Citation: Wang Xingyu, Zhu Xueqing, Jiang Wei, Gao Yaru. Synthesis of Esters via Sodium Carbonate Promoted Oxa-Michael Addition of Acids to α, β-Unsaturated Ketones[J]. Chinese Journal of Organic Chemistry, ;2019, 39(5): 1383-1395. doi: 10.6023/cjoc201812038 shu

Synthesis of Esters via Sodium Carbonate Promoted Oxa-Michael Addition of Acids to α, β-Unsaturated Ketones

  • Corresponding author: Gao Yaru, gyaru@nwu.edu.cn
  • Received Date: 20 December 2018
    Revised Date: 25 January 2019
    Available Online: 19 May 2019

    Fund Project: Project supported by the National Natural Science Foundation of China (No. 21702162), and the Scientific Research Program Funded by Shaanxi Provincial Education Department (No. 17JK0788)the Scientific Research Program Funded by Shaanxi Provincial Education Department 17JK0788the National Natural Science Foundation of China 21702162

Figures(3)

  • Ester bonds are found widely in various fine chemicals, medicines, pesticides and functional materials. Despite the apparent simplicity, the construction of ester bonds often constitutes the most challenge in the synthesis of complex molecular containing ester functionality. Oxa-Michael addition represents an important class of organic reactions in carbon-heteroatom bond formation. The use of alcohol donors in oxa-Michael additions is well known. However, the use of carboxylic acid as the donor in the reaction is difficult due to the low activity of acid and a more pronounced reversibility of the reaction. To date, there is no general oxa-Michael addition of acids to α, β-unsaturated ketones reported. Herein, an efficient sodium carbonate promoted oxa-Michael addition of acids to α, β-unsaturated ketones to synthesize esters is reported. With a broad substrate scope, a well-common catalyst and simple operation, the approach provides a facile, practicable, economical, and environmentally benign method for the synthesis of esters.
  • 加载中
    1. [1]

      (a) Otera, J. Esterification: Methods, Reactions, and Applications, WileyVCH, Weinheim, 2010.
      (b) Morrill, L. C.; Smith, A. D. Chem. Soc. Rev. 2014, 43, 6214.
      (c) Majji, G.; Rout, S. K.; Rajamanickam, S.; Guin, S.; Patel, B. K. Org. Biomol. Chem. 2016, 14, 8178.
      (d) Mondal, M.; Begum, T.; Bora, U. Org. Chem. Front. 2017, 4, 1430.

    2. [2]

      Tsakos, M.; Schaffert, E. S.; Clement, L. L.; Villadsen, N. L.; Poulsen, T. B. Nat. Prod. Rep. 2015, 32, 605.  doi: 10.1039/C4NP00106K

    3. [3]

      Leth, L. A.; Næsborg, L.; Reyes-Rodríguez, G. J.; Tobiesen, H. N.; Iversen, M. V.; Jørgensen, K. A. J. Am. Chem. Soc. 2018, 140, 12687.  doi: 10.1021/jacs.8b07394

    4. [4]

      Parenty, A.; Moreau, X.; Niel, G.; Campagne, J. M. Chem. Rev. 2013, 113, PR1.  doi: 10.1021/cr300129n

    5. [5]

      For selected examples:
      (a) Fischer, E.; Speier, A. Chem. Ber. 1895, 28, 3252.
      (b) Mantri, K.; Komura, K.; Sugi, Y. Green Chem. 2005, 7, 677.
      (c) Ishihara, K. Tetrahedron 2009, 65, 1085.
      (d) Iranpoor, N.; Firouzabadi, H.; Khalili, D. Org. Biomol. Chem. 2010, 8, 4436.
      (e) Nowrouzi, N.; Mehranpour, A. M.; Rad, J. A. Tetrahedron 2010, 66, 9596.
      (f) Liu, B.; Hu, F.; Shi, B.-F. ACS Catal. 2015, 5, 1863.

    6. [6]

    7. [7]

      For select examples: (a) Stewart, I. C.; Bergman, R. G.; Toste, F. D. J. Am. Chem. Soc. 2003, 125, 8696.
      (b) Wabnitz, T. C.; Spencer, J. B. Org. Lett. 2003, 5, 2141.
      (c) Vanderwal, C. D.; Jacobsen, E. N. J. Am. Chem. Soc. 2004, 126, 14724.
      (d) Wabnitz, T. C.; Yu, J.-Q.; Spencer, J. B. Chem. Eur. J. 2004, 10, 484.
      (e) Murtagh, J. E.; McCooey, S. H.; Connon, S. J. Chem. Commun. 2005, 227.
      (f) Sundén, H.; Ibrahem, I.; Zhao, G.-L.; Eriksson, L.; Córdova, A. Chem. Eur. J. 2007, 13, 574.
      (g) Bertelsen, S.; Dinér, P.; Johansen, R. L.; Jørgensen, K. A. J. Am. Chem. Soc. 2007, 129, 1536.
      (h) Li, H.; Wang, J.; E-Nunu, T.; Zu, L.; Jiang, W.; Wei, S.; Wang, W. Chem. Commun. 2007, 507.
      (i) Xiong, X.; Ovens, C.; Pilling, A. W.; Ward, J. W.; Dixon, D. J. Org. Lett. 2008, 10, 565.
      (j) Reyes, E.; Talavera, G.; Vicario, J. L.; Badía, D.; Carrillo, L. Angew. Chem., Int. Ed. 2009, 48, 5701.
      (k) Bhuvaneswari, S.; Jeganmohan, M.; Cheng, C.-H. Chem. Asian J. 2010, 5, 141.
      (l) Phillips, E. M.; Riedrich, M.; Scheidt, K. A. J. Am. Chem. Soc. 2010, 132, 13179.

