Copper-Promoted Direct Nitration of Arenes Assisted by an N, O-Bidentate Directing System
- Corresponding author: Niu Junlong, niujunlong@zzu.edu.cn Song Maoping, mpsong@zzu.edu.cn
Citation:
Wang Yunlong, Zhang Linbao, Niu Junlong, Song Maoping. Copper-Promoted Direct Nitration of Arenes Assisted by an N, O-Bidentate Directing System[J]. Chinese Journal of Organic Chemistry,
;2019, 39(6): 1761-1766.
doi:
10.6023/cjoc201901015
(a) Olah, G. A.; Malhotra, R.; Narang, S. C. Nitration: Methods and Mechanisms, Wiley-VCH, Weinheim, 1989.
(b) Feuer, H.; Nielsen, A. T. Nitro Compounds: Recent Advances in Synthesis and Chemistry, Wiley-VCH, Weinheim, 1990.
(a) Schofield, K. Aromatic Nitrations, Cambridge University Press, Cambridge, 1980.
(b) Ono, N. The Nitro Group in Organic Synthesis, Wiley-VCH, Weinheim, 2001.
Hearn, R.; Russell, M. K. R. G. Ann. Rheum. Dis. 1983, 42(Suppl.), 39.
(a) Tani, K.; Lukin, K.; Eaton, P. E. J. Am. Chem. Soc. 1997, 119, 6.
(b) Salzbrunn, S.; Simon, J.; Prakash, G. K. S.; Petasis, N. A.; Olah, G. A. Synlett 2000, 1485.
(c) Prakash, G. K. S.; Panja, C.; Mathew, T.; Surampudi, V.; Petasis, N. A.; Olah, G. A. Org. Lett. 2004, 6, 2205.
(d) Yan, G.; Yang, M. Org. Biomol. Chem. 2013, 11, 2554.
(e) Das, J. P.; Sinha, P.; Roy, S. Org. Lett. 2002, 4, 3055.
(a) Kakiuchi, F.; Chatani, N. Adv. Synth. Catal. 2003, 345, 1077.
(b) Ackermann, L.; Vicente, R.; Kapdi, A. R. Angew. Chem., Int. Ed. 2009, 48, 9792.
(c) Satoh, T.; Miura, M. Chem.-Eur. J. 2010, 16, 11212.
(d) Wencel-Delord, J.; Drö ge, T.; Liu, F.; Glorius, F. Chem. Soc. Rev. 2011, 40, 4740.
(e) Chen, X.; Engle, K. M.; Wang, D.-H.; Yu, J.-Q. Angew. Chem. Int. Ed. 2009, 48, 5094.
(f) Ackermann, L. Acc. Chem. Res. 2014, 47, 281.
(g) Misal Castro, L. C.; Chatani, N. Chem. Lett. 2015, 44, 410.
(h) Satoh, T.; Miura, M. Chem. Lett. 2006, 36, 200.
(a) Liu, Y.-K.; Lou, S.-J.; Xu, D.-Q.; Xu, Z.-Y. Chem.-Eur. J. 2010, 13590.
(b) Zhang, W.; Lou, S.; Liu, Y.; Xu, Z. J. Org. Chem. 2013, 78, 5932.
(c) Zhang, L.; Liu, Z.; Li, H.; Fang, G.; Barry, B. D.; Belay, T. A.; Bi, X.; Liu, Q. Org. Lett. 2011, 13, 6536.
(d) Zhang, H.; Zhao, L.; Wang, D.-X.; Wang, M.-X. Org. Lett. 2013, 15, 3836.
(e) Xie, F.; Qi, Z.; Li, X. Angew. Chem., Int. Ed. 2013, 52, 11862.
(f) Hernando, E.; Castillo, R. R.; Rodrĭguez, N.; Arrayás, R. G.; Carretero, J. C. Chem. Eur. J. 2014, 20, 13854.
(g) Kianmehr, E.; Nasab, S. B. Eur. J. Org. Chem. 2018, 6447.
(h) Katayev, D.; Pfister, K. F.; Wendling, T.; Gooβen, L. J. Chem.-Eur. J. 2014, 20, 9902.
(i) Liu, J.; Zhuang, S.; Gui, Q.; Chen, X.; Yang, Z.; Tan, Z. Adv. Synth. Catal. 2015, 357, 732.
Zaitsev, V. G.; Shabashov, D.; Daugulis, O. J. Am. Chem. Soc. 2005, 13154.
Selected examples.
(a) Asako, S.; Ilies, L.; Nakamura, E. J. Am. Chem. Soc. 2013, 135, 17755.
(b) Shang, R.; Ilies, L.; Matsumoto, A.; Nakamura, E. J. Am. Chem. Soc. 2013, 135, 6030.
