Citation: Liu Chuan-Zhi, Wang Hui, Zhang Dan-Wei, Zhao Xin, Li Zhan-Ting. Study on Halogen Bonding of Organofluorine Compounds in China[J]. Chinese Journal of Organic Chemistry, ;2019, 39(1): 28-37. doi: 10.6023/cjoc201812026 shu

Study on Halogen Bonding of Organofluorine Compounds in China

  • Corresponding author: Zhang Dan-Wei, zhangdw@fudan.edu.cn Li Zhan-Ting, ztli@fudan.edu.cn
  • Received Date: 14 December 2018
    Revised Date: 19 December 2018
    Available Online: 21 January 2018

    Fund Project: Project supported by the National Natural Science Foundation of China (Nos. 21772026, 21432004)the National Natural Science Foundation of China 21772026the National Natural Science Foundation of China 21432004

Figures(18)

  • This review summarizes studies on halogen bonding of fluorine-containing alkyl and aryl iodides in China. From 1987 to 1993, Chen et al. found that there existed donor-acceptor interaction between fluorinated organic (di)iodides, as Lewis acids, and organic Lewis bases such as amines and ethers, which represented early important advances for the research on the non-covalent force currently called as halogen bonding. From 2001 to now, several groups have used halogen bonding as driving force to conduct researches on crystal engineering. In this catogery, Zhu et al. investigated the one-dimensional self-assembly between perfluoro-α, ϖ-diioodalkanes and amines, ethers, and hexamethylphosphamide. Jin et al. studied the complexation between fluorinated aryl iodides and various N-heterocycles, whereas Zhang and Li et al. constructed supramolecular double and quadruple helices from one or two molecular components. Jin et al. conducted extensive studies on C—I…π halogen bonding and its applications in crystal engineering. Wang and Wan et al. utilized halogen bonding to induce trianglular aromatic molecules to co-assemble into two-dimensional honeycomb arrays on surface, whereas Wang et al. utilized halogen bond to induce mono-layer and layer-by-layer self-assembly of two polymers or organic molecules. Zhao and Li et al. developed the applications of halogen bonding in solution-phase multi-site molecular recognition of foldamer receptors for ICF2-incorporated tri-armed guests. Hu, Gong, Liao et al. utilized halogen bonding to improve the material properties of a variety of organic aromatic molecules. Several groups have also used halogen bonding to increase the selectivity of a number of organic reactions. Representative examples are described, which highlight the utility of halogen bonding.
  • 加载中
    1. [1]

      Needham, P. Studies in History and Philosophy of Science 2013, 44, 51.  doi: 10.1016/j.shpsa.2012.04.001

    2. [2]

      Pauling, L. The Nature of the Chemical Bond and the Structure of Molecules and Crystals, 3rd, Ithaca, Cornell University Press, 1960.

    3. [3]

      Guthrie, F. J. Chem. Soc. 1863, 16, 239.  doi: 10.1039/JS8631600239

    4. [4]

      Hassel, O.; Hvoslef, J.; Vihovde, E. H.; Sörensen, N. A. Acta Chem. Scand. 1954, 8, 873.  doi: 10.3891/acta.chem.scand.08-0873

    5. [5]

      Dumas, J.-M.; Peurichard, H.; Gomel, M. J. Chem. Res., Synop. 1978, 2, 54.

    6. [6]

      (a) Farina, A.; Meille, S. V.; Messina, M. T.; Metrangolo, P.; Resnati, G.; Vecchio, G. Angew. Chem., Int. Ed. 1999, 38, 2433.
      (b) Metrangolo, P.; Resnati, G. Chem. Eur. J. 2001, 7, 2511.

    7. [7]

      (a) Clark, T.; Hennemann, M.; Murray, J. S.; Politzer, P. J. Mol. Model. 2007, 13, 291.
      (b) Politzer, P.; Lane, P.; Concha, M. C.; Ma, Y.; Murray, J. S. J. Mol. Model. 2007, 13, 305.
      (c) Wang, H.; Wang, W.; Jin, W. J. Chem. Rev. 2016, 116, 5072.