    8. [8]

      (a) Arbuzov, Y. A.; Volkov, Y. P. Z. Obshch. Khim. 1959, 29, 3279.
      (b) Hess, H.-J. J. Org. Chem. 1962, 27, 1096.
      (c) Weisleder, D.; Friedman, M. J. Org. Chem. 1968, 33, 3542.
      (d) Kirchanov, A. A.; Zanina, A. S.; Kotlyarevskii, I. L. Izv. Akad. Nauk SSSR, Ser. Khim. 1981, 8, 1914.
      (e) Hofstraat, R. G.; Lange, J.; Scheeren, H. W.; Nivard, R. J. F. J. Chem. Soc. Perkin Trans 1 1988, 2315.
      (f) Hosokawa, T.; Shinohara, T.; Ooka, Y.; Murahashi, S.-I. Chem. Lett. 1989, 2001.
      (g) Itoh, K.; Utsukihara, T.; Funayama, K.; Sakamaki, H.; Kanamori, M.; Takahashi, T. T.; Saitoh, Y.; Matsushita, M.; He, L.; Hashimoto, C.; Sugiyama, T.; Horiuchi, C. A. Appl. Organomet. Chem. 2007, 21, 1029.
      (h) Jha, A. K.; Inani, H.; Easwar, S. Synlett 2017, 28, 1473.

    9. [9]

      (a) Rinehart, K. L., Jr.; Gloer, J. B.; Hughes, R. G., Jr.; Renis, H. E.; McGovren, J. P.; Swynenberg, E. B.; Stringfellow, D. A.; Kuentzel, S. L. Science 1981, 212, 933.
      (b) Ueda, H.; Nakajima, H.; Hori, Y.; Fujita, T.; Nishimura, M.; Goto, T.; Okuhara, M. J. Antibiot.1994, 47, 301.
      (c) Randazzo, A.; Bifulco, G.; Giannini, C.; Bucci, M.; Debitus, C.; Cirino, G.; Gomez-Paloma, L. J. Am. Chem. Soc. 2001, 123, 10870.
      (d) Walker, S.; Chen, L.; Hu, Y.; Rew, Y.; Shin. D.; Boger, D. L. Chem. Rev. 2005, 105, 449.
      (e) Xu, Y.; Kersten, R. D.; Nam, S.-J.; Lu, L.; Al-Suwailem, A. M.; Zheng, H.; Fenical, W.; Dorrestein, P. C.; Moore, B. S.; Qian, P.-Y. J. Am. Chem. Soc. 2012, 134, 8625.
      (f) Lam, H. Y.; Zhang, Y.; Liu, H.; Xu, J.; Wong, C. T. T.; Xu, C.; Li, X. J. Am. Chem. Soc. 2013, 135, 6272.

    10. [10]

      Wrigglesworth, J. W.; Cox, B.; Lloyd-Jones, G. C.; Booker-Miburn, K. I. Org. Lett. 2011, 13, 5326.  doi: 10.1021/ol202187h

    11. [11]

      Lam, H. W.; Joensuu, P. M. Org. Lett. 2005, 7, 4225.  doi: 10.1021/ol051649h

    12. [12]

      Iqbal, J.; Srivastva, R. R. J. Org. Chem. 1992, 57, 2001.  doi: 10.1021/jo00033a020

  • 加载中
    1. [1]

      Yue Zhao Yanfei Li Tao Xiong . Copper Hydride-Catalyzed Nucleophilic Additions of Unsaturated Hydrocarbons to Aldehydes and Ketones. University Chemistry, 2024, 39(4): 280-285. doi: 10.3866/PKU.DXHX202309001

    2. [2]

      Jiaojiao Yu Bo Sun Na Li Cong Wen Wei Li . Improvement of Classical Organic Experiment Based on the “Reverse-Step Optimization Method”: Taking Synthesis of Ethyl Acetate as an Example. University Chemistry, 2025, 40(3): 333-341. doi: 10.12461/PKU.DXHX202405177

    3. [3]

      Yu PengJiawei ChenYue YinYongjie CaoMochou LiaoCongxiao WangXiaoli DongYongyao Xia . Tailored cathode electrolyte interphase via ethylene carbonate-free electrolytes enabling stable and wide-temperature operation of high-voltage LiCoO2. Acta Physico-Chimica Sinica, 2025, 41(8): 100087-0. doi: 10.1016/j.actphy.2025.100087

    4. [4]

      Jun LUOBaoshu LIUYunchang ZHANGBingkai WANGBeibei GUOLan SHETianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240