(c) Fruchey, E. R.; Monks, B. M.; Cook, S. P. J. Am. Chem. Soc. 2014, 136, 13130.
Selected examples.
(a) Grigorjeva, L.; Daugulis, O. Angew. Chem., Int. Ed. 2014, 53, 10209.
(b) Grigorjeva, L.; Daugulis, O. Org. Lett. 2014, 16, 4684.
(c) Grigorjeva, L.; Daugulis, O. Org. Lett. 2014, 16, 4688.
(d) Ma, W.; Ackermann, L. ACS Catal.2015, 5, 2822.
(e) Zhang, L.-B.; Hao, X.-Q.; Zhang, S.-K.; Liu, Z.-J.; Zheng, X.-X.; Gong, J.-F.; Niu, J.-L.; Song, M.-P. Angew. Chem., Int. Ed. 2015, 54, 272.
(f) Zhang, L.-B.; Hao, X.-Q.; Zhang, S.-K.; Zheng, X.-X.; Liu, Z.-J.; Gong, J.-F.; Niu, J.-L.; Song, M.-P. Angew. Chem., Int. Ed. 2015, 54, 10012.
(g) Saxena, P.; Kapur, M. Chem. Asian J. 2018, 13. 861.
Selected examples:
(a) Aihara, Y.; Chatani, N. J. Am. Chem. Soc. 2014, 136, 898.
(b) Song, W.; Lackner, S.; Ackermann, L. Angew. Chem., Int. Ed. 2014, 53, 2477.
(c) Shiota, H.; Ano, Y.; Aihara, Y.; Fukumoto, Y.; Chatani, N. J. Am. Chem. Soc. 2011, 133, 14952.
Selected examples.
(a) Tran, L. D.; Popov, I.; Daugulis, O. J. Am. Chem. Soc. 2012, 134, 18237.
(b) Truong, T.; Klimovica, K.; Daugulis, O. J. Am. Chem. Soc. 2013, 135, 9342.
(c) Tran, L. D.; Roane, J.; Daugulis, O. Angew. Chem., Int. Ed. 2013, 52, 6043.
(d) Roane, J.; Daugulis, O. Org. Lett. 2013, 15, 5842.
(e) Shang, M.; Sun, S.-Z.; Wang, H.-L.; Laforteza, B. N.; Dai, H.-X.; Yu, J.-Q. Angew. Chem., Int. Ed. 2014, 53, 10439.
(f) Shang, M.; Wang, H.-L.; Sun, S.-Z.; Dai, H.-X.; Yu, J.-Q. J. Am. Chem. Soc. 2014, 136, 11590.
(g) Li, X.; Liu, Y.-H.; Gu, W.-J.; Li, B.; Chen, F.-J.; Shi, B.-F. Org. Lett. 2014, 16, 3904.
(h) Dong, J.; Wang, F.; You, J. Org. Lett. 2014, 16, 2884.
(i) Nishino, M.; Hirano, K.; Satoh, T.; Miura, M. Angew. Chem., Int. Ed. 2013, 52, 4457.
(j) Chen, F.-J.; Liao, G.; Li, X.; Wu, J.; Shi, B.-F. Org. Lett. 2014, 16, 5644.
(k) Rouquet, G.; Chatani, N. Angew. Chem., Int. Ed. 2013, 52, 11726.
(l) Zhang, Q.; Chen, K.; Shi, B.-F. Synlett 2014, 25, 1941.
(m) Daugulis, O.; Roane, J.; Tran, L. D. Acc. Chem. Res. 2015, 48, 1053.
(n) Dou, Y.-D.; Yin, B.; Zhang, P.-F.; Zhu, Q. Eur. J. Org. Chem. 2018, 4571.
(o) Wang, C.-M.; Tang, K.-X.; Gao, T.-H.; Chen, L.; Sun, L.-P. J. Org. Chem. 2018, 83, 8315.
(p) Tu, D.-Q.; Luo, J.; Jiang, C. Chem. Commun. 2018, 54, 2514.
(q) Vinayak, B.; Chandrasekharam, M. Org. Lett. 2017, 19, 3528.
Selected our recent reports: (a) Hao, X.-Q.; Chen, L.-J.; Ren, B.; Li, L.-Y.; Yang, X.-Y.; Gong, J.-F.; Niu, J.-L.; Song, M.-P. Org. Lett. 2014, 16, 1104.
(b) Zhang, L.-B.; Hao, X.-Q.; Zhang, S.-K.; Liu, K.; Ren, B.; Gong, J.-F.; Niu, J.-L.; Song, M.-P. J. Org. Chem. 2014, 79, 10399.
Selected examples.
(a) Wang, D.-W.; Zhao, K.-Y.; Xu, C.-Y.; Miao, H.-Y.; Ding, Y.-Q. ACS Catal. 2014, 4, 3910.
