Citation: Feng Enqi, Hou Zhongwei, Xu Haichao. Electrochemical Synthesis of Tetrasubstituted Hydrazines by Dehydrogenative N-N Bond Formation[J]. Chinese Journal of Organic Chemistry, ;2019, 39(5): 1424-1428. doi: 10.6023/cjoc201812007 shu

Electrochemical Synthesis of Tetrasubstituted Hydrazines by Dehydrogenative N-N Bond Formation

  • Corresponding author: Xu Haichao, haichao.xu@xmu.edu.cn
  • Received Date: 4 December 2018
    Revised Date: 27 December 2018
    Available Online: 18 May 2019

    Fund Project: the National Foundation for Fostering Talents in Basic Science J131002the National Natural Science Foundation of China 21672178Project supported by the National Natural Science Foundation of China (No. 21672178) and the National Foundation for Fostering Talents in Basic Science (No. J1310024)

Figures(2)

  • An electrochemical synthesis of tetrasubstituted hydrazines through dehydrogenative dimerization of secondary amines has been developed. The reactions are conducted in a simple undivided cell with constant current. The use of electricity to promote the reactions obviates the need for transition metal catalysts and oxidizing reagents, providing an efficient and sustainable access to tetrasubstituted hydrazines with diverse electronic properties.
  • 加载中
    1. [1]

      (a) Blair, L. M.; Sperry, J. J. Nat. Prod. 2013, 76, 794.
      (b) Zhang, Q.; Mándi, A.; Li, S.; Chen, Y.; Zhang, W.; Tian, X.; Zhang, H.; Li, H.; Zhang, W.; Zhang, S.; Ju, J.; Kurtán, T.; Zhang, C. Eur. J. Org. Chem. 2012, 5256.
      (c) Shoeb, M.; Celik, S.; Jaspars, M.; Kumarasamy, Y.; MacManus, S. M.; Nahar, L.; Thoo-Lin, P. K.; Sarker, S. D. Tetrahedron 2005, 61, 9001.
      (d) Higashibayashi, S.; Pandit, P.; Haruki, R.; Adachi, S.-i.; Kumai, R. Angew. Chem., Int. Ed. 2016, 55, 10830.

    2. [2]

      Hou, Z. W.; Mao, Z. Y.; Melcamu, Y. Y.; Lu, X.; Xu, H.-C. Angew. Chem., Int. Ed. 2018, 57, 1636.  doi: 10.1002/anie.v57.6

    3. [3]

      (a) Reddy, C. B. R.; Reddy, S. R.; Naidu, S. Catal. Commun. 2014, 56, 50.
      (b) Yan, X.-M.; Chen, Z.-M.; Yang, F.; Huang, Z.-Z. Synlett 2011, 2011, 569.
      (c) Ryan, M. C.; Martinelli, J. R.; Stahl, S. S. J. Am. Chem. Soc. 2018, 140, 9074.
      (d) Fritsche, R. F.; Theumer, G.; Kataeva, O.; Knolker, H. J. Angew. Chem., Int. Ed. 2017, 56, 549.
      (e) Zhu, Y.; Shi, Y. Org. Lett. 2013, 15, 1942.

    4. [4]

      (a) Yan, M.; Kawamata, Y.; Baran, P. S. Chem. Rev. 2017, 117, 13230.
      (b) Tang, S.; Liu, Y.; Lei, A. Chem 2018, 4, 27.
      (c) Jiang, Y.; Xu, K.; Zeng, C. Chem. Rev. 2018, 118, 4485.
      (d) Yang, Q. L.; Fang, P.; Mei, T. S. Chin. J. Chem. 2018, 36, 338.
      (e) Wiebe, A.; Gieshoff, T.; Mö hle, S.; Rodrigo, E.; Zirbes, M.; Waldvogel Siegfried, R.
      Angew. Chem., Int. Ed. 2018, 57, 5594.
      (f) Moeller, K. D. Chem. Rev. 2018, 118, 4817.
      (g) Yoshida, J.; Kataoka, K.; Horcajada, R.; Nagaki, A. Chem. Rev. 2008, 108, 2265.
      (h) Francke, R.; Little, R. D. Chem. Soc. Rev. 2014, 43, 2492.

