Citation: Xu Huanji, Li Zheming, Wu Yunqiu, Luo Di, Qiu Li, Xie Jizhao, Li Xuehua. Advances on Synthesis of Flavonoid Glycosides[J]. Chinese Journal of Organic Chemistry, ;2019, 39(7): 1875-1890. doi: 10.6023/cjoc201811002 shu

Advances on Synthesis of Flavonoid Glycosides

  • Corresponding author: Xie Jizhao, xiejizhao@gxmu.edu.cn Li Xuehua, onlythankforyou@163.com
  • Received Date: 1 November 2018
    Revised Date: 23 January 2019
    Available Online: 19 July 2019

    Fund Project: the National Natural Science Foundation of China 21662005Project supported by the National Natural Science Foundation of China (No. 21662005)

Figures(14)

  • Flavonoid glycoside is commonly found in natural plants, possesses diverse bioactivities and potential medicinal values, and its synthesis methods are worthy to be studied. The synthesis of flavonoid glycosides covering the literatures from 2014 to 2018 is reviewed. The flavonoid glycoside synthesis includes two major methods of chemosynthesis and biosynthesis. Chemosynthesis includes total synthesis and semi-synthesis. The total synthesis has two classical methods of the Baker- Venkataraman (BK-VK) reaction and the Algar-Flynn-Oyamada (AFO) reaction. The semi-synthesis is usually starting from natural flavonoid, such as rutin, quercetin, kaempferol, naringenin and so on. Moreover, the chemosynthesis of flavonoid O-glucoside has three prime methods, Koening-Knorr method, phase transfer catalysis method, and glycosyl trichloroacetimidate method. As for the chemosynthesis of flavonoid C-glycoside, its glycosidic linkage is mainly completed via the O→C rearrangement reaction. Currently, the glycosyltransferase and glycosynthase are usually employed in the enzyme-catalyzed biosynthesis of flavonoid glycosides.
  • 加载中
    1. [1]

      Zhang, T. T.; Wang, M.; Yang, L.; Jiang, J. G.; Zhao, J. W.; Zhu, W. J. Funct. Foods 2015, 18, 235.  doi: 10.1016/j.jff.2015.07.006

    2. [2]

      Shu, J.; Li, L.; Zhou, M.; Yu, J.; Peng, C.; Shao, F.; Liu, R.; Zhu, G.; Huang, H. Nat. Prod. Res. 2017, 23, 1.

    3. [3]

      Huang, X.-X.; Wei, H.-L.; Pan, Y.-F. Food Ferment. Ind. 2013, 34, 140 (in Chinese).

    4. [4]

      Ekuadzi, E.; Dickson, R.; Fleischer, T.; Annan, K.; Pistorius, D.; Oberer, L.; Gibbons, S. Phytother. Res. 2014, 28, 784.  doi: 10.1002/ptr.5053

    5. [5]

      Jiang, X.-W.; Bai, J.-P.; Tian, X.; Zhao, Q.-C. Chin. Trad. Herb. Drugs 2016, 47, 726 (in Chinese).

    6. [6]

      Shi, Q.; Guan, F.-Q.; Sun, H.; Zhao, Y.-Y.; Wang, M.; Zhang, J.-H.; Feng, X.; Shan, Y. Food Sci. Technol. 2013, (6), 220 (in Chinese).

    7. [7]

      Sun, L.; Peng, Q.; Qu, L.; Gong, L.; Si, J. Mol. Med. Rep. 2015, 11, 3094.  doi: 10.3892/mmr.2014.3007

    8. [8]

      Ekuadzi, E.; Dickson, S.; Fleischer.; Annan, K.; Pistorius, D.; Oberer, L.; Gibbons, S. Phytother. Res. 2014, 28, 784.  doi: 10.1002/ptr.5053

    9. [9]

      Nawwar, M. A.; Hashem, A. N.; Hussein, S. A.; Swilam, N. F.; Becker, A.; Haertel, B.; Lindequist, U.; El-Khatib, A.; Linscheid, M. W. Pharmazie 2016, 71, 162.

    10. [10]

      Kumamoto, H.; Matsubara, Y.; Iizuka, Y.; Okamoto, K.; Yokoi, K. Agric. Biol. Chem. 2014, 49, 2613.