    8. [8]

      Desijaru, G. R.; Ho, P. S.; Kloo, L.; Legon, A. C.; Marquardt, R.; Metrangolo, P.; Politzer, P.; Resnati, G.; Rissanen, K. Pure Appl. Chem. 2013, 85, 1711.  doi: 10.1351/PAC-REC-12-05-10

    9. [9]

      Cheetham, N. F.; Pullin, A. D. E. J. Chem. Soc., Chem. Commun. 1965, 418.

    10. [10]

      Gutman, V. The Donor-Acceptor Approach to Molecular Interaction, Plenum Press, New York, 1978, p. 41.

    11. [11]

      Chen, Q. Y.; Qiu, Z. M. J. Fluorine Chem. 1986, 31, 301.  doi: 10.1016/S0022-1139(00)81433-5

    12. [12]

      Chen, Q.-Y.; Qiu, Z.-M. J. Fluorine Chem. 1987, 35, 79.  doi: 10.1016/0022-1139(87)95062-7

    13. [13]

      Chen, Q.-Y.; He, Y.-B.; Yang, Z.-Y. Chin. J. Org. Chem. 1988, 451(in Chinese).
       

    14. [14]

      Chen, Q.-Y.; Li, Z.-T.; Zhou, C.-M. J. Chem. Soc., Perkin Trans. 1 1993, 2457.

    15. [15]

      Mukherjee, A.; Tothadi, S.; Desiraju, G. R. Acc. Chem. Res. 2014, 47, 2514.  doi: 10.1021/ar5001555

    16. [16]

      Ding, X.-H.; Ou, C.-J.; Wang, S.; Xie, L.-H.; Lin, J.-Y.; Wang, J.-P.; Huang, W. CrystEngComm 2017, 19, 5504.  doi: 10.1039/C7CE01284E

    17. [17]

      Christopherson, J.-C.; Topic, F.; Barrett, C. J.; Friscic, T. Cryst. Growth Des. 2018, 18, 1245.  doi: 10.1021/acs.cgd.7b01445

    18. [18]

      (a) Ho, P. S. Top. Curr. Chem. 2015, 358, 241.
      (b) Lu, Y.; Liu, Y.; Xu, Z.; Li, H.; Liu, H.; Zhu, W. Exp. Opin. Drug Discovery Dev. 2012, 7, 375.

    19. [19]

      (a) Breugst, M.; von der Heiden, D.; Schmauck, J. Synthesis 2017, 49, 3224.
      (b) Meyer, F.; Dubois, P. CrystEngComm 2013, 15, 3058.

    20. [20]

      (a) Ding, H.; Lu, Y.; Wu, W.; Liu, H. Chem. Phys. 2014, 441, 30.
      (b) Guo, X.; An, X.; Li, Q. J. Phys. Chem. A 2015, 119, 3518.
      (c) Wang, Y.; Tong, J.; Wu, W.; Xu, Z.; Lu, Y. Int. J. Quantum Chem. 2015, 115, 884.
      (d) Han, N.; Zeng, Y.; Sun, C.; Li, X.; Sun, Z.; Meng, L. J. Phys. Chem. A 2014, 118, 7058.
      (e) Wu, W.; Lu, Y.; Liu, Y.; Peng, C.; Liu, H. Comput. Theor. Chem. 2014, 1029, 21.

    21. [21]

      (a) Xiao, L.; Wu, Y.; Yu, Z.; Xu, Z.; Li, J.; Liu, Y.; Yao, J.; Fu, H. Chem.-Eur. J. 2018, 24, 1801.
      (b) Li, D.; Yang, X.; Yan, D. ACS Appl. Mater. Interfaces 2018, 10, 34377.
      (c) Wang, M.; Cheng, C.; Song, J.; Wang, J.; Zhou, X.; Xiang, H.; Liu, J. Chin. J. Chem. 2018, 36, 698.