    5. [5]

      (a) Hayashi, R.; Shimizu, A.; Yoshida, J. J. Am. Chem. Soc. 2016, 138, 8400.
      (b) Horn, E. J.; Rosen, B. R.; Chen, Y.; Tang, J.; Chen, K.; Eastgate, M. D.; Baran, P. S. Nature 2016, 533, 77.
      (c) Wang, P.; Tang, S.; Huang, P.; Lei, A. Angew. Chem., Int. Ed. 2017, 56, 3009.
      (d) Fu, N.; Li, L.; Yang, Q.; Luo, S. Org. Lett. 2017, 19, 2122.
      (e) Feng, R.; Smith, J. A.; Moeller, K. D. Acc. Chem. Res. 2017, 50, 2346.
      (f) Yang, Q. L.; Li, Y. Q.; Ma, C.; Fang, P.; Zhang, X. J.; Mei, T. S. J. Am. Chem. Soc. 2017, 139, 3293.
      (g) Zhang, S.; Li, L.; Xue, M.; Zhang, R.; Xu, K.; Zeng, C. Org. Lett. 2018, 20, 3443.
      (h) Fu, N.; Sauer, G. S.; Saha, A.; Loo, A.; Lin, S. Science 2017, 357, 575.
      (i) Li, J.; Huang, W.; Chen, J.; He, L.; Cheng, X.; Li, G. Angew. Chem., Int. Ed. 2018, 57, 5695.
      (j) Yuan, Y.; Cao, Y.; Qiao, J.; Lin, Y.; Jiang, X.; Weng, Y.; Tang, S.; Lei, A. Chin. J. Chem. 2019, 37, 49.
      (k) Ye, Z. H.; Ding, M. R.; Wu, Y. Q.; Li, Y.; Hua, W. K.; Zhang, F. Z. Green Chem. 2018, 20, 1732.
      (l) Qian, P.; Su, J.-H.; Wang, Y.; Bi, M.; Zha, Z.; Wang, Z. J. Org. Chem. 2017, 82, 6434.
      (m) Lin, D. Z.; Huang, J. M. Org. Lett. 2018, 20, 2112.
      (n) Zhang, L.; Zhang, Z. X.; Hong, J. T.; Yu, J.; Zhang, J. N.; Mo, F. Y. J. Org. Chem. 2018, 83, 3200.

    6. [6]

      Rosen, B. R.; Werner, E. W.; O'Brien, A. G.; Baran, P. S. J. Am. Chem. Soc. 2014, 136, 5571.  doi: 10.1021/ja5013323

    7. [7]

      (a) Zhu, L.; Xiong, P.; Mao, Z. Y.; Wang, Y. H.; Yan, X.; Lu, X.; Xu, H.-C. Angew. Chem., Int. Ed. 2016, 55, 2226.
      (b) Xiong, P.; Xu, H.-H.; Song, J.; Xu, H.-C. J. Am. Chem. Soc. 2018, 140, 2460.
      (c) Qian, X.-Y.; Li, S.-Q.; Song, J.; Xu, H.-C. ACS Catal. 2017, 2730.
      (d) Cai, C.-Y.; Xu, H.-C. Nat. Commun. 2018, 9, 3551.
      (e) Hou, Z.-W.; Yan, H.; Song, J.-S.; Xu, H.-C. Chin. J. Chem. 2018, 36, 909.
      (f) Xiong, P.; Xu, H.-H.; Song, J.; Xu, H.-C. J. Am. Chem. Soc. 2018, 140, 2460.
      (g) Zhao, H.-B.; Xu, P.; Song, J.; Xu, H.-C. Angew. Chem., Int. Ed. 2018, 57, 15153.
      (h) Wu, Z.-J.; Li, S.-R.; Xu, H.-C. Angew. Chem., Int. Ed. 2018, 57, 14070.
      (i) Xu, F.; Li, Y.-J.; Huang, C.; Xu, H.-C. ACS Catal. 2018, 3820.
      (j) Hou, Z. W.; Mao, Z. Y.; Zhao, H. B.; Melcamu, Y. Y.; Lu, X.; Song, J.; Xu, H.-C. Angew. Chem., Int. Ed. 2016, 55, 9168.
      (k) Wu, Z.-J.; Li, S.-R.; Long, H.; Xu, H.-C. Chem. Commun. 2018, 54, 4601.
      (l) Hou, Z.-W.; Mao, Z.-Y.; Song, J.; Xu, H.-C. ACS Catal. 2017, 5810.

