Citation: Zhu Jianrong, Ren Xiaojuan, Tang Feiyu, Pan Fei, Ye Longwu. Synthesis of α-Halo Amides via Zinc-Mediated Tandem Oxidation/Halogenation of Ynamides[J]. Chinese Journal of Organic Chemistry, ;2019, 39(4): 1102-1108. doi: 10.6023/cjoc201811007 shu

Synthesis of α-Halo Amides via Zinc-Mediated Tandem Oxidation/Halogenation of Ynamides

  • Corresponding author: Zhu Jianrong, zhujianrong@jingxinpharm.com Ye Longwu, longwuye@xmu.edu.cn
  • Received Date: 5 November 2018
    Revised Date: 29 November 2018
    Available Online: 17 April 2018

    Fund Project: the National Natural Science Foundation of China 21572186Project supported by the Key R&D Program of Zhejiang Province (No. 2017C03002) and the National Natural Science Foundation of China (No. 21572186)the Key R&D Program of Zhejiang Province 2017C03002

Figures(2)

  • α-Haloamides are a very important class of carbonyl compounds, and widely exist in a range of natural products and bioactive molecules. Herein, the realization of the tandem oxidation/halogenation of ynamides by employing the zinc halide as both the catalyst and the halogen source is described, thus avoiding the use of other external halogenating reagents. This method allows the practical synthesis of a variety of valuable α-haloamides in moderate to good yields.
  • 加载中
    1. [1]

      (a) Gribble, G. W. Naturally Occurring Organohalogen Compounds: A Comprehensive Update, Springer-Verlag, Wienheim, Germany, 2010.
      (b) Gribble, G. W. Naturally Occurring Organohalogen Compounds: A Comprehensive Survey, Springer-Verlag, Wienheim, Germany, 1996.

    2. [2]

      For recent selected reviews, see:
      (a) Chung, W.-J.; Vanderwal, C. D. Acc. Chem. Res. 2014, 47, 718.
      (b) Chemler, S. R.; Bovino, M. T. ACS Catal. 2013, 3, 1076.
      (c) Chelucci, G. Chem. Rev. 2012, 112, 1344.
      (d) Aubin, Y.; Fischmeister, C.; Thomas, C. M.; Renaud, J.-L. Chem. Soc. Rev. 2010, 39, 4130.
      (e) Roman, B. I.; De Kimpe, N.; Stevens, C. V. Chem. Rev. 2010, 110, 5914.

    3. [3]

      For reviews on catalytic intermolecular N-oxide oxidation of alkynes, see:
      (a) Zheng, Z.; Wang, Z.; Wang, Y.; Zhang, L. Chem. Soc. Rev. 2016, 45, 4448.
      (b) Zhou, B.; Li, L.; Ye, L.-W. Synlett 2016, 493.
      (c) Qian, D.; Zhang, J. Chem. Soc. Rev. 2015, 44, 677.
      (d) Yeom, H.-S.; Shin, S. Acc. Chem. Res. 2014, 47, 966.
      (e) Zhang, L. Acc. Chem. Res. 2014, 47, 877.
      (f) Xiao, J.; Li, X. Angew. Chem., Int. Ed. 2011, 50, 7226.

    4. [4]