    22. [22]

      (a) Zhang, Q.; Xu, Z.; Zhu, W. J. Chem. Inf. Model. 2017, 57, 22.
      (b) Lu, Y.; Shi, T.; Wang, Y.; Yang, H.; Yan, X.; Luo, X.; Jiang, H.; Zhu, We. J. Med. Chem. 2009, 52, 2854.
      (c) Ren, J.; He, Y.; Chen, W.; Chen, T.; Wang, G.; Wang, Z.; Xu, Z.; Luo, X.; Zhu, W.; Jiang, H.; Shen, J.; Xu, Y. J. Med. Chem. 2014, 57, 3588.

    23. [23]

      (a) Chan, Y.-C.; Yeung, Y.-Y. Angew. Chem., Int. Ed. 2018, 57, 3483.
      (b) Jiang, S.; Zhang, L.; Cui, D.; Yao, Z.; Gao, B.; Lin, J.; Wei, D. Sci. Rep. 2016, 6, 34750.
      (c) Guo, F.; Ye, L.; Li, A.; Yang, X.; Yang, C.; Yu, H. Tetrahedron Lett. 2016, 57, 1944.

    24. [24]

      (a) Yao, Z.-F.; Wang, J.-Y.; Pei, J. Cryst. Growth Des. 2018, 18, 7.
      (b) Chen, X.-L.; Zhang, Y.; Zhang, M.-Y.; Zeng, M.-H. Chin. J. Chem. 2017, 35, 927.
      (c) Liu, S.-Y.; Zhang, J.-P.; Chen, X.-M. Cryst. Growth Des. 2017, 17, 1441.
      (d) Li, B.; Zang, S.-Q.; Wang, L.-Y.; Mak, T. C. W. Coord. Chem. Rev. 2016, 308, 1.
      (e) Moulton, B.; Zaworotko, M. J. Chem. Rev. 2001, 101, 1629.

    25. [25]

      (a) Saha, S.; Mishra, M. K.; Reddy, C. M.; Desiraju, G. R. Acc. Chem. Res. 2018, 51, 2957.
      (b) Liu, H.; Cheng, X.; Bian, Z.; Ye, K.; Zhang, H. Chin. Chem. Lett. 2018, 29, 1537.
      (c) Wang, H.-H.; Liu, H.-Y.; Cheng, F.; Ali, A.; Shi, L.; Xiao, X.-Y.; Chang, C.-K. Chin. Chem. Lett. 2018, 29, 1404.
      (d) Asghar, M. Adnan; Zhang, J.; Han, S.; Sun, Z.; Ji, C.; Zeb, A.; Luo, J. Chin. Chem. Lett. 2018, 29, 285.
      (e) Li, T.; Wei, H.; Zhang, Z.; Zhao, Y.; Sui, Y.; Wang, X. Sci. China Chem. 2017, 60, 602.
      (f) Bernstein, J.; Davis, R. E.; Shimoni, L.; Chang, N.-L. Angew. Chem., Int., Ed. Engl. 1995, 34, 1555.
      (h) Desiraju, G. R. Angew. Chem., Int. Ed. 2007, 46, 8342.

    26. [26]

      (a) Liu, Z.-Q.; Liu, Y.; Chen, Y.; Zhao, W.-Q.; Fang, W.-N. Chin. Chem. Lett. 2017, 28, 297.
      (b) Chen, L.-Z.; Cao, X.-X. Chin. Chem. Lett. 2017, 28, 400.
      (c) Wang, W.-H.; Gao, Q.; Li, A.-L.; Jia, Y.-Y.; Zhang, S.-Y.; Wang, J.-H.; Zhang, Y.-H.; Bu, X.-H. Chin. Chem. Lett. 2018, 29, 336.
      (d) Xu, H.; Wu, P. Chin. J. Chem. 2017, 35, 836.
      (e) Chen, X.-M.; Tong, M.-L. Acc. Chem. Res. 2007, 40, 162.

