Citation: Wang Yunlong, Zhang Linbao, Niu Junlong, Song Maoping. Copper-Promoted Direct Nitration of Arenes Assisted by an N, O-Bidentate Directing System[J]. Chinese Journal of Organic Chemistry, ;2019, 39(6): 1761-1766. doi: 10.6023/cjoc201901015 shu

Copper-Promoted Direct Nitration of Arenes Assisted by an N, O-Bidentate Directing System

  • Corresponding author: Niu Junlong, niujunlong@zzu.edu.cn Song Maoping, mpsong@zzu.edu.cn
  • Received Date: 11 January 2019
    Revised Date: 25 February 2019
    Available Online: 8 June 2019

    Fund Project: the Program for Science & Technology Innovation Talents in Universities of Henan Province 19HASTIT038Project supported by the National Natural Science Foundation of China (Nos. 21772179, 21672192), the Program for Science & Technology Innovation Talents in Universities of Henan Province (No. 19HASTIT038)the National Natural Science Foundation of China 21672192the National Natural Science Foundation of China 21772179

Figures(3)

  • Cu(Ⅱ)-promoted C-H nitration of arenes has been disclosed with the aid of N, O-bidentate directing group. The protocol was operationally simple by using NaNO2as the nitration source. Various amide substrates were tolerated in the reaction system, which establishes opportunities for developing simple and facile methods, and enriches the strategies to access aromatic nitro derivatives.
  • 加载中
    1. [1]

      (a) Olah, G. A.; Malhotra, R.; Narang, S. C. Nitration: Methods and Mechanisms, Wiley-VCH, Weinheim, 1989.
      (b) Feuer, H.; Nielsen, A. T. Nitro Compounds: Recent Advances in Synthesis and Chemistry, Wiley-VCH, Weinheim, 1990.

    2. [2]

      (a) Schofield, K. Aromatic Nitrations, Cambridge University Press, Cambridge, 1980.
      (b) Ono, N. The Nitro Group in Organic Synthesis, Wiley-VCH, Weinheim, 2001.

    3. [3]

      Hearn, R.; Russell, M. K. R. G. Ann. Rheum. Dis. 1983, 42(Suppl.), 39.

    4. [4]

      (a) Tani, K.; Lukin, K.; Eaton, P. E. J. Am. Chem. Soc. 1997, 119, 6.
      (b) Salzbrunn, S.; Simon, J.; Prakash, G. K. S.; Petasis, N. A.; Olah, G. A. Synlett 2000, 1485.
      (c) Prakash, G. K. S.; Panja, C.; Mathew, T.; Surampudi, V.; Petasis, N. A.; Olah, G. A. Org. Lett. 2004, 6, 2205.
      (d) Yan, G.; Yang, M. Org. Biomol. Chem. 2013, 11, 2554.
      (e) Das, J. P.; Sinha, P.; Roy, S. Org. Lett. 2002, 4, 3055.

    5. [5]

      (a) Kakiuchi, F.; Chatani, N. Adv. Synth. Catal. 2003, 345, 1077.
      (b) Ackermann, L.; Vicente, R.; Kapdi, A. R. Angew. Chem., Int. Ed. 2009, 48, 9792.
      (c) Satoh, T.; Miura, M. Chem.-Eur. J. 2010, 16, 11212.
      (d) Wencel-Delord, J.; Drö ge, T.; Liu, F.; Glorius, F. Chem. Soc. Rev. 2011, 40, 4740.
      (e) Chen, X.; Engle, K. M.; Wang, D.-H.; Yu, J.-Q. Angew. Chem. Int. Ed. 2009, 48, 5094.
      (f) Ackermann, L. Acc. Chem. Res. 2014, 47, 281.
      (g) Misal Castro, L. C.; Chatani, N. Chem. Lett. 2015, 44, 410.
      (h) Satoh, T.; Miura, M. Chem. Lett. 2006, 36, 200.