    11. [11]

      Nguyen, P. H.; Dung, V. V.; Bing, T. Z.; Kim, Y. H.; Min, B. S.; Mi, H. W. Arch. Pharmacal Res. 2014, 37, 1394.  doi: 10.1007/s12272-014-0422-5

    12. [12]

      Du, X.-G.; Geng, M.-Y. Sci. Life 2011, 23, 671 (in Chinese).

    13. [13]

      Montreuil, J. Adv. Carbohydr. Chem. Biochem. 1980, 37, 157.  doi: 10.1016/S0065-2318(08)60021-9

    14. [14]

      Winterburn, P. J.; Phelps, C. F. Nature 1972, 236, 147.  doi: 10.1038/236147a0

    15. [15]

      Zhang, Y.-M. J. Northwest Univ. (Nat. Sci. Ed.) 2016, 46, 385 (in Chinese).

    16. [16]

      Ranjbari, J.; Mokhtarzadeh, A.; Alibakhshi, A.; Tabarzad, M.; Hejazi, M.; Ramezani, M. Curr. Pharm. Des. 2017, 23, 6019.

    17. [17]

      Hofer, B. Appl. Microbiol. Biotechnol. 2016, 100, 4269.  doi: 10.1007/s00253-016-7465-0

    18. [18]

      Huang, D.-D.; Chen, H.-H.; Li, M.-G.; Huang, J.-B.; Li, Y.-R.; Wei, G. Tradit. Chin. Drug Res. Pharmacol. 2017, 28, 73 (in Chinese).

    19. [19]

      Obmann, A.; Zehl, M.; Purevsuren, S.; Narantuya, S.; Reznicek, G.; Kletter, C.; Glasl, S. J. Sep. Sci. 2015, 34, 292.

    20. [20]

      Qiu, L.; Jiao, Y.; Xie, J. Z.; Huang, G. K.; Qiu, S. L.; Miao, J. H.; Yao, X. S. J. Asian Nat. Prod. Res. 2013, 16, 589.

    21. [21]

      Kondo, T.; Yoshida, K.; Oyama, K. I. Curr. Org. Chem. 2011, 15, 2567.  doi: 10.2174/138527211796367354

    22. [22]

      Wang, Z. L.; Yang, L. Y.; Yang, X. W. Synth. Commun. 2013, 43, 22.

    23. [23]

      Mei, Q.-G.; Yuan, W.-C.; Wang, C. Chin. J. Org. Chem. 2015, 35, 70 (in Chinese).
       

    24. [24]

      Sun, J. S.; Laval, S.; Yu, B. Synthesis 2014, 46, 1030.  doi: 10.1055/s-0033-1341052

    25. [25]

      Mohadeszadeh, M.; Iranshahi, M. Mini-Rev. Med. Chem. 2017, 17, 1377.

    26. [26]

      Kitamura, K.; Ando, Y.; Matsumoto, T.; Suzuki, K. Chem. Rev. 2018, 118, 1495.  doi: 10.1021/acs.chemrev.7b00380

    27. [27]

      Xiao, J.; Muzashvili, T. S.; Georgiev, M. I. Biotechnol. Adv. 2014, 32, 1145.  doi: 10.1016/j.biotechadv.2014.04.006

    28. [28]

      Hofer, B. Appl. Microbiol. Biotechnol. 2016, 100, 4269.  doi: 10.1007/s00253-016-7465-0

    29. [29]

      Ares, J. J.; Outt, P. E.; Kakodkar, S. V.; Buss, R. C.; Geiger, J. C. J. Org. Chem. 1993, 58, 7093.

    30. [30]

      Song, G. Y.; Ahn, B. Z. Arch. Pharmacal Res. 1994, 17, 434.  doi: 10.1007/BF02979121

    31. [31]

      Wang, Q.-A.; Liao, T.-G.; Tang, J.-G.; Fan, H.-F. J. Hunan Univ. (Nat. Sci.) 2004, 31, 1 (in Chinese).