    27. [27]

    28. [28]

      (a) Liu, C.-M.; Zhang, D.-Q.; Hao, X.; Zhu, D.-B. Sci. China Chem. 2017, 60, 358.
      (b) Luo, Y.-S.; Chen, J.-L.; Zeng, X.-H.; Qiu, L.; He, L.-H.; Liu, S.-J.; Wen, H.-R. Chin. Chem. Lett. 2017, 28, 1027.
      (c) Deng, C.-D.; Qiao, Y.-J.; Chen, Q.-D.; Shen, X.-H. Chin. Chem. Lett. 2017, 28, 19.
      (d) Peng, R.; Li, M.; Li, D. Coord. Chem. Rev. 2010, 254, 1.

    29. [29]

      (a) Aakerö y, C. B.; Spartz, C. L. Top. Curr. Chem. 2015, 358, 155.
      (b) Berger, G.; Soubhye, J.; Meyer, F. Polym. Chem. 2015, 6, 3559.
      (c) Pang, X.; Jin, W. J. Top. Curr. Chem. 2015, 359, 115.

    30. [30]

      Voth, A. R.; Khuu, P.; Oishi, K.; Ho, P. S. Nat. Chem. 2009, 1, 74.  doi: 10.1038/nchem.112

    31. [31]

      Chu, Q.; Wang, Z.; Huang, Q.; Yan, C.; Zhu, S. J. Am. Chem. Soc. 2001, 123, 11069.  doi: 10.1021/ja015786v

    32. [32]

      (a) Chu, Q.; Wang, Z.; Huang, Q.; Yan, C.; Zhu, S. New J. Chem. 2003, 27, 1522.
      (b) Zhu, S.; Xing, C.; Xu, W.; Li, Z. Tetrahedron Lett. 2004, 45, 777.

    33. [33]

      Ji, B.; Wang, W.; Deng, D.; Zhang, Y. Cryst. Growth Des. 2011, 11, 3622.  doi: 10.1021/cg200603z

    34. [34]

      (a) Yan, D.; Bučar, D.-K.; Delori, A.; Patel, B.; Lloyd, G. O.; Jones, W.; Duan, X. Chem.-Eur. J. 2013, 19, 8213.
      (b) Yan, D.; Yang, H.; Meng, Q.; Lin, H.; Wei, M. Adv. Funct. Mater. 2014, 24, 587.
      (c) Lin, H.; Chang, X.; Yan, D.; Fang, W.-H.; Cui, G. Chem. Sci. 2017, 8, 2086.
      (d) Yan, D.; Evans, D. G. Mater. Horiz. 2014, 1, 46.
      (e) Li, S.; Lin, Y.; Yan, D. J. Mater. Chem. C 2016, 4, 2527.
      (f) Fan, G.; Yan, D. Adv. Opt. Mater. 2016, 4, 2139.
      (g) Yan, D. Chem.-Eur. J. 2015, 21, 4880.

    35. [35]

      Pang, X.; Zhao, X. R.; Wang, H.; Sun, H.-L.; Jin, W. J. Cryst. Growth Des. 2013, 13, 3739  doi: 10.1021/cg400776x

    36. [36]

      Liu, P.; Li, Z.; Shi, B.; Liu, J.; Zhu, H.; Huang, F. Chem.-Eur. J. 2018, 24, 4264.  doi: 10.1002/chem.v24.17

    37. [37]

      Han, C.; Zhao, D.; Dong, S. Chem. Commun. 2018, 54, 13099.  doi: 10.1039/C8CC07993E

    38. [38]

      Politzer, P.; Murray, J. S.; Clark, T. Phys. Chem. Chem. Phys. 2010, 12, 7748.  doi: 10.1039/c004189k

    39. [39]

      (a) Gao, H. Y.; Zhao, X. R.; Wang, H.; Pang, X.; Jin, W. J. Cryst. Growth Des. 2012, 12, 4377.
      (b) Shen, Q. J.; Pang, X.; Zhao, X. R.; Gao, H. Y.; Sun, H.-L.; Jin, W. J. CrystEngComm 2012, 14, 5027.
      (c) Gao, H.; Zhao, X.; Wang, H.; Pang, X.; Jin, W. Chin. J. Chem. 2013, 31, 1279.