    8. [8]

      (a) Gieshoff, T.; Kehl, A.; Schollmeyer, D.; Moeller, K. D.; Waldvogel, S. R. J. Am. Chem. Soc. 2017, 139, 12317.
      (b) Gieshoff, T.; Schollmeyer, D.; Waldvogel, S. R. Angew. Chem., Int. Ed. 2016, 55, 9437.

  • 加载中
    1. [1]

      Yuemin ChenYunqi WuGuoao WangFeihu CuiHaitao TangYingming Pan . Electricity-driven enantioselective cross-dehydrogenative coupling of two C(sp3)-H bonds enabled by organocatalysis. Chinese Chemical Letters, 2024, 35(9): 109445-. doi: 10.1016/j.cclet.2023.109445

    2. [2]

      Jun GuoZhenbang ZhuangWanqiang LiuGang Huang . "Co-coordination force" assisted rigid-flexible coupling crystalline polymer for high-performance aqueous zinc-organic batteries. Chinese Chemical Letters, 2024, 35(9): 109803-. doi: 10.1016/j.cclet.2024.109803

    3. [3]

      Zeyu JiangYadi WangChangwei ChenChi He . Progress and challenge of functional single-atom catalysts for the catalytic oxidation of volatile organic compounds. Chinese Chemical Letters, 2024, 35(9): 109400-. doi: 10.1016/j.cclet.2023.109400

    4. [4]

      Bicheng Zhu Jingsan Xu . S-scheme heterojunction photocatalyst for H2 evolution coupled with organic oxidation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100327-100327. doi: 10.1016/j.cjsc.2024.100327

    5. [5]

      Jia-Ru LiNing LiLi-Ling HeJun He . Fluorine-functionalized zirconium-organic cages for efficient photocatalytic oxidation of thioanisole. Chinese Chemical Letters, 2025, 36(1): 109934-. doi: 10.1016/j.cclet.2024.109934

    6. [6]

      Kun TangFen SuShijie PanFengfei LuZhongfu LuoFengrui CheXingxing WuYonggui Robin Chi . Enones from aldehydes and alkenes by carbene-catalyzed dehydrogenative couplings. Chinese Chemical Letters, 2024, 35(9): 109495-. doi: 10.1016/j.cclet.2024.109495

    7. [7]

      Weixu Li Yuexin Wang Lin Li Xinyi Huang Mengdi Liu Bo Gui Xianjun Lang Cheng Wang . Promoting energy transfer pathway in porphyrin-based sp2 carbon-conjugated covalent organic frameworks for selective photocatalytic oxidation of sulfide. Chinese Journal of Structural Chemistry, 2024, 43(7): 100299-100299. doi: 10.1016/j.cjsc.2024.100299

    8. [8]

      Shuai Liu Wen Wu Peili Zhang Yunxuan Ding Chang Liu Yu Shan Ke Fan Fusheng Li . Mechanistic insights into acidic water oxidation by Mn(2,2′-bipyridine-6,6′-dicarboxylate)-based hydrogen-bonded organic frameworks. Chinese Journal of Structural Chemistry, 2025, 44(3): 100535-100535. doi: 10.1016/j.cjsc.2025.100535

    9. [9]