    6. [6]

      (a) Liu, Y.-K.; Lou, S.-J.; Xu, D.-Q.; Xu, Z.-Y. Chem.-Eur. J. 2010, 13590.
      (b) Zhang, W.; Lou, S.; Liu, Y.; Xu, Z. J. Org. Chem. 2013, 78, 5932.
      (c) Zhang, L.; Liu, Z.; Li, H.; Fang, G.; Barry, B. D.; Belay, T. A.; Bi, X.; Liu, Q. Org. Lett. 2011, 13, 6536.
      (d) Zhang, H.; Zhao, L.; Wang, D.-X.; Wang, M.-X. Org. Lett. 2013, 15, 3836.
      (e) Xie, F.; Qi, Z.; Li, X. Angew. Chem., Int. Ed. 2013, 52, 11862.
      (f) Hernando, E.; Castillo, R. R.; Rodrĭguez, N.; Arrayás, R. G.; Carretero, J. C. Chem. Eur. J. 2014, 20, 13854.
      (g) Kianmehr, E.; Nasab, S. B. Eur. J. Org. Chem. 2018, 6447.
      (h) Katayev, D.; Pfister, K. F.; Wendling, T.; Gooβen, L. J. Chem.-Eur. J. 2014, 20, 9902.
      (i) Liu, J.; Zhuang, S.; Gui, Q.; Chen, X.; Yang, Z.; Tan, Z. Adv. Synth. Catal. 2015, 357, 732.

    7. [7]

      Zaitsev, V. G.; Shabashov, D.; Daugulis, O. J. Am. Chem. Soc. 2005, 13154.

    8. [8]

      Selected examples.
      (a) Asako, S.; Ilies, L.; Nakamura, E. J. Am. Chem. Soc. 2013, 135, 17755.
      (b) Shang, R.; Ilies, L.; Matsumoto, A.; Nakamura, E. J. Am. Chem. Soc. 2013, 135, 6030.
      (c) Fruchey, E. R.; Monks, B. M.; Cook, S. P. J. Am. Chem. Soc. 2014, 136, 13130.

    9. [9]

      Selected examples.
      (a) Grigorjeva, L.; Daugulis, O. Angew. Chem., Int. Ed. 2014, 53, 10209.
      (b) Grigorjeva, L.; Daugulis, O. Org. Lett. 2014, 16, 4684.
      (c) Grigorjeva, L.; Daugulis, O. Org. Lett. 2014, 16, 4688.
      (d) Ma, W.; Ackermann, L. ACS Catal.2015, 5, 2822.
      (e) Zhang, L.-B.; Hao, X.-Q.; Zhang, S.-K.; Liu, Z.-J.; Zheng, X.-X.; Gong, J.-F.; Niu, J.-L.; Song, M.-P. Angew. Chem., Int. Ed. 2015, 54, 272.
      (f) Zhang, L.-B.; Hao, X.-Q.; Zhang, S.-K.; Zheng, X.-X.; Liu, Z.-J.; Gong, J.-F.; Niu, J.-L.; Song, M.-P. Angew. Chem., Int. Ed. 2015, 54, 10012.
      (g) Saxena, P.; Kapur, M. Chem. Asian J. 2018, 13. 861.

    10. [10]

      Selected examples:
      (a) Aihara, Y.; Chatani, N. J. Am. Chem. Soc. 2014, 136, 898.
      (b) Song, W.; Lackner, S.; Ackermann, L. Angew. Chem., Int. Ed. 2014, 53, 2477.
      (c) Shiota, H.; Ano, Y.; Aihara, Y.; Fukumoto, Y.; Chatani, N. J. Am. Chem. Soc. 2011, 133, 14952.