    40. [40]

      Liu, C.-Z.; Koppireddi, S.; Wang, H.; Zhang, D.-W.; Li, Z.-T. Angew. Chem., Int. Ed. 2019, 58, 226.  doi: 10.1002/anie.201811561

    41. [41]

      (a) Yang, Y.; Wang, C. Chem. Soc. Rev. 2009, 38, 2576.
      (b) Wang, D.; Wan, L.-J.; Bai, C.-L. Mater. Sci. Eng., R 2010, 70, 169.
      (c) Jin, X.; Cramer, J. R.; Chen, Q.-W.; Liang, H.-L.; Shang, J.; Shao, X.; Chen, W.; Xu, G.-Q.; Gothelf, K. V.; Wu, K. Chin. Chem. Lett. 2017, 28, 525.

    42. [42]

      (a) Borges, J.; Mano, J. F. Chem. Rev. 2014, 114, 8883.
      (b) Xu, H.; Schö nhoff, M.; Zhang, X. Small 2012, 8, 517.

    43. [43]

      Zheng, Q.-N.; Liu, X.-H.; Chen, T.; Yan, H.-J.; Cook, T.; Wang, D.; Stang, P. S.; Wan, L.-J. J. Am. Chem. Soc. 2015, 137, 6128.  doi: 10.1021/jacs.5b02206

    44. [44]

      (a) Yang, X.; Wang, F.; Chen, Q.; Wang, L.; Wang, Z. Chin. Sci. Bull. 2007, 52, 1856.
      (b) Wang, F.; Ma, N.; Chen, Q.; Wang, W.; Wang, L. Langmuir 2007, 23, 9540.

    45. [45]

      Beale, T. M.; Chudzinski, M. G.; Sarwar, M. G.; Taylor, M. S. Chem. Soc. Rev. 2013, 42, 1667.  doi: 10.1039/C2CS35213C

    46. [46]

    47. [47]

      (a) Gao, H. Y.; Shen, Q. J.; Zhao, X. R.; Yan, X. Y.; Pang, X.; Jin, W. J. J. Mater. Chem. 2012, 22, 5336.
      (b) Liu, R.; Wang, H.; Jin, W. J. Cryst. Growth Des. 2017, 17, 3331.
      (c) Wu, W. X.; Wang, H.; Jin, W. J. Cryst. Growth Des. 2018, 18, 6742.

    48. [48]

      Sun, H.; Wang, M.; Khan, A.; Shan, Y.; Zhao, K.; Usman, R.; Xu, C. ChemistrySelect 2017, 2, 6323.  doi: 10.1002/slct.201701288

    49. [49]

      Zhu, W.; Zheng, R.; Zhen, Y.; Yu, Z.; Dong, H.; Fu, H.; Shi, Q.; Hu, W. J. Am. Chem. Soc. 2015, 137, 11038.  doi: 10.1021/jacs.5b05586

    50. [50]

      Li, J.; Hu, Y.-H.; Ge, C.-W.; Gong, H.-G.; Gao, X.-K. Chin. Chem. Lett. 2018, 29, 423.  doi: 10.1016/j.cclet.2017.06.008

    51. [51]

      Zhuo, M.-P.; Tao, Y.-C.; Wang, X.-D.; Wu, Y.; Chen, S.; Liao, L.-S.; Jiang, L. Angew. Chem., Int. Ed. 2018, 57, 11300.  doi: 10.1002/anie.201806149

    52. [52]

      Wang, Y.; Shang, H.; Li, B.; Zhang, H.; Jiang, S. CrystEngComm 2017, 19, 3801.  doi: 10.1039/C7CE00805H

    53. [53]

      Liu, Z.-X.; Sun, Y.; Feng, Y.; Chen, H.; He, Y.-M.; Fan, Q.-H. Chem. Commun. 2016, 52, 2269.  doi: 10.1039/C5CC09082B

    54. [54]