    32. [32]

      Zacharia, J. T.; Hayashi, M. Carbohydr. Res. 2012, 348, 91.  doi: 10.1016/j.carres.2011.11.015

    33. [33]

      Kerl, T.; Berger, F.; Schmalz, H. G. Chemistry 2016, 22, 2935.  doi: 10.1002/chem.201505118

    34. [34]

      Algarl, J.; Flynn, J. P. Proc. R. Ir. Acad. 1934, 42, 1.

    35. [35]

      Oyamada. B. Chem. Soc. Jpn. 1934, 55, 2039.

    36. [36]

      Oyamada, T. Tetrahedron 1935, 64, 988.

    37. [37]

      Zhou, Q.; Wang, C.; Li, Y.-P.; Pu, W.-C. Chin. J. Appl. Environ. Biol. 2017, 24, 232 (in Chinese).

    38. [38]

      Shen, X.; Zhou, Q.; Xiong, W.; Pu, W.; Zhang, W.; Zhang, G.; Wang, C. Tetrahedron 2017, 73, 4822.  doi: 10.1016/j.tet.2017.06.064

    39. [39]

      Li, X.; Chen, G.; Zhang, X.; Zhang, Q.; Zheng, S.; Wang, G.; Chen, Q. H. Bioorg. Med. Chem. Lett. 2016, 26, 4241.  doi: 10.1016/j.bmcl.2016.07.050

    40. [40]

      Wang, Q.-A.; Wang, S.-C.; Li, Y.; Shan, Y. J. Hunan Univ. (Nat. Sci.) 2015, 42, 53 (in Chinese).

    41. [41]

      Zhang, J.; Fu, X. L.; Yang, N.; Wang, Q. A. Sci. World J. 2013, 2013, 649485.

    42. [42]

      Jian, J.; Fan, J.; Yang, H.; Lan, P.; Li, M.; Liu, P.; Gao, H.; Sun, P. J. Nat. Prod. 2018, 81, 371.  doi: 10.1021/acs.jnatprod.7b00791

    43. [43]

      Yamauchi, K.; Mitsunaga, T.; Batubara, I. Bioorg. Med. Chem. 2014, 22, 937.  doi: 10.1016/j.bmc.2013.12.062

    44. [44]

      Liang, G.; Xu, B.; Wen, Z.; Hu, Z.; Yuan, J.; Chen, H.; Zhang, L. Heterocycles. 2016, 92, 1245.  doi: 10.3987/COM-16-13455

    45. [45]

      Xue, X.-N. Chem. Reag. 2018, 40, 465 (in Chinese).

    46. [46]

      Liu, J. D; Chen, L.; Cai, S. C.; Wang, Q. A. Carbohydr. Res. 2012, 357, 41.  doi: 10.1016/j.carres.2012.05.013

    47. [47]

      Park, K. S.; Kim, H.; Mi K. K.; Kim, K.; Chong, Y. J. Korean Soc. Appl. Biol. Chem. 2015, 58, 317.

    48. [48]

      Yang, W.; Sun, J.; Yang, Z.; Han, W.; Zhang, W. D., Yu B. Tetrahedron Lett. 2012, 43, 2773.

    49. [49]

      Yang, W.; Sun J.; Lu, W.; Li, Y.; Shan, L.; Han, W.; Zhang, W.; Yu, B. J. Org. Chem. 2010, 75, 6879.  doi: 10.1021/jo1014189

    50. [50]

      Mei, Q.; Wang, C. Z.; Yuan, W.; Zhang, G. Beilstein J. Org. Chem. 2015, 11, 1220.  doi: 10.3762/bjoc.11.135

    51. [51]

      Chen, J.; Huang, W.; Lian, G.; Lin, F. Carbohydr. Res. 2009, 344, 2245.  doi: 10.1016/j.carres.2009.08.014

    52. [52]

      Koenigs, W., Knorr, E. Eur. J. Inorg. Chem. 2010, 34, 957.

    53. [53]

      Zhao, J.; Zhang, Z.-P.; Chen, H.-S.; Zhang, X.-Q.; Chen, X.-H. Acta Pharm. Sin. 1998, 33, 22 (in Chinese).

    54. [54]

      Vermes, B.; Farkas, L.; Nógrádi, M.; Wagner, H.; Dirscherl, R. Phytochemistry 1976, 15, 1320.  doi: 10.1016/0031-9422(76)85106-0

    55. [55]

      Farkas, L.; Nógr di, M.; Vermes, B.; Wolfner, A.; Wagner, H.; Hörhammer, L.; Krämer, H. Eur. J. Inorg. Chem. 1969, 102, 2583.