      For recent selected examples, see:
      (a) Yang, J.-M.; Zhao, Y.-T.; Li, Z.-Q.; Gu, X.-S.; Zhu, S.-F.; Zhou, Q.-L. ACS Catal. 2018, 8, 7351.
      (b) Zhao, J.; Xu, W.; Xie, X.; Sun, N.; Li, X.; Liu, Y. Org. Lett. 2018, 20, 5461.
      (c) Li, J.; Xing, H.-W.; Yang, F.; Chen, Z.-S.; Ji, K. Org. Lett. 2018, 20, 4622.
      (d) Hamada, N.; Yamaguchi, A.; Inuki, S.; Oishi, S.; Ohno, H. Org. Lett. 2018, 20, 4401.
      (e) M. Lin, L. Zhu, J. Xia, Y. Yu, J. Chen, Z. Mao, X. Huang, Adv. Synth. Catal. 2018, 360, 2280.
      (f) Xu, Z.; Chen, H.; Wang, Z.; Ying, A.; Zhang, L. J. Am. Chem. Soc. 2016, 138, 5515.
      (g) Zeng, X.; Liu, S.; Shi, Z.; Liu, G.; Xu, B. Angew. Chem., Int. Ed. 2016, 55, 10032.
      (h) Zhang, Y.; Xue, Y.; Li, G.; Yuan, H.; Luo, T. Chem. Sci. 2016, 7, 5530.
      (i) Wang, Y.; Zheng, Z.; Zhang, L. J. Am. Chem. Soc. 2015, 137, 5316.
      (j) Chen, H.; Zhang, L. Angew. Chem., Int. Ed. 2015, 54, 11775.
      (k) Ji, K.; Zheng, Z.; Wang, Z.; Zhang, L. Angew. Chem., Int. Ed. 2015, 54, 1245.
      (l) Chen, M.; Chen, Y.; Sun, N.; Zhao, J.; Liu, Y.; Li, Y. Angew. Chem., Int. Ed. 2015, 54, 1200.
      (m) Zheng, Z.; Zhang, L. Org. Chem. Front. 2015, 2, 1556.
      (n) Ji, K.; Liu, X.; Du, B.; Yang, F.; Gao, J. Chem. Commun. 2015, 51, 10318.
      (o) Qian, D.; Hu, H.; Liu, F.; Tang, B.; Ye, W.; Wang, Y.; Zhang, J. Angew. Chem., Int. Ed. 2014, 53, 13751.

    5. [5]

    6. [6]

      (a) Wang, C.-M.; Qi, L.-J.; Sun, Q.; Zhou, B.; Zhang, Z.-X.; Shi, Z.-F.; Lin, S.-C.; Lu, X.; Gong, L.; Ye, L.-W. Green Chem. 2018, 20, 3271.
      (b) Shen, W.-B.; Sun, Q.; Li, L.; Liu, X.; Zhou, B.; Yan, J.-Z.; Lu, X.; Ye, L.-W. Nat. Commun. 2017, 8, 1748.
      (c) Pan, F.; Li, X.-L.; Chen, X.-M.; Shu, C.; Ruan, P.-P.; Shen, C.-H.; Lu, X.; Ye, L.-W. ACS Catal. 2016, 6, 6055.
      (d) Ruan, P.-P.; Shen, C.-H.; Li, L.; Liu, C.-Y.; Ye, L.-W. Org. Chem. Front. 2016, 3, 989.
      (e) Li, L.; Zhou, B.; Wang, Y.-H.; Shu, C.; Pan, Y.-F.; Lu, X.; Ye, L.-W. Angew. Chem., Int. Ed. 2015, 54, 8245.
      (f) Li, L.; Shu, C.; Zhou, B.; Yu, Y.-F.; Xiao, X.-Y.; Ye, L.-W. Chem. Sci. 2014, 5, 4057.
      (g) Pan, F.; Liu, S.; Shu, C.; Lin, R.-K.; Yu, Y.-F.; Zhou, J.-M.; Ye, L.-W. Chem. Commun. 2014, 50, 10726.

    7. [7]

      For recent reviews on ynamide reactivity, see:
      (a) Pan, F.; Shu, C.; Ye, L.-W. Org. Biomol. Chem. 2016, 14, 9456.
      (b) Evano, G.; Theunissen, C.; Lecomte, M. Aldrichim. Acta 2015, 48, 59.
      (c) Wang, X.-N.; Yeom, H.-S.; Fang, L.-C.; He, S.; Ma, Z.-X.; Kedrowski, B. L.; Hsung, R. P. Acc. Chem. Res. 2014, 47, 560.
      (d) DeKorver, K. A.; Li, H.; Lohse, A. G.; Hayashi, R.; Lu, Z.; Zhang, Y.; Hsung, R. P. Chem. Rev. 2010, 110, 5064.
      (e) Evano, G.; Coste, A.; Jouvin, K. Angew. Chem., Int. Ed. 2010, 49, 2840.