      Li, C.; Li, L.; Yang, X.; Jin, W. J. Colloids Surf., A 2017, 520, 497.  doi: 10.1016/j.colsurfa.2017.02.016

    55. [55]

      Zhu, B.; Wang, J.-R.; Zhang, Q.; Mei, X. CrystEngComm 2016, 18, 6327.  doi: 10.1039/C6CE01236A

    56. [56]

      Pan, Z.; Fan, Z.; Lu, B.; Cheng, J. Adv. Synth. Catal. 2018, 360, 1761.  doi: 10.1002/adsc.v360.9

    57. [57]

      Wang, Y.; Wang, J.; Li, G.-X.; He, G.; Chen, G. Org. Lett. 2017, 19, 1442.  doi: 10.1021/acs.orglett.7b00375

    58. [58]

      Sun, X.; Wang, W.; Li, Y.; Ma, J.; Yu, S. Org. Lett. 2016, 18, 4638.  doi: 10.1021/acs.orglett.6b02271

    59. [59]

      Sun, X.; Wang, W.; Ma, J.; Yu, S. Acta Chim. Sinica 2017, 75, 115(in Chinese).

    60. [60]

      Sun, X.; He, Y.; Yu, S. J. Photochem. Photobiol. A Chem. 2018, 355, 326.  doi: 10.1016/j.jphotochem.2017.08.026

    61. [61]

      (a) Chen, Q.; Qiu, Z.; Yang, Z. J. Fluorine Chem. 1987, 36, 149.
      (b) Huang, W.; Lü, L.; Zhang, Y. Chin. J. Chem. 1990, 350.
      (c) Huang, W.; Xie, Y. Chin. Chem. Lett. 1990, 1, 165.
      (d) Huang, W.; Lü, Chin. J. Chem. 1992, 10, 268.
      (e) Zhang, C.-P.; Chen, Q.-Y.; Guo, Y.; Xiao, J.-C.; Gu, Y.-C. Chem. Soc. Rev. 2012, 41, 4536.

    62. [62]

      (a) Li, Y.; Lu, Y.; Mao, R.; Li, Z.; Wu, J. Org. Chem. Front. 2017, 4, 1745.
      (b) Chen, T.; Guo, Y.; Sun, K.; Wu, L.-Z.; Liu, W.-Q.; Liu, C.; Huang, Y.; Chen, Q.-Y. Org. Chem. Front. 2018, 5, 1045.
      (c) Wang, R.; Guan, W.; Han, Z.-B.; Liang, F.; Suga, T.; Bi, X.; Nishide, H. Org. Lett. 2017, 19, 2358.
      (d) Huang, Y.; Lei, Y.-Y.; Zhao, L.; Gu, J.; Yao, Q.; Wang, Z.; Li, X.-F.; Zhang, X.; He, C.-Y. Chem. Commun. 2018, 54, 13662.
      (e) Li, M.; Wang, C.-T.; Qiu, Y.-F.; Zhu, X.-Y.; Han, Y.-P.; Xia, Y.; Li, X.-S.; Liang, Y.-M. Chem. Commun. 2018, 54, 5334.
      (f) Guo, Q.; Wang, M.; Liu, H.; Wang, R.; Xu, Z. Angew. Chem., Int. Ed. 2018, 57, 4747.

  • 加载中
    1. [1]

      Hong CAIJiewen WUJingyun LILixian CHENSiqi XIAODan LI . Synthesis of a zinc-cobalt bimetallic adenine metal-organic framework for the recognition of sulfur-containing amino acids. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 114-122. doi: 10.11862/CJIC.20240382

    2. [2]

      Jin Tong Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113

    3. [3]

      Jiarui Wu Gengxin Wu Yan Wang Yingwei Yang . Crystal Engineering Based on Leaning Towerarenes. University Chemistry, 2024, 39(3): 58-62. doi: 10.3866/PKU.DXHX202304014

    4. [4]

      Zitong Chen Zipei Su Jiangfeng Qian . Aromatic Alkali Metal Reagents: Structures, Properties and Applications. University Chemistry, 2024, 39(8): 149-162. doi: 10.3866/PKU.DXHX202311054