    56. [56]

      Mezey-Vandor, G.; Farkas, L.; Kanzel, I.; Ndgradi, M. Chem. Ber. 1980, 113, 1945.  doi: 10.1002/cber.19801130529

    57. [57]

      Docampo, M.; Olubu, A.; Wang, X. Q.; Pasinetti, G.; Dixon, R. A. J. Agric. Food Chem. 2017, 65, 7607.  doi: 10.1021/acs.jafc.7b02633

    58. [58]

      Huang, W. H.; Chien, P. Y.; Yang, C. H.; Lee, A. R. Chem. Pharm. Bull. 2003, 34, 339.

    59. [59]

      Li, Y. F.; Yu, B.; Sun, J. S.; Wang, R. X. Tetrahedron Lett. 2015, 56, 3816.  doi: 10.1016/j.tetlet.2015.04.083

    60. [60]

      Demetzos, C.; Skaltsounis, A. L.; Tillequin, F.; Koch, M. Planta Med. 1990, 207, 131.

    61. [61]

      Wang, Q.-A.; Wu, Z.; Liu, L.; Zou, L.-H.; Luo, M. Chin. J. Org. Chem. 2010, 30, 1682 (in Chinese).
       

    62. [62]

      Cao, Z. L.; Qu, Y. Y.; Zhou, J. X.; Liu, W. W.; Yao, G. W. J. Carbohydr. Chem. 2015, 34, 28.  doi: 10.1080/07328303.2014.996290

    63. [63]

      Cao, Z. L.; Chen, J.; Zhu, D. D.; Yang, Z. N.; Teng, W. Q.; Liu, G. F.; Liu, B.; Tao, C. Z. J. Chem. Res. 2018, 42, 189.  doi: 10.3184/174751918X15232706115112

    64. [64]

      Nakagawa, A.; Tanaka, M.; Hanamura, S.; Takahashi, D.; Toshima, K. Angew. Chem., Int. Ed. 2015, 54, 10935.  doi: 10.1002/anie.201504182

    65. [65]

      Du, Y.; Wei, G.; Lindhardt, R. J. Tetrahedron Lett. 2003, 44, 6887.  doi: 10.1016/S0040-4039(03)01706-4

    66. [66]

      Arai, M. A.; Yamaguchi, Y.; Ishibashi, M. Org. Biomol. Chem. 2017, 15, 5025.  doi: 10.1039/C7OB01004D

    67. [67]

      Zou, L.; Zhang, Z.; Chen, X.; Chen, H.; Zhang, Y.; Li, J.; Liu, Y. Tetrahedron 2018, 74, 2376.  doi: 10.1016/j.tet.2018.03.057

    68. [68]

      Liao, J. X.; Fan, N. L.; Liu, H.; Tu, Y. H.; Sun, J. S. Org. Biomol. Chem. 2015, 14, 1221.

    69. [69]

      Hu, Y.; Tu, Y. H.; Liu, D. Y.; Liao, J. X.; Sun, J. S. Org. Biomol. Chem. 2016, 14, 4842.  doi: 10.1039/C6OB00655H

    70. [70]

      Yang, W.-Z.; Li, R.-Y.; Han, W.; Zhang, W.-D.; Sun, J.-S. Chin. J. Org. Chem. 2012, 32, 1067 (in Chinese).
       

    71. [71]

      Carte, B. K.; Carr, S.; Debrosse, C.; Hemling, M. E.; Mackenzie, L.; Offen, P.; Berry, D. E. ChemInform 1991, 22, 1815.

