shi, Z.-C. Lett. Org. Chem. 2012, 9, 604.  doi: 10.2174/157017812802850212

    17. [17]

      Mitra, M. N.; Elliott, W. H. J. Org. Chem. 1968, 33, 2814.  doi: 10.1021/jo01271a044

    18. [18]

      Stoltz, K. L.; Erickson, R.; Staley, C.; Weingarden, A. R.; Romens, E.; Steer, C. J; Khoruts, A.; Dosa, P. I. J. Med. Chem. 2017, 60, 3451.  doi: 10.1021/acs.jmedchem.7b00295

    19. [19]

      Zuercher, R. F. Helv Chim. Acta 1963, 46, 2054.  doi: 10.1002/hlca.19630460625

    20. [20]

      Iida, T.; Nishida, S.; Chang, F. C.; Niwa, T.; Goto, J.; Nambara, T. Chem. Pharm. Bull. 1993, 41, 763.  doi: 10.1248/cpb.41.763

    21. [21]

      Kallner, A. Acta Chem. Scand. 1967, 21, 315.  doi: 10.3891/acta.chem.scand.21-0315

    22. [22]

      Jiang, X.; Cao, Y.; Wang, Y.; Liu, L.; Shen, F.; Wang, R. J. Am. Chem. Soc. 2010, 132, 15328.  doi: 10.1021/ja106349m

    23. [23]

      Kurouchi, H.; Sugimoto, H.; Otani, Y.; Ohwada, T. J. Am. Chem. Soc. 2010, 132, 807.  doi: 10.1021/ja908749u

  • 加载中
    1. [1]

      Yongming Guo Jie Li Chaoyong Liu . Green Improvement and Educational Design in the Synthesis and Characterization of Silver Nanoparticles. University Chemistry, 2024, 39(3): 258-265. doi: 10.3866/PKU.DXHX202309057

    2. [2]

      Zhaoyu WenNa HanYanguang Li . Recent Progress towards the Production of H2O2 by Electrochemical Two-Electron Oxygen Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(2): 2304001-0. doi: 10.3866/PKU.WHXB202304001

    3. [3]

      Weihan ZhangMenglu WangAnkang JiaWei DengShuxing Bai . Surface Sulfur Species Influence Hydrogenation Performance of Palladium-Sulfur Nanosheets. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-0. doi: 10.3866/PKU.WHXB202309043

    4. [4]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    5. [5]

      CCS Chemistry | 超分子活化底物自由基促进高效选择性光催化氧化

      . CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -.

    6. [6]

      Jun HuangPengfei NieYongchao LuJiayang LiYiwen WangJianyun Liu . 丝光沸石负载自支撑氮掺杂多孔碳纳米纤维电容器及高效选择性去除硬度离子. Acta Physico-Chimica Sinica, 2025, 41(7): 100066-0. doi: 10.1016/j.actphy.2025.100066

    7. [7]

      Zhi Chai Huashan Huang Xukai Shi Yujing Lan Zhentao Yuan Hong Yan . Wittig反应的立体选择性. University Chemistry, 2025, 40(8): 192-201. doi: 10.12461/PKU.DXHX202410046

    8. [8]

      CCS Chemistry 综述推荐│绿色氧化新思路:光/电催化助力有机物高效升级

      . CCS Chemistry, 2025, 7(10.31635/ccschem.024.202405369): -.

    9. [9]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    10. [10]

      Yunhao Zhang Yinuo Wang Siran Wang Dazhen Xu . Progress in Selective Construction of Functional Aromatics from Nitrogenous Cycloalkanes. University Chemistry, 2024, 39(11): 136-145. doi: 10.3866/PKU.DXHX202401083

    11. [11]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    12. [12]

      Xilin Zhao Xingyu Tu Zongxuan Li Rui Dong Bo Jiang Zhiwei Miao . Research Progress in Enantioselective Synthesis of Axial Chiral Compounds. University Chemistry, 2024, 39(11): 158-173. doi: 10.12461/PKU.DXHX202403106

    13. [13]

      Feifei YangWei ZhouChaoran YangTianyu ZhangYanqiang Huang . Enhanced Methanol Selectivity in CO2 Hydrogenation by Decoration of K on MoS2 Catalyst. Acta Physico-Chimica Sinica, 2024, 40(7): 2308017-0. doi: 10.3866/PKU.WHXB202308017

    14. [14]

      Jun LUOBaoshu LIUYunchang ZHANGBingkai WANGBeibei GUOLan SHETianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240

    15. [15]

      Shuhong XiangLv YangYingsheng XuGuoxin CaoHongjian Zhou . Selective electrosorption of Cs(Ⅰ) from high-salinity radioactive wastewater using CNT-interspersed potassium zinc ferrocyanide electrodes. Acta Physico-Chimica Sinica, 2025, 41(9): 100097-0. doi: 10.1016/j.actphy.2025.100097

    16. [16]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    17. [17]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    18. [18]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    19. [19]

      Baitong Wei Jinxin Guo Xigong Liu Rongxiu Zhu Lei Liu . Theoretical Study on the Structure, Stability of Hydrocarbon Free Radicals and Selectivity of Alkane Chlorination Reaction. University Chemistry, 2025, 40(3): 402-407. doi: 10.12461/PKU.DXHX202406003

    20. [20]

      Jingkun YuXue YongAng CaoSiyu Lu . Bi-Layer Single Atom Catalysts Boosted Nitrate-to-Ammonia Electroreduction with High Activity and Selectivity. Acta Physico-Chimica Sinica, 2024, 40(6): 2307015-0. doi: 10.3866/PKU.WHXB202307015

Metrics
  • PDF Downloads(31)
  • Abstract views(3816)
  • HTML views(1418)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return