      Fei YinErli YangXue GeQian SunFan MoGuoqiu WuYanfei Shen . Coupling WO3−x dots-encapsulated metal-organic frameworks and template-free branched polymerization for dual signal-amplified electrochemiluminescence biosensing. Chinese Chemical Letters, 2024, 35(4): 108753-. doi: 10.1016/j.cclet.2023.108753

    10. [10]

      Wen-Bo Wei Qi-Long Zhu . Electrosynthesis of hydroxylamine from earth-abundant small molecules. Chinese Journal of Structural Chemistry, 2025, 44(1): 100383-100383. doi: 10.1016/j.cjsc.2024.100383

    11. [11]

      Yue ZhangXiaoya FanXun HeTingyu YanYongchao YaoDongdong ZhengJingxiang ZhaoQinghai CaiQian LiuLuming LiWei ChuShengjun SunXuping Sun . Ambient electrosynthesis of urea from carbon dioxide and nitrate over Mo2C nanosheet. Chinese Chemical Letters, 2024, 35(8): 109806-. doi: 10.1016/j.cclet.2024.109806

    12. [12]

      Xuyun LuYanan ChangShasha WangXiaoxuan LiJianchun BaoYing Liu . Hydrogen peroxide electrosynthesis via two-electron oxygen reduction: From pH effect to device engineering. Chinese Chemical Letters, 2025, 36(5): 110277-. doi: 10.1016/j.cclet.2024.110277

    13. [13]

      Xinlong HanHuiying ZengChao-Jun Li . Trifluoromethylative homo-coupling of carbonyl compounds. Chinese Chemical Letters, 2025, 36(1): 109817-. doi: 10.1016/j.cclet.2024.109817

    14. [14]

      Xinghui YaoZhouyu WangDa-Gang Yu . Sustainable electrosynthesis: Enantioselective electrochemical Rh(III)/chiral carboxylic acid-catalyzed oxidative CH cyclization coupled with hydrogen evolution reaction. Chinese Chemical Letters, 2024, 35(9): 109916-. doi: 10.1016/j.cclet.2024.109916

    15. [15]

      Qijun Tang Wenguang Tu Yong Zhou Zhigang Zou . High efficiency and selectivity catalyst for photocatalytic oxidative coupling of methane. Chinese Journal of Structural Chemistry, 2023, 42(12): 100170-100170. doi: 10.1016/j.cjsc.2023.100170

    16. [16]

      Kongchuan WuDandan LuJianbin LinTing-Bin WenWei HaoKai TanHui-Jun Zhang . Elucidating ligand effects in rhodium(Ⅲ)-catalyzed arene–alkene coupling reactions. Chinese Chemical Letters, 2024, 35(5): 108906-. doi: 10.1016/j.cclet.2023.108906

    17. [17]

      Shengkai LiYuqin ZouChen ChenShuangyin WangZhao-Qing Liu . Defect engineered electrocatalysts for C–N coupling reactions toward urea synthesis. Chinese Chemical Letters, 2024, 35(8): 109147-. doi: 10.1016/j.cclet.2023.109147

    18. [18]

      Xin Huang Yi Zhao Wanzhen Liang . Vibronic coupling effect on intersystem crossing rates of TADF emitters. Chinese Journal of Structural Chemistry, 2024, 43(6): 100278-100278. doi: 10.1016/j.cjsc.2024.100278

    19. [19]

      Jian Ji Jie Yan Honggen Peng . Modulation of dinuclear site by orbital coupling to boost catalytic performance. Chinese Journal of Structural Chemistry, 2024, 43(8): 100360-100360. doi: 10.1016/j.cjsc.2024.100360

    20. [20]

      Yuehai ZhiChen GuHuachao JiKang ChenWenqi GaoJianmei ChenDafeng Yan . The advanced development of innovative photocatalytic coupling strategies for hydrogen production. Chinese Chemical Letters, 2025, 36(1): 110234-. doi: 10.1016/j.cclet.2024.110234

Metrics
  • PDF Downloads(38)
  • Abstract views(1063)
  • HTML views(152)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return