    72. [72]

      Lai, C. Y.; Tsai, A. C.; Chen, M. C.; Chang, L. H.; Sun, H. L.; Chang, Y. L.; Chen, C. C.; Teng, C. M.; Pan, S. L. Plos One 2012, 7, e42192.  doi: 10.1371/journal.pone.0042192

    73. [73]

      Hsieh, I.; Chang, S. Y.; Teng, C. M.; Chen, C. C.; Yang, C. R. J. Biomed. Sci. 2011, 18, 28.  doi: 10.1186/1423-0127-18-28

    74. [74]

      Yao, C. H.; Tsai, C. H.; Lee, J. C. J. Nat. Prod. 2016, 79, 1719.  doi: 10.1021/acs.jnatprod.5b01051

    75. [75]

      Wang, Y.; Liu, M.; Liu, L.; Xia, J. H.; Du, Y. G.; Sun, J. S. J. Org. Chem. 2018, 83, 4111.  doi: 10.1021/acs.joc.8b00008

    76. [76]

      Yang, D.; Zhang, X.; Zhang, W.; Rengarajan, T. Drug Des., Dev. Ther. 2018, 12, 1303.  doi: 10.2147/DDDT.S149307

    77. [77]

      Ku, S. K.; Bae, J. S. Can. J. Physiol. Pharmacol. 2016, 94, 287.  doi: 10.1139/cjpp-2015-0215

    78. [78]

      Shie, J. J.; Chen, C. A.; Lin, C. C.; Ku, A. F.; Cheng, T. J.; Fang, J. M.; Wong, C. H. Org. Biomol. Chem. 2010, 8, 4451.  doi: 10.1039/c0ob00011f

    79. [79]

      Sato, S.; Akiya, T.; Nishizawa, H.; Suzuki, T. Carbohydr. Res. 2006, 341, 964.  doi: 10.1016/j.carres.2006.02.019

    80. [80]

      Ho, T. C.; Kamimura, H.; Ohmori, K.; Suzuki, K. Org. Lett. 2016, 18, 4488.  doi: 10.1021/acs.orglett.6b02203

    81. [81]

      Mao, D.-B.; Huang, S.-L.; Chen, Y.-S. China Surf. Deterg. Cosmet. 2007, 37, 321 (in Chinese).  doi: 10.3969/j.issn.1001-1803.2007.05.011

    82. [82]

      Hofer, B. Appl. Microbiol. Biotechnol. 2016, 100, 4269.  doi: 10.1007/s00253-016-7465-0

    83. [83]

      Choung, W. J.; Hwang, S. H.; Ko, D. S.; Kim, S. B.; Kim, S. H.; Jeon. S. H.; Choi, H. D.; Lim, S. S.; Shim, J. H. J. Agric. Food Chem. 2017, 65, 2760.  doi: 10.1021/acs.jafc.7b00501

    84. [84]

      Kim, S. Y.; Lee, H. R.; Park, K. S.; Kim, B. G.; Ahn, J. H. Appl. Microbiol. Biotechnol. 2015, 99, 2233.  doi: 10.1007/s00253-014-6282-6

    85. [85]

      Liang, C.; Zhang, Y.; Jia, Y.; Wang, W.; Li, Y.; Lu, S.; Jin, J. M.; Tang, S. Y. Sci Rep. 2016, 6, 21051.  doi: 10.1038/srep21051

    86. [86]

      Pandey, R. P.; Parajuli, P.; Koirala, N.; Park, J. W.; Sohng, J. K. Appl. Environ. Microbiol. 2013, 79, 6833.  doi: 10.1128/AEM.02057-13

    87. [87]

      Gurung, R. B.; Kim, E. H.; Oh, T. J.; Sohng, J. K. Mol. Cells 2013, 36, 355.  doi: 10.1007/s10059-013-0164-0

    88. [88]

      Liu, X. G.; Lin, C. L.; Ma, X. D.; Yan, Y.; Wang, J. Z.; Zeng, M. Front. Recent Dev. Plant Sci. 2018, 9, 166.  doi: 10.3389/fpls.2018.00166

    89. [89]

      Feng, J.; Zhang, P.; Cui, Y.; Li, K.; Qiao, X.; Zhang, Y. T.; Li, S. M.; Cox, R. J.; Wu, B.; Ye, M. Adv. Synth. Catal. 2017, 359, 955.