    5. [5]

      Ruoxi Sun Yiqian Xu Shaoru Rong Chunmiao Han Hui Xu . The Enchanting Collision of Light and Time Magic: Exploring the Footprints of Long Afterglow Lifetime. University Chemistry, 2024, 39(5): 90-97. doi: 10.3866/PKU.DXHX202310001

    6. [6]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    7. [7]

      Liang TANGJingfei NIKang XIAOXiangmei LIU . Synthesis and X-ray imaging application of lanthanide-organic complex-based scintillators. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1892-1902. doi: 10.11862/CJIC.20240139

    8. [8]

      Qianlang Wang Jijun Sun Qian Chen Quanqin Zhao Baojuan Xi . The Appeal of Organophosphorus Compounds: Clearing Their Name. University Chemistry, 2025, 40(4): 299-306. doi: 10.12461/PKU.DXHX202405205

    9. [9]

      Yongjian Zhang Fangling Gao Hong Yan Keyin Ye . Electrochemical Transformation of Organosulfur Compounds. University Chemistry, 2025, 40(5): 311-317. doi: 10.12461/PKU.DXHX202407035

    10. [10]

      Wenjian Zhang Mengxin Fan Wenwen Fei Wei Bai . Cultivation of Critical Thinking Ability: Based on RAFT Polymerization-Induced Self-Assembly. University Chemistry, 2025, 40(4): 108-112. doi: 10.12461/PKU.DXHX202406099

    11. [11]

      Xiaofei NIUKe WANGFengyan SONGShuyan YU . Self-assembly of [Pd6(L)4]8+-type macrocyclic complexes for fluorescent sensing of HSO3-. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1233-1242. doi: 10.11862/CJIC.20240057

    12. [12]

      Geyang Song Dong Xue Gang Li . Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides. University Chemistry, 2024, 39(2): 321-329. doi: 10.3866/PKU.DXHX202308030

    13. [13]

      Lijun Huo Mingcun Wang Tianyi Zhao Mingjie Liu . Exploration of Undergraduate and Graduate Integrated Teaching in Polymer Chemistry with Aerospace Characteristics. University Chemistry, 2024, 39(6): 103-111. doi: 10.3866/PKU.DXHX202312059

    14. [14]

      Daojuan Cheng Fang Fang . Exploration and Implementation of Science-Education Integration in Organic Chemistry Teaching for Pharmacy Majors: A Case Study on Nucleophilic Substitution Reactions of Alkyl Halides. University Chemistry, 2024, 39(11): 72-78. doi: 10.12461/PKU.DXHX202403105

    15. [15]

      Yanhui Zhong Ran Wang Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017

    16. [16]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    17. [17]

      Ying Xiong Guangao Yu Lin Wu Qingwen Liu Houjin Li Shuanglian Cai Zhanxiang Liu Xingwen Sun Yuan Zheng Jie Han Xin Du Chengshan Yuan Qihan Zhang Jianrong Zhang Shuyong Zhang . Basic Operations and Specification Suggestions for Determination of Physical Constants of Organic Compounds. University Chemistry, 2025, 40(5): 106-121. doi: 10.12461/PKU.DXHX202503079

    18. [18]

      Jiaming Xu Yu Xiang Weisheng Lin Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093

    19. [19]

      Aidang Lu Yunting Liu Yanjun Jiang . Comprehensive Organic Chemistry Experiment: Synthesis and Characterization of Triazolopyrimidine Compounds. University Chemistry, 2024, 39(8): 241-246. doi: 10.3866/PKU.DXHX202401029

    20. [20]

      Shicheng Yan . Experimental Teaching Design for the Integration of Scientific Research and Teaching: A Case Study on Organic Electrooxidation. University Chemistry, 2024, 39(11): 350-358. doi: 10.12461/PKU.DXHX202408036

Metrics
  • PDF Downloads(38)
  • Abstract views(1981)
  • HTML views(354)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return