    11. [11]

      Selected examples.
      (a) Tran, L. D.; Popov, I.; Daugulis, O. J. Am. Chem. Soc. 2012, 134, 18237.
      (b) Truong, T.; Klimovica, K.; Daugulis, O. J. Am. Chem. Soc. 2013, 135, 9342.
      (c) Tran, L. D.; Roane, J.; Daugulis, O. Angew. Chem., Int. Ed. 2013, 52, 6043.
      (d) Roane, J.; Daugulis, O. Org. Lett. 2013, 15, 5842.
      (e) Shang, M.; Sun, S.-Z.; Wang, H.-L.; Laforteza, B. N.; Dai, H.-X.; Yu, J.-Q. Angew. Chem., Int. Ed. 2014, 53, 10439.
      (f) Shang, M.; Wang, H.-L.; Sun, S.-Z.; Dai, H.-X.; Yu, J.-Q. J. Am. Chem. Soc. 2014, 136, 11590.
      (g) Li, X.; Liu, Y.-H.; Gu, W.-J.; Li, B.; Chen, F.-J.; Shi, B.-F. Org. Lett. 2014, 16, 3904.
      (h) Dong, J.; Wang, F.; You, J. Org. Lett. 2014, 16, 2884.
      (i) Nishino, M.; Hirano, K.; Satoh, T.; Miura, M. Angew. Chem., Int. Ed. 2013, 52, 4457.
      (j) Chen, F.-J.; Liao, G.; Li, X.; Wu, J.; Shi, B.-F. Org. Lett. 2014, 16, 5644.
      (k) Rouquet, G.; Chatani, N. Angew. Chem., Int. Ed. 2013, 52, 11726.
      (l) Zhang, Q.; Chen, K.; Shi, B.-F. Synlett 2014, 25, 1941.
      (m) Daugulis, O.; Roane, J.; Tran, L. D. Acc. Chem. Res. 2015, 48, 1053.
      (n) Dou, Y.-D.; Yin, B.; Zhang, P.-F.; Zhu, Q. Eur. J. Org. Chem. 2018, 4571.
      (o) Wang, C.-M.; Tang, K.-X.; Gao, T.-H.; Chen, L.; Sun, L.-P. J. Org. Chem. 2018, 83, 8315.
      (p) Tu, D.-Q.; Luo, J.; Jiang, C. Chem. Commun. 2018, 54, 2514.
      (q) Vinayak, B.; Chandrasekharam, M. Org. Lett. 2017, 19, 3528.

    12. [12]

      Selected our recent reports: (a) Hao, X.-Q.; Chen, L.-J.; Ren, B.; Li, L.-Y.; Yang, X.-Y.; Gong, J.-F.; Niu, J.-L.; Song, M.-P. Org. Lett. 2014, 16, 1104.
      (b) Zhang, L.-B.; Hao, X.-Q.; Zhang, S.-K.; Liu, K.; Ren, B.; Gong, J.-F.; Niu, J.-L.; Song, M.-P. J. Org. Chem. 2014, 79, 10399.

    13. [13]

      Selected examples.
      (a) Wang, D.-W.; Zhao, K.-Y.; Xu, C.-Y.; Miao, H.-Y.; Ding, Y.-Q. ACS Catal. 2014, 4, 3910.
      (b) Wang, D.-W.; Ge, B.-Y.; Li, L.; Shan, J.; Ding, Y.-Q. J. Org. Chem. 2014, 79, 8607.
      (c) Guo, X-K.; Zhang, L.-B.; Wei, D.-H.; Niu, J.-L. Chem. Sci. 2015, 6, 7059.
      (d) Wang, D.-W.; Yu, X.; Yao, W.; Hu, W.-K.; Ge, C.-Y.; Shi, X.-D. Chem.-Eur. J. 2016, 22, 55433.
      (e) Yu, X.-L.; Wang, D.-S.; Xu, Z.-J.; Yang, B.-B.; Wang, D.-W. Org. Chem. Front. 2017, 4, 1011.
      (f) Wu, Q.; Pan, L.; Du, G.-M.; Zhang, C.; Wang, D.-W. Org. Chem. Front. 2018, 5, 2668.
      (g) Xu, Z.-J.; Yu, X.-L.; Sang, X.-X.; Wang, D.-W. Green Chem. 2018, 20, 2571.
      (h) Wang, Y.; Du, C.; Wang, Y.-Y.; Guo, X.-K.; Fang, Lei.; Song, M.-P.; Niu, J.-L.; Wei, D.-H. Adv. Synth. Catal. 2018, 360, 2668.
      (i) Wang, D.-W.; Yu, X.-L.; Ge, B.-Y.; Miao, H.-Y.; Ding, Y.-Q. Chin. J. Org. Chem. 2015, 35, 676.
      (j) Hu, X.-Y.; Yang, B.-B.; Yao, W.; Wang, D.-W. Chin. J. Org. Chem. 2018, 38, 3296.

