Citation: Zhang Kun, Xu Hongjin, Liu Zibo, Song Chuanjun. Total Synthesis of Carbazole Alkaloid Murrayaquinone A[J]. Chinese Journal of Organic Chemistry, ;2019, 39(4): 1142-1146. doi: 10.6023/cjoc201812005 shu

Total Synthesis of Carbazole Alkaloid Murrayaquinone A

  • Corresponding author: Song Chuanjun, chjsong@zzu.edu.cn
  • Received Date: 4 December 2018
    Revised Date: 24 December 2018
    Available Online: 8 April 2019

    Fund Project: Project supported by the National Natural Science Foundation of China (No.21771163)the National Natural Science Foundation of China 21771163

Figures(2)

  • Murrayaquinone A is a carbazolequinone alkaloid isolated from the root bark of Murraya euchrestifolia Hayata. It has been found to exhibit cardiotonic activity on heart muscle. Starting from the commercially available 3-acylindole, the total synthesis of Murrayaquinone A was realized in eight steps in an overall yield of 8%. The key step of our synthesis involves a palladium-catalyzed intramolecular α-C-H alkenylation of indole derivative to construct the carbazole A ring.
  • 加载中
    1. [1]

      (a) Knölker, H.-J.; Reddy, K. R. Chem. Rev. 2002, 102, 4303.
      (b) Schmidt, A. W.; Reddy, K. R.; Knölker, H.-J. Chem. Rev. 2012, 112, 3193.

    2. [2]

      Ruanpanun P.; Dame, Z. T.; Laatsch, H.; Lumyong, S. FEMS Microbiol. Lett. 2011, 322, 77.  doi: 10.1111/fml.2011.322.issue-1

    3. [3]

      Hoshino, S.; Zhang, L.; Awakawa, T.; Wakimoto, T.; Onaka, H.; Abe, I. J. Antibiot. 2015, 68, 342.  doi: 10.1038/ja.2014.147

    4. [4]

      Liu, D. Q.; Mao, S. C.; Zhang, H. Y.; Yu, X. Q.; Feng, M. T.; Wang, B.; Feng, L. H.; Guo, Y. W. Fitoterapia 2013, 91, 15.  doi: 10.1016/j.fitote.2013.08.014

    5. [5]

      Zhang, F. F.; Zhou, C. H.; Yan, J. P. Chin. J. Org. Chem. 2010, 30, 783(in Chinese).
       

    6. [6]

      Liu, Y.; Zhang, F.; Zou, L. B.; Jian, J. Y.; Bao, X. P. Chin. J. Org. Chem. 2013, 33, 2485(in Chinese).
       

    7. [7]

      Wu, T. S.; Ohta, T.; Furukawa, H.; Kuoh, C. S. Heterocycles 1983, 20, 1267.  doi: 10.3987/R-1983-07-1267

    8. [8]

      Takeya, K.; Itoigawa, M.; Furukawa, H. Eur. J. Pharmacol. 1989, 169, 137.  doi: 10.1016/0014-2999(89)90825-X

    9. [9]

      (a) Yogo, M.; Ito, C.; Furukawa, H. Chem. Pharm. Bull. 1991, 39, 328.
      (b) Hagelin, H.; Oslob, J. D.; Å kermark, B. Chem. Eur. J. 1999, 5, 2413.
      (c) Norcott, P.; Spielman, C.; McErlean, C. S. P. Green Chem. 2012, 14, 605.
      (d) Bedford, R. B.; Bowen, J. G.; Weeks, A. L. Tetrahedron 2013, 69, 4389.
      (e) Kaliyaperumal, S. A.; Banerjee, S.; Kumar, U. K. S. Org. Biomol. Chem. 2014, 12, 6105.

    10. [10]

      (a) Guo, J.; Kiran, I. N. C.; Reddy, R. S.; Gao, J.; Tang, M.; Liu, Y.; He, Y. Org. Lett. 2016, 18, 2499.
      (b) McDonald, J. W.; Miller, J. E.; Kim, M.; Velu, S. E. Tetrahedron Lett. 2018, 59, 550.

    11. [11]

      Scott, T. L.; Söderberg, B. C. G. Tetrahedron 2003, 59, 6323.  doi: 10.1016/S0040-4020(03)00976-1

    12. [12]

      (a) Nishiyama, T.; Choshi, T.; Kitano, K.; Hibino, S. Tetrahedron Lett. 2011, 52, 3876.
      (b) Nishiyama, T.; Hatae, N.; Yoshimura, T.; Takaki, S.; Abe, T.; Ishikura, M.; Hibino, S.; Choshi, T. Eur. J. Med. Chem. 2016, 121, 561.