    90. [90]

      Han, S. H.; Kim, B. G.; Yoon, J. A.; Chong, Y.; Ahn, J. H. Appl. Environ. Microbiol. 2014, 80, 2754.  doi: 10.1128/AEM.03797-13

    91. [91]

      Pandey, R. P.; Parajuli, P.; Gurung, R. B.; Sohng, J. K. Enzyme Microb. Technol. 2016, 91, 26.  doi: 10.1016/j.enzmictec.2016.05.006

    92. [92]

      Simkhada, D.; Lee, H. C.; Sohng, J. K. Biotechnol. Bioeng. 2010, 107, 154.  doi: 10.1002/bit.22782

    93. [93]

      Kim, B. G.; Su, H. S.; Ahn, J. H. Appl. Microbiol. Biotechnol. 2012, 93, 2447.  doi: 10.1007/s00253-011-3747-8

    94. [94]

      Brazierhicks, M.; Evans, K. M.; Gershater, M. C.; Puschmann, H.; Steel, P. G.; Edwards, R. J. Biol. Chem. 2009, 284, 17926.  doi: 10.1074/jbc.M109.009258

    95. [95]

      Du, Y.; Chu, H.; Chu, I. K.; Lo, C. Plant Physiol. 2010, 154, 324.  doi: 10.1104/pp.110.161042

    96. [96]

      Sasaki, N.; Nishizaki, Y.; Yamada, E.; Tatsuzawa, F.; Nakatsuka, T.; Takahashi, H.; Nishihara, M. FEBS Lett. 2016, 589, 182.

    97. [97]

      Shrestha, A.; Pandey, R. P.; Dhakal, D.; Parajuli, P.; Sohng, J. K. Appl. Microbiol. Biotechnol. 2018, 102, 1251.  doi: 10.1007/s00253-017-8694-6

    98. [98]

      Vanegas, K. G.; Larsen, A. B.; Eichenberger, M.; Fischer, D.; Mortensen, U. H.; Naesby, M. Microb. Cell Fact. 2018, 17, 107.  doi: 10.1186/s12934-018-0952-5

    99. [99]

      Du, Y.; Chu, H.; Wang, M.; Chu, I. K.; Lo, C. J. Exp. Bot. 2010, 61, 983.  doi: 10.1093/jxb/erp364

    100. [100]

      Morohashi, K.; Grotewold, E. Plant Cell. 2012, 24, 2745.  doi: 10.1105/tpc.112.098004

    101. [101]

      Hirade, Y.; Kotoku, N.; Terasaka, K.; Saijo-Hamano, Y.; Fukumoto, A.; Mizukami, H. FEBS Lett. 2015, 589, 1778.  doi: 10.1016/j.febslet.2015.05.010

    102. [102]

      Gutmann, A.; Nidetzky, B. Pure Appl. Chem. 2013, 85, 1865.  doi: 10.1351/pac-con-12-11-24

    103. [103]

      Hao, B.; Caulfield, J. C.; Hamilton, M. L.; Pickett, J. A.; Midega, C. A.; Khan, Z. R.; Wang, J. R. Org. Biomol. Chem. 2015, 13, 11663.  doi: 10.1039/C5OB01926E

    104. [104]

      Ito, T.; Fujimoto, S.; Suito, F.; Shimosaka, M.; Taguchi, G. Plant J. Cell Mol. Biol. 2017, 91, 187.  doi: 10.1111/tpj.13555

    105. [105]

      Nagatomo, Y.; Usui, S.; Ito, T.; Kao, A.; Shimosaka, M.; Taguchi, G. Plant J. 2014, 80, 437.  doi: 10.1111/tpj.12645

    106. [106]

      Mackenzie, L. F.; Wang, Q.; Warren, R. A. J.; Withers, S. G. J. Am. Chem. Soc. 1998, 120, 5583.  doi: 10.1021/ja980833d

    107. [107]

      Malet, C.; Planas, A. FEBS Lett. 1998, 440, 208.  doi: 10.1016/S0014-5793(98)01448-3

    108. [108]

      Moracci, M.; Trincone, A.; Perugino, G.; Ciaramella, M.; Rossi, M. Biochemistry 1998, 37, 17262.  doi: 10.1021/bi981855f

    109. [109]

      Hayes, M. R.; Pietruszka, J. Molecules 2017, 22, 1434.  doi: 10.3390/molecules22091434

    110. [110]

      Kobayashi, S.; Shoda, S.; Uyama, H. Adv. Polym. Sci. 2012, 121, 217.