    8. [8]

      For selected examples from our group, see:
      (a) Zhou, B.; Li, L.; Zhu, X.-Q.; Yan, J.-Z.; Guo, Y.-L.; Ye, L.-W. Angew. Chem., Int. Ed. 2017, 56, 4015.
      (b) Shen, W.-B.; Xiao, X.-Y.; Sun, Q.; Zhou, B.; Zhu, X.-Q.; Yan, J.-Z.; Lu, X.; Ye, L.-W. Angew. Chem., Int. Ed. 2017, 56, 605.
      (c) Li, L.; Chen, X.-M.; Wang, Z.-S.; Zhou, B.; Liu, X.; Lu, X.; Ye, L.-W. ACS Catal. 2017, 7, 4004.
      (d) Shu, C.; Wang, Y.-H.; Shen, C.-H.; Ruan, P.-P.; Lu, X.; Ye, L.-W. Org. Lett. 2016, 18, 3254.
      (e) Pan, Y.; Chen, G.-W.; Shen, C.-H.; He, W.; Ye, L.-W. Org. Chem. Front. 2016, 3, 491.
      (f) Shu, C.; Wang, Y.-H.; Zhou, B.; Li, X.-L.; Ping, Y.-F.; Lu, X.; Ye, L.-W. J. Am. Chem. Soc. 2015, 137, 9567.
      (g) Zhou, A.-H.; He, Q.; Shu, C.; Yu, Y.-F.; Liu, S.; Zhao, T.; Zhang, W.; Lu, X.; Ye, L.-W. Chem. Sci. 2015, 6, 1265.

    9. [9]

      Pan, F.; Shu, C.; Ping, Y.-F.; Pan, Y.-F.; Ruan, P.-P.; Fei, Q.-R.; Ye, L.-W. J. Org. Chem. 2015, 80, 10009.  doi: 10.1021/acs.joc.5b01608

    10. [10]

      (a) Wang, Y.; Ji, K.; Lan, S.; Zhang, L. Angew. Chem., Int. Ed. 2012, 51, 1915.
      (b) Henrion, G.; Chava, T. E. J.; Le Goff, X.; Gagosz, F. Angew. Chem., Int. Ed. 2013, 52, 6277.

    11. [11]

      For recent selected examples, see: (a) Liu, Y.; Dong, W. Chin. J. Chem. 2017, 35, 1491.
      (b) Xie, L.; Wu, Y.; Yi, W.; Zhu, L.; Xiang, J.; He, W. J. Org. Chem. 2013, 78, 9190.

  • 加载中
    1. [1]

      Renxiao Liang Zhe Zhong Zhangling Jin Lijuan Shi Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024

    2. [2]

      Zhenxing Liu Jiaen Hu Zishi Cheng Xinqi Hao . 基础有机化学教学中烯烃的氧化反应. University Chemistry, 2025, 40(6): 139-144. doi: 10.12461/PKU.DXHX202408107

    3. [3]

      Lewang YuanYaoyao PengZong-Jie GuanYu Fang . Insights into the development of 2D covalent organic frameworks as photocatalysts in organic synthesis. Acta Physico-Chimica Sinica, 2025, 41(8): 100086-0. doi: 10.1016/j.actphy.2025.100086

    4. [4]

      Bolin Sun Jie Chen Ling Zhou . 乙烯型卤代烃的亲核取代反应. University Chemistry, 2025, 40(8): 152-157. doi: 10.12461/PKU.DXHX202410032

    5. [5]

      Daojuan Cheng Fang Fang . Exploration and Implementation of Science-Education Integration in Organic Chemistry Teaching for Pharmacy Majors: A Case Study on Nucleophilic Substitution Reactions of Alkyl Halides. University Chemistry, 2024, 39(11): 72-78. doi: 10.12461/PKU.DXHX202403105

    6. [6]

      Xiyuan Zhang Rui Dong Yang Yang Jiapeng Ding Zhiwei Miao . Palladium-Catalyzed Tandem Cyclization of 4-Vinylbenzoxazinone and Indene-2-carbaldehyde: A Comprehensive Organic Chemistry Experiment. University Chemistry, 2025, 40(9): 361-367. doi: 10.12461/PKU.DXHX202410062

    7. [7]