    13. [13]

      Mal, D.; Senapati, B. K.; Pahari, P. Tetrahedron 2007, 63, 3768.  doi: 10.1016/j.tet.2007.02.060

    14. [14]

      (a) Matsuo, K.; Ishida, S. Chem. Pharm. Bull. 1994, 42, 1325.
      (b) Bhosale, S. M.; Momin, A. A.; Kusurkar, R. S. Tetrahedron 2012, 68, 6420.

    15. [15]

      (a) Hong, M.; Liu, H.; Sun, L.; Jia, F.; Liu, Y.; Jiang, Q.; Song, C.; Chang, J. Synlett 2011, 2995.
      (b) Song, C.; Liu, H.; Hong, M.; Liu, Y.; Jia, F.; Sun, L.; Pan, Z.; Chang, J. J. Org. Chem. 2012, 77, 704.
      (c) Chang, J.; Wang, S.; Shen, Z.; Huang, G.; Zhang, Y.; Zhao, J.; Li, C.; Fan, F.; Song, C. Tetrahedron Lett. 2012, 53, 6755.
      (d) Fan, F.; Dong, J.; Wang, J.; Song, L.; Song, C.; Chang, J. Adv. Synth. Catal. 2014, 356, 1337.
      (e) Wang, J.; Wang, J.; Li, C.; Meng, Y.; Wu, J.; Song, C.; Chang, J. J. Org. Chem. 2014, 79, 6354.
      (f) Li, E.; Li, C.; Wang, J.; Wang, J.; Dong, L.; Guo, X.; Song, C.; Chang, J. Tetrahedron 2014, 70, 874.
      (g) Meng, Y.; Liu, Y.; Lv, Z.; Wang, J.; Wang, Y.; Song, C.; Chang, J. Nat. Prod. Commun. 2015, 10, 2031.
      (h) Ding, Q.; Zhang, Y.; Shen Z.; Song, C.; Chang, J. Helv. Chim. Acta 2015, 98, 128.
      (i) Liu, Y.; Guo, Y.; Ji, F.; Gao, D.; Song, C.; Chang, J. J. Org. Chem. 2016, 81, 4310.
      (j) Guo, Y.; Huang, H.; Zhang, T.; Qi, S.; Liu, Y.; Li, M.; Wang, P.; Song, C.; Chang, J. Asian J. Org. Chem. 2016, 5, 1269.
      (k) Ji, F.; Huang, H.; Li, M.; Song, C.; Chang, J. Synthesis 2018, 50, 3921.

    16. [16]

      (a) Song, C.; Knight, D. W.; Whatton, M. A. Tetrahedron Lett. 2004, 45, 9573.
      (b) Song, C.; Zhao, P.; Liu, Y.; Liu, H.; Li, W.; Shi, S.; Chang, J. Tetrahedron 2010, 66, 5378.
      (c) Song, C.; Liu, Y.; Zhao, P.; Sun, X.; Li, W.; Liu, H.; Chang, J. Synthesis 2011, 45.
      (d) Chang, J.; Sun, L.; Dong, J.; Shen, Z.; Zhang, Y.; Wu, J.; Wang, R.; Wang, J.; Song, C. Synlett 2012, 2704.
      (e) Wang, S.; Yang, Q.; Dong, J.; Li, C.; Sun, L.; Song, C.; Chang, J. Eur. J. Org. Chem. 2013, 7631.

    17. [17]

      (a) Ferreira, E. M.; Stoltz, B. M. J. Am. Chem. Soc. 2003, 125, 9578.
      (b) Liu, C.; Han, X.; Wang, X.; Widenhoefer, R. A. J. Am. Chem. Soc. 2004, 126, 3700.
      (c) Liu, C.; Widenhoefer, R. A. J. Am. Chem. Soc. 2004, 126, 10250.
      (d) Han, X.; Widenhoefer, R. A. Org. Lett. 2006, 8, 3801.
      (e) Han, X.; Lu, X. Org. Lett. 2009, 11, 2381.
      (f) Bandini, M.; Bottoni, A.; Chiarucci, M.; Cera, G.; Miscione, G. P. J. Am. Chem. Soc. 2012, 134, 20690.
      (g) Schiffner, J. A.; Wö ste, T. H.; Oestreich, M. Eur. J. Org. Chem. 2010, 174.
      (h) Zhang, T.; Xu, H.; Song, C.; Chang, J. Tetrahedron Lett. 2018, 59, 4562.

    18. [18]

      (a) Chen, P.; Meng, Y.; Wang, H.; Han, F.; Wang, Y.; Song, C.; Chang, J. Org. Lett. 2016, 18, 3914.
      (b) Zhang, T.; Song, C.; Meng, Y.; Chen, P.; Xu, H.; Chang, J. J. Org. Chem. 2017, 82, 9905.