    14. [14]

      Suess, A. M.; Ertem, M. Z.; Cramer, C. J.; Stahl, S. S. J. Am. Chem. Soc. 2013, 135, 9797.  doi: 10.1021/ja4026424

  • 加载中
    1. [1]

      Chao ChenWenwen YuGuangen HuangXuelian RenXiangli ChenYixin LiShenggui LiangMengmeng XuMingyue ZhengYaxi YangHe HuangWei TangBing Zhou . Asymmetric macrocyclization enabled by Rh(Ⅲ)-catalyzed CH activation: Enantioenriched macrocyclic inhibitor of Zika virus infection. Chinese Chemical Letters, 2024, 35(11): 109574-. doi: 10.1016/j.cclet.2024.109574

    2. [2]

      Xiang HuangDongzhen XuYang LiuXia HuangYangfan WuDongmei FangBing XiaWei JiaoJian LiaoMin Wang . Asymmetric synthesis of difluorinated α-quaternary amino acids (DFAAs) via Cu-catalyzed difluorobenzylation of aldimine esters. Chinese Chemical Letters, 2024, 35(12): 109665-. doi: 10.1016/j.cclet.2024.109665

    3. [3]

      Bowen WangLongwu SunQianqian CaoXinzhi LiJianai ChenShizhao WangMiaolin KeFener Chen . Cu-catalyzed three-component CSP coupling for the synthesis of trisubstituted allenyl phosphorothioates. Chinese Chemical Letters, 2024, 35(12): 109617-. doi: 10.1016/j.cclet.2024.109617

    4. [4]

      Shulei HuYu ZhangXiong XieLuhan LiKaixian ChenHong LiuJiang Wang . Rh(Ⅲ)-catalyzed late-stage C-H alkenylation and macrolactamization for the synthesis of cyclic peptides with unique Trp(C7)-alkene crosslinks. Chinese Chemical Letters, 2024, 35(8): 109408-. doi: 10.1016/j.cclet.2023.109408

    5. [5]

      Qiao SongXue PengZhouyu WangLeyong Wang . Iron-catalyzed C–H activation: A sustainable approach to efficient organic synthesis. Chinese Chemical Letters, 2025, 36(5): 110869-. doi: 10.1016/j.cclet.2025.110869

    6. [6]

      Wujun JianMong-Feng ChiouYajun LiHongli BaoSong Yang . Cu-catalyzed regioselective diborylation of 1,3-enynes for the efficient synthesis of 1,4-diborylated allenes. Chinese Chemical Letters, 2024, 35(5): 108980-. doi: 10.1016/j.cclet.2023.108980

    7. [7]

      Xin LiJia-Min LuBo LiChen ZhaoBei-Bei YangLi Li . Chiroptical sensing for remote chiral amines via a C–H activation reaction. Chinese Chemical Letters, 2025, 36(5): 110310-. doi: 10.1016/j.cclet.2024.110310

    8. [8]

      Yujia ShiYan QiaoPengfei XieMiaomiao TianXingwei LiJunbiao ChangBingxian Liu . Rhodium-catalyzed enantioselective in situ C(sp3)−H heteroarylation by a desymmetrization approach. Chinese Chemical Letters, 2024, 35(10): 109544-. doi: 10.1016/j.cclet.2024.109544

    9. [9]

      Jinpeng DuJunlin ChenYulong ShanTongliang ZhangYu SunZhongqi LiuXiaoyan ShiWenpo ShanYunbo YuHong He . Insight into the effects of C3H6 on fresh and hydrothermally aged Cu-SSZ-39 catalysts. Chinese Chemical Letters, 2025, 36(3): 110019-. doi: 10.1016/j.cclet.2024.110019

    10. [10]