      Yujie WANGLaobang WANGZheng ZHANGQi LIUJianping LANG . Construction of W/Cu/S cluster-based supramolecular compounds via alkynyl/sulfur cycloaddition and their third-order nonlinear optical properties. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 2069-2077. doi: 10.11862/CJIC.20250129

    8. [8]

      Hongting Yan Aili Feng Rongxiu Zhu Lei Liu Dongju Zhang . Reexamination of the Iodine-Catalyzed Chlorination Reaction of Chlorobenzene Using Computational Chemistry Methods. University Chemistry, 2025, 40(3): 16-22. doi: 10.12461/PKU.DXHX202403010

    9. [9]

      Fen Wang Qi Yang Qianfei Ye Jichao Xiao . Synthesis of Sulfinamidines via the Oxidative Sulfonamination of Sulfenamides: A Recommended Comprehensive Organic Chemistry Experiment. University Chemistry, 2025, 40(11): 354-361. doi: 10.12461/PKU.DXHX202506059

    10. [10]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    11. [11]

      Tong Zhou Jun Li Zitian Wen Yitian Chen Hailing Li Zhonghong Gao Wenyun Wang Fang Liu Qing Feng Zhen Li Jinyi Yang Min Liu Wei Qi . Experiment Improvement of “Redox Reaction and Electrode Potential” Based on the New Medical Concept. University Chemistry, 2024, 39(8): 276-281. doi: 10.3866/PKU.DXHX202401005

    12. [12]

      Ji-Quan Liu Huilin Guo Ying Yang Xiaohui Guo . Calculation and Discussion of Electrode Potentials in Redox Reactions of Water. University Chemistry, 2024, 39(8): 351-358. doi: 10.3866/PKU.DXHX202401031

    13. [13]

      Zhuoyan LvYangming DingLeilei KangLin LiXiao Yan LiuAiqin WangTao Zhang . Light-Enhanced Direct Epoxidation of Propylene by Molecular Oxygen over CuOx/TiO2 Catalyst. Acta Physico-Chimica Sinica, 2025, 41(4): 100038-0. doi: 10.3866/PKU.WHXB202408015

    14. [14]

      Hao Wu Zhen Liu Dachang Bai1H NMR Spectrum of Amide Compounds. University Chemistry, 2024, 39(3): 231-238. doi: 10.3866/PKU.DXHX202309020

    15. [15]

      Yu Dai Xueting Sun Haoyu Wu Naizhu Li Guoe Cheng Xiaojin Zhang Fan Xia . Determination of the Michaelis Constant for Gold Nanozyme-Catalyzed Decomposition of Hydrogen Peroxide. University Chemistry, 2025, 40(5): 351-356. doi: 10.12461/PKU.DXHX202407052

    16. [16]

      Baitong Wei Jinxin Guo Xigong Liu Rongxiu Zhu Lei Liu . Theoretical Study on the Structure, Stability of Hydrocarbon Free Radicals and Selectivity of Alkane Chlorination Reaction. University Chemistry, 2025, 40(3): 402-407. doi: 10.12461/PKU.DXHX202406003

    17. [17]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    18. [18]

      Lili Jiang Shaoyu Zheng Xuejiao Liu Xiaomin Xie . Copper-Catalyzed Oxidative Coupling Reactions for the Synthesis of Aryl Sulfones: A Fundamental and Exploratory Experiment for Undergraduate Teaching. University Chemistry, 2025, 40(7): 267-276. doi: 10.12461/PKU.DXHX202408004

    19. [19]

      Wenjuan TanYong YeXiujuan SunBei LiuJiajia ZhouHailong LiaoXiulin WuRui DingEnhui LiuPing Gao . Building P-Poor Ni2P and P-Rich CoP3 Heterojunction Structure with Cation Vacancy for Enhanced Electrocatalytic Hydrazine and Urea Oxidation. Acta Physico-Chimica Sinica, 2024, 40(6): 2306054-0. doi: 10.3866/PKU.WHXB202306054

    20. [20]

      Yan KongWei WeiLekai XuChen Chen . Electrochemical Synthesis of Organonitrogen Compounds from N-integrated CO2 Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2307049-0. doi: 10.3866/PKU.WHXB202307049

Metrics
  • PDF Downloads(26)
  • Abstract views(1137)
  • HTML views(201)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return