    19. [19]

      Sechi, M.; Derudas, M.; Dallocchio, R.; Dessì, A.; Bacchi, A.; Sannia, L.; Carta, F.; Palomba, M.:Ragab, O.; Chan, C.; Shoemaker, R.; Sei, S.; Dayam, R.; Neamati, N. J. Med. Chem. 2004, 47, 5298.  doi: 10.1021/jm049944f

  • 加载中
    1. [1]

      Yurong Tang Yunren Shi Yi Xu Bo Qin Yanqin Xu Yunfei Cai . Innovative Experiment and Course Transformation Practice of Visible-Light-Mediated Photocatalytic Synthesis of Isoquinolinone. University Chemistry, 2024, 39(5): 296-306. doi: 10.3866/PKU.DXHX202311087

    2. [2]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    3. [3]

      Xiao SANGQi LIUJianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158

    4. [4]

      Shulei HuYu ZhangXiong XieLuhan LiKaixian ChenHong LiuJiang Wang . Rh(Ⅲ)-catalyzed late-stage C-H alkenylation and macrolactamization for the synthesis of cyclic peptides with unique Trp(C7)-alkene crosslinks. Chinese Chemical Letters, 2024, 35(8): 109408-. doi: 10.1016/j.cclet.2023.109408

    5. [5]

      Min WANGDehua XINYaning SHIWenyao ZHUYuanqun ZHANGWei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477

    6. [6]

      Zhilian Liu Wengui Wang Hongxiao Yang Yu Cui Shoufeng Wang . Ideological and Political Education Design for the Synthesis of Irinotecan Drug Intermediate 7-Ethyl Camptothecin. University Chemistry, 2024, 39(2): 89-93. doi: 10.3866/PKU.DXHX202306012

    7. [7]

      Jing WUPuzhen HUIHuilin ZHENGPingchuan YUANChunfei WANGHui WANGXiaoxia GU . Synthesis, crystal structures, and antitumor activities of transition metal complexes incorporating a naphthol-aldehyde Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2422-2428. doi: 10.11862/CJIC.20240278

    8. [8]

      Wei Zhong Dan Zheng Yuanxin Ou Aiyun Meng Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005

    9. [9]

      Guoqiang Chen Zixuan Zheng Wei Zhong Guohong Wang Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021

    10. [10]

      Rui Gao Ying Zhou Yifan Hu Siyuan Chen Shouhong Xu Qianfu Luo Wenqing Zhang . Design, Synthesis and Performance Experiment of Novel Photoswitchable Hybrid Tetraarylethenes. University Chemistry, 2024, 39(5): 125-133. doi: 10.3866/PKU.DXHX202310050

    11. [11]

      Yanyang Li Zongpei Zhang Kai Li Shuangquan Zang . Ideological and Political Design for the Comprehensive Experiment of the Synthesis and Aggregation-Induced Emission (AIE) Performance Study of Salicylaldehyde Schiff-Base. University Chemistry, 2024, 39(2): 105-109. doi: 10.3866/PKU.DXHX202307020

    12. [12]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    13. [13]

      Jinlong YANWeina WUYuan WANG . A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1653-1660. doi: 10.11862/CJIC.20240154

    14. [14]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    15. [15]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    16. [16]

      Dan Li Hui Xin Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046

    17. [17]

      Wenjie SHIFan LUMengwei CHENJin WANGYingfeng HAN . Synthesis and host-guest properties of imidazolium-functionalized zirconium metal-organic cage. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 105-113. doi: 10.11862/CJIC.20240360

    18. [18]

      Hongjie SHENHaozhe MIAOYuhe YANGYinghua LIDeguang HUANGXiaofeng ZHANG . Synthesis, crystal structure, and fluorescence properties of two Cu(Ⅰ) complexes based on pyridyl ligand. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 855-863. doi: 10.11862/CJIC.20250009

    19. [19]

      Zhonghong Yan Chunxia Li Ruolin Yang . Analysis of the Use and Effectiveness of Concept Mapping Assignments in English Medium Instruction of General Chemistry. University Chemistry, 2025, 40(4): 224-231. doi: 10.12461/PKU.DXHX202405138

    20. [20]

      Yifeng TANPing CAOKai MAJingtong LIYuheng WANG . Synthesis of pentaerythritol tetra(2-ethylthylhexoate) catalyzed by h-MoO3/SiO2. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2155-2162. doi: 10.11862/CJIC.20240147

Metrics
  • PDF Downloads(23)
  • Abstract views(1456)
  • HTML views(298)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return