      Pengfei ZhangQingxue MaZhiwei JiangXiaohua XuZhong Jin . Transition-metal-catalyzed remote meta-C—H alkylation and alkynylation of aryl sulfonic acids enabled by an indolyl template. Chinese Chemical Letters, 2024, 35(8): 109361-. doi: 10.1016/j.cclet.2023.109361

    11. [11]

      Peng WangJianjun WangNi SongXin ZhouMing Li . Radical dehydroxymethylative fluorination of aliphatic primary alcohols and diverse functionalization of α-fluoroimides via BF3·OEt2-catalyzed C‒F bond activation. Chinese Chemical Letters, 2025, 36(1): 109748-. doi: 10.1016/j.cclet.2024.109748

    12. [12]

      Xiangyang JiYishuang ChenPeng ZhangShaojia SongJian LiuWeiyu Song . Boosting the first C–H bond activation of propane on rod-like V/CeO2 catalyst by photo-assisted thermal catalysis. Chinese Chemical Letters, 2025, 36(5): 110719-. doi: 10.1016/j.cclet.2024.110719

    13. [13]

      Jian HanLi-Li ZengQin-Yu FeiYan-Xiang GeRong-Hui HuangFen-Er Chen . Recent advances in remote C(sp3)–H functionalization via chelating group-assisted metal-catalyzed chain-walking reaction. Chinese Chemical Letters, 2024, 35(11): 109647-. doi: 10.1016/j.cclet.2024.109647

    14. [14]

      Fahui XiangLu LiZhen YuanWuji WeiXiaoqing ZhengShimin ChenYisi YangLiangji ChenZizhu YaoJianwei FuZhangjing ZhangShengchang Xiang . Enhanced C2H2/CO2 separation in tetranuclear Cu(Ⅱ) cluster-based metal-organic frameworks by adjusting divider length of pore space partition. Chinese Chemical Letters, 2025, 36(3): 109672-. doi: 10.1016/j.cclet.2024.109672

    15. [15]

      Chen LiZiyuan ZhaoShouyun Yu . Photoredox-catalyzed C-glycosylation of peptides with glycosyl bromides. Chinese Chemical Letters, 2024, 35(6): 109128-. doi: 10.1016/j.cclet.2023.109128

    16. [16]

      Xiaotao JinYanlan WangYingping HuangDi HuangXiang Liu . Percarbonate activation catalyzed by nanoblocks of basic copper molybdate for antibiotics degradation: High performance, degradation pathways and mechanism. Chinese Chemical Letters, 2024, 35(10): 109499-. doi: 10.1016/j.cclet.2024.109499

    17. [17]

      Lei WanYizhou TongXi LuYao Fu . Cobalt-catalyzed reductive alkynylation to construct C(sp)-C(sp3) and C(sp)-C(sp2) bonds. Chinese Chemical Letters, 2024, 35(7): 109283-. doi: 10.1016/j.cclet.2023.109283

    18. [18]

      Shuai TangZian WangMengyi ZhuXinyun ZhaoXiaoyun HuHua Zhang . Synthesis of organoboron compounds via heterogeneous C–H and C–X borylation. Chinese Chemical Letters, 2025, 36(5): 110503-. doi: 10.1016/j.cclet.2024.110503

    19. [19]

      Wenhao ChenMuxuan WuHan ChenLue MoYirong Zhu . Cu2Se@C thin film with three-dimensional braided structure as a cathode material for enhanced Cu2+ storage. Chinese Chemical Letters, 2024, 35(5): 108698-. doi: 10.1016/j.cclet.2023.108698

    20. [20]

      Yunkang TongHaiqiao HuangHaolan LiMingle LiWen SunJianjun DuJiangli FanLei WangBin LiuXiaoqiang ChenXiaojun Peng . Cooperative bond scission by HRP/H2O2 for targeted prodrug activation. Chinese Chemical Letters, 2024, 35(12): 109663-. doi: 10.1016/j.cclet.2024.109663

Metrics
  • PDF Downloads(4)
  • Abstract views(656)
  • HTML views(50)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return