(b) Wang, D.-W.; Ge, B.-Y.; Li, L.; Shan, J.; Ding, Y.-Q. J. Org. Chem. 2014, 79, 8607.
(c) Guo, X-K.; Zhang, L.-B.; Wei, D.-H.; Niu, J.-L. Chem. Sci. 2015, 6, 7059.
(d) Wang, D.-W.; Yu, X.; Yao, W.; Hu, W.-K.; Ge, C.-Y.; Shi, X.-D. Chem.-Eur. J. 2016, 22, 55433.
(e) Yu, X.-L.; Wang, D.-S.; Xu, Z.-J.; Yang, B.-B.; Wang, D.-W. Org. Chem. Front. 2017, 4, 1011.
(f) Wu, Q.; Pan, L.; Du, G.-M.; Zhang, C.; Wang, D.-W. Org. Chem. Front. 2018, 5, 2668.
(g) Xu, Z.-J.; Yu, X.-L.; Sang, X.-X.; Wang, D.-W. Green Chem. 2018, 20, 2571.
(h) Wang, Y.; Du, C.; Wang, Y.-Y.; Guo, X.-K.; Fang, Lei.; Song, M.-P.; Niu, J.-L.; Wei, D.-H. Adv. Synth. Catal. 2018, 360, 2668.
(i) Wang, D.-W.; Yu, X.-L.; Ge, B.-Y.; Miao, H.-Y.; Ding, Y.-Q. Chin. J. Org. Chem. 2015, 35, 676.
(j) Hu, X.-Y.; Yang, B.-B.; Yao, W.; Wang, D.-W. Chin. J. Org. Chem. 2018, 38, 3296.
Suess, A. M.; Ertem, M. Z.; Cramer, C. J.; Stahl, S. S. J. Am. Chem. Soc. 2013, 135, 9797.
doi: 10.1021/ja4026424
Chao Chen , Wenwen Yu , Guangen Huang , Xuelian Ren , Xiangli Chen , Yixin Li , Shenggui Liang , Mengmeng Xu , Mingyue Zheng , Yaxi Yang , He Huang , Wei Tang , Bing Zhou . Asymmetric macrocyclization enabled by Rh(Ⅲ)-catalyzed CH activation: Enantioenriched macrocyclic inhibitor of Zika virus infection. Chinese Chemical Letters, 2024, 35(11): 109574-. doi: 10.1016/j.cclet.2024.109574
Xiang Huang , Dongzhen Xu , Yang Liu , Xia Huang , Yangfan Wu , Dongmei Fang , Bing Xia , Wei Jiao , Jian Liao , Min Wang . Asymmetric synthesis of difluorinated α-quaternary amino acids (DFAAs) via Cu-catalyzed difluorobenzylation of aldimine esters. Chinese Chemical Letters, 2024, 35(12): 109665-. doi: 10.1016/j.cclet.2024.109665
Bowen Wang , Longwu Sun , Qianqian Cao , Xinzhi Li , Jianai Chen , Shizhao Wang , Miaolin Ke , Fener Chen . Cu-catalyzed three-component CSP coupling for the synthesis of trisubstituted allenyl phosphorothioates. Chinese Chemical Letters, 2024, 35(12): 109617-. doi: 10.1016/j.cclet.2024.109617
Shulei Hu , Yu Zhang , Xiong Xie , Luhan Li , Kaixian Chen , Hong Liu , Jiang Wang . Rh(Ⅲ)-catalyzed late-stage C-H alkenylation and macrolactamization for the synthesis of cyclic peptides with unique Trp(C7)-alkene crosslinks. Chinese Chemical Letters, 2024, 35(8): 109408-. doi: 10.1016/j.cclet.2023.109408
Qiao Song , Xue Peng , Zhouyu Wang , Leyong Wang . Iron-catalyzed C–H activation: A sustainable approach to efficient organic synthesis. Chinese Chemical Letters, 2025, 36(5): 110869-. doi: 10.1016/j.cclet.2025.110869
Wujun Jian , Mong-Feng Chiou , Yajun Li , Hongli Bao , Song Yang . Cu-catalyzed regioselective diborylation of 1,3-enynes for the efficient synthesis of 1,4-diborylated allenes. Chinese Chemical Letters, 2024, 35(5): 108980-. doi: 10.1016/j.cclet.2023.108980
Xin Li , Jia-Min Lu , Bo Li , Chen Zhao , Bei-Bei Yang , Li Li . Chiroptical sensing for remote chiral amines via a C–H activation reaction. Chinese Chemical Letters, 2025, 36(5): 110310-. doi: 10.1016/j.cclet.2024.110310
Yujia Shi , Yan Qiao , Pengfei Xie , Miaomiao Tian , Xingwei Li , Junbiao Chang , Bingxian Liu . Rhodium-catalyzed enantioselective in situ C(sp3)−H heteroarylation by a desymmetrization approach. Chinese Chemical Letters, 2024, 35(10): 109544-. doi: 10.1016/j.cclet.2024.109544