    5. [5]

      Yongzhi LIHan ZHANGGangding WANGYanwei SUILei HOUYaoyu WANG . A two-dimensional metal-organic framework for the determination of nitrofurantoin and nitrofurazone in aqueous solution. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 245-253. doi: 10.11862/CJIC.20240307

    6. [6]

      Ping Song Nan Zhang Jie Wang Rui Yan Zhiqiang Wang Yingxue Jin . Experimental Teaching Design on Synthesis and Antitumor Activity Study of Cu-Pyropheophorbide-a Methyl Ester. University Chemistry, 2024, 39(6): 278-286. doi: 10.3866/PKU.DXHX202310087

    7. [7]

      Xudong Liu Huili Fan Junping Xiao Min Yang Yan Li . Teaching Approaches to the AE + AN Mechanism of Electrophilic Addition Reactions between Olefins and Inorganic Acids in Organic Chemistry. University Chemistry, 2025, 40(7): 367-372. doi: 10.12461/PKU.DXHX202409041

    8. [8]

      Zixuan Zhao Miao Fan . “Carbon” with No “Ester”: A Boundless Journey of CO2 Transformation. University Chemistry, 2025, 40(7): 213-217. doi: 10.12461/PKU.DXHX202409040

    9. [9]

      Yajin LiHuimin LiuLan MaJiaxiong LiuDehua He . Photothermal Synthesis of Glycerol Carbonate via Glycerol Carbonylation with CO2 over Au/Co3O4-ZnO Catalyst. Acta Physico-Chimica Sinica, 2024, 40(9): 2308005-0. doi: 10.3866/PKU.WHXB202308005

    10. [10]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    11. [11]

      Lirui Shen Kun Liu Ying Yang Dongwan Li Wengui Chang . Synthesis and Application of Decanedioic Acid-N-Hydroxysuccinimide Ester: Exploration of Teaching Reform in Comprehensive Applied Chemistry Experiment. University Chemistry, 2024, 39(8): 212-220. doi: 10.3866/PKU.DXHX202312035

    12. [12]

      Jinghua Wang Yanxin Yu Yanbiao Ren Yesheng Wang . Integration of Science and Education: Investigation of Tributyl Citrate Synthesis under the Promotion of Hydrate Molten Salts for Research and Innovation Training. University Chemistry, 2024, 39(11): 232-240. doi: 10.3866/PKU.DXHX202402057

    13. [13]

      Qianping Li Hua Guan Changfeng Wan Yonghai Song Jianwen Jiang . 大学有机化学复习课项目式教学——以“液晶化合物4-正戊基苯甲酸-4′-正戊基苯酯的合成路线设计与产品制备”为例. University Chemistry, 2025, 40(8): 100-116. doi: 10.12461/PKU.DXHX202410070

    14. [14]

      Lijuan Liu Xionglei Wang . Preparation of Hydrogels from Waste Thermosetting Unsaturated Polyester Resin by Controllable Catalytic Degradation: A Comprehensive Chemical Experiment. University Chemistry, 2024, 39(11): 313-318. doi: 10.12461/PKU.DXHX202403060

    15. [15]

      Yukun Chang Haoqin Huang Baolei Wang . Preparation of Trans-Cinnamic Acid via “One-Pot” Protocol of Aldol Condensation-Hydrolysis Reaction: Recommending an Improved Organic Synthesis Experiment. University Chemistry, 2024, 39(4): 322-328. doi: 10.3866/PKU.DXHX202309095

    16. [16]

      Hong CAIJiewen WUJingyun LILixian CHENSiqi XIAODan LI . Synthesis of a zinc-cobalt bimetallic adenine metal-organic framework for the recognition of sulfur-containing amino acids. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 114-122. doi: 10.11862/CJIC.20240382

    17. [17]

      Ke LiChuang LiuJingping LiGuohong WangKai Wang . Architecting Inorganic/Organic S-Scheme Heterojunction of Bi4Ti3O12 Coupling with g-C3N4 for Photocatalytic H2O2 Production from Pure Water. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-0. doi: 10.3866/PKU.WHXB202403009

    18. [18]

      Yuan Zheng Quan Lan Zhenggen Zha Lingling Li Jun Jiang Pingping Zhu . Teaching Reform of Organic Synthesis Experiments by Introducing Reverse Thinking and Design Concepts: Taking the Synthesis of Cinnamic Acid Based on Retrosynthetic Analysis as an Example. University Chemistry, 2024, 39(6): 207-213. doi: 10.3866/PKU.DXHX202310065

    19. [19]

      Qianlang Wang Jijun Sun Qian Chen Quanqin Zhao Baojuan Xi . The Appeal of Organophosphorus Compounds: Clearing Their Name. University Chemistry, 2025, 40(4): 299-306. doi: 10.12461/PKU.DXHX202405205

    20. [20]

      Fengxiao Wang Zhiwei Miao Yaofeng Yuan . 有机磷化学与化学教学. University Chemistry, 2025, 40(8): 158-168. doi: 10.12461/PKU.DXHX202410077

Metrics
  • PDF Downloads(8)
  • Abstract views(978)
  • HTML views(127)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return