Jinpeng Du , Junlin Chen , Yulong Shan , Tongliang Zhang , Yu Sun , Zhongqi Liu , Xiaoyan Shi , Wenpo Shan , Yunbo Yu , Hong He . Insight into the effects of C3H6 on fresh and hydrothermally aged Cu-SSZ-39 catalysts. Chinese Chemical Letters, 2025, 36(3): 110019-. doi: 10.1016/j.cclet.2024.110019
Pengfei Zhang , Qingxue Ma , Zhiwei Jiang , Xiaohua Xu , Zhong Jin . Transition-metal-catalyzed remote meta-C—H alkylation and alkynylation of aryl sulfonic acids enabled by an indolyl template. Chinese Chemical Letters, 2024, 35(8): 109361-. doi: 10.1016/j.cclet.2023.109361
Peng Wang , Jianjun Wang , Ni Song , Xin Zhou , Ming Li . Radical dehydroxymethylative fluorination of aliphatic primary alcohols and diverse functionalization of α-fluoroimides via BF3·OEt2-catalyzed C‒F bond activation. Chinese Chemical Letters, 2025, 36(1): 109748-. doi: 10.1016/j.cclet.2024.109748
Xiangyang Ji , Yishuang Chen , Peng Zhang , Shaojia Song , Jian Liu , Weiyu Song . Boosting the first C–H bond activation of propane on rod-like V/CeO2 catalyst by photo-assisted thermal catalysis. Chinese Chemical Letters, 2025, 36(5): 110719-. doi: 10.1016/j.cclet.2024.110719
Jian Han , Li-Li Zeng , Qin-Yu Fei , Yan-Xiang Ge , Rong-Hui Huang , Fen-Er Chen . Recent advances in remote C(sp3)–H functionalization via chelating group-assisted metal-catalyzed chain-walking reaction. Chinese Chemical Letters, 2024, 35(11): 109647-. doi: 10.1016/j.cclet.2024.109647
Fahui Xiang , Lu Li , Zhen Yuan , Wuji Wei , Xiaoqing Zheng , Shimin Chen , Yisi Yang , Liangji Chen , Zizhu Yao , Jianwei Fu , Zhangjing Zhang , Shengchang Xiang . Enhanced C2H2/CO2 separation in tetranuclear Cu(Ⅱ) cluster-based metal-organic frameworks by adjusting divider length of pore space partition. Chinese Chemical Letters, 2025, 36(3): 109672-. doi: 10.1016/j.cclet.2024.109672
Chen Li , Ziyuan Zhao , Shouyun Yu . Photoredox-catalyzed C-glycosylation of peptides with glycosyl bromides. Chinese Chemical Letters, 2024, 35(6): 109128-. doi: 10.1016/j.cclet.2023.109128
Xiaotao Jin , Yanlan Wang , Yingping Huang , Di Huang , Xiang Liu . Percarbonate activation catalyzed by nanoblocks of basic copper molybdate for antibiotics degradation: High performance, degradation pathways and mechanism. Chinese Chemical Letters, 2024, 35(10): 109499-. doi: 10.1016/j.cclet.2024.109499
Lei Wan , Yizhou Tong , Xi Lu , Yao Fu . Cobalt-catalyzed reductive alkynylation to construct C(sp)-C(sp3) and C(sp)-C(sp2) bonds. Chinese Chemical Letters, 2024, 35(7): 109283-. doi: 10.1016/j.cclet.2023.109283
Shuai Tang , Zian Wang , Mengyi Zhu , Xinyun Zhao , Xiaoyun Hu , Hua Zhang . Synthesis of organoboron compounds via heterogeneous C–H and C–X borylation. Chinese Chemical Letters, 2025, 36(5): 110503-. doi: 10.1016/j.cclet.2024.110503
Wenhao Chen , Muxuan Wu , Han Chen , Lue Mo , Yirong Zhu . Cu2Se@C thin film with three-dimensional braided structure as a cathode material for enhanced Cu2+ storage. Chinese Chemical Letters, 2024, 35(5): 108698-. doi: 10.1016/j.cclet.2023.108698
Yunkang Tong , Haiqiao Huang , Haolan Li , Mingle Li , Wen Sun , Jianjun Du , Jiangli Fan , Lei Wang , Bin Liu , Xiaoqiang Chen , Xiaojun Peng . Cooperative bond scission by HRP/H2O2 for targeted prodrug activation. Chinese Chemical Letters, 2024, 35(12): 109663-. doi: 10.1016/j.cclet.2024.109663