    111. [111]

      Díez-Municio, M.; Kolida, S.; Herrero, M.; Rastall, R. A.; Moreno, F. J. J. Funct. Foods 2016, 20, 532.  doi: 10.1016/j.jff.2015.11.032

    112. [112]

      Ducros, V. M.; Tarling, C. A.; Zechel, D. L.; Brzozowski, A. M., Frandsen, T. P.; Ossowski, I. V.; Schülein, M.; Withers, S. G.; Davies, G. J. Chem. Biol. 2003, 10, 619.  doi: 10.1016/S1074-5521(03)00143-1

    113. [113]

      Yang, M.; Davies, G. J.; Davis, B. G. Angew. Chem. 2007, 46, 3885.  doi: 10.1002/anie.200604177

  • 加载中
    1. [1]

      Jing WUPuzhen HUIHuilin ZHENGPingchuan YUANChunfei WANGHui WANGXiaoxia GU . Synthesis, crystal structures, and antitumor activities of transition metal complexes incorporating a naphthol-aldehyde Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2422-2428. doi: 10.11862/CJIC.20240278

    2. [2]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    3. [3]

      Bin SUNHeyan JIANG . Glucose-modified bis-Schiff bases: Synthesis and bio-activities in Alzheimer′s disease therapy. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1338-1350. doi: 10.11862/CJIC.20240428

    4. [4]

      Lifang HEWenjie TANGYaoze LUOMingsheng LIANGJianxin TANGYuxuan WUFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two dialkyltin complexes constructed based on 2, 2′-bipyridin-6, 6′-dicarboxylic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1601-1609. doi: 10.11862/CJIC.20250012

    5. [5]

      Jiaming Xu Yu Xiang Weisheng Lin Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093

    6. [6]

      Xinyi ZhangKai RenYanning LiuZhenyi GuZhixiong HuangShuohang ZhengXiaotong WangJinzhi GuoIgor V. ZatovskyJunming CaoXinglong Wu . Progress on Entropy Production Engineering for Electrochemical Catalysis. Acta Physico-Chimica Sinica, 2024, 40(7): 2307057-0. doi: 10.3866/PKU.WHXB202307057

    7. [7]

      Lei FengZe-Min ZhuYing YangZongbin HeJiafeng ZouMan-Bo LiYan ZhaoZhikun Wu . Long-Pursued Structure of Au23(S-Adm)16 and the Unexpected Doping Effects. Acta Physico-Chimica Sinica, 2024, 40(5): 2305029-0. doi: 10.3866/PKU.WHXB202305029

    8. [8]

      Chunling QinShuang ChenHassanien GomaaMohamed A. ShenashenSherif A. El-SaftyQian LiuCuihua AnXijun LiuQibo DengNing Hu . Regulating HER and OER Performances of 2D Materials by the External Physical Fields. Acta Physico-Chimica Sinica, 2024, 40(9): 2307059-0. doi: 10.3866/PKU.WHXB202307059

    9. [9]

      Liping GUO . Synthesis and crystal structure characterization of yttrium imido complex: The reactivity of 2-substituted-1-amino-o-carborane with yttrium dialkyl complex. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1409-1415. doi: 10.11862/CJIC.20250065

    10. [10]

      Yukun Chang Haoqin Huang Baolei Wang . Preparation of Trans-Cinnamic Acid via “One-Pot” Protocol of Aldol Condensation-Hydrolysis Reaction: Recommending an Improved Organic Synthesis Experiment. University Chemistry, 2024, 39(4): 322-328. doi: 10.3866/PKU.DXHX202309095

    11. [11]

      CCS Chemistry 综述推荐│绿色氧化新思路:光/电催化助力有机物高效升级

      . CCS Chemistry, 2025, 7(10.31635/ccschem.024.202405369): -.

    12. [12]

      Yifan Liu Haonan Peng . AI-Assisted New Era in Chemistry: A Review of the Application and Development of Artificial Intelligence in Chemistry. University Chemistry, 2025, 40(7): 189-199. doi: 10.12461/PKU.DXHX202405182

    13. [13]

      Hong Lu Yidie Zhai Xingxing Cheng Yujia Gao Qing Wei Hao Wei . Advancements and Expansions in the Proline-Catalyzed Asymmetric Aldol Reaction. University Chemistry, 2024, 39(5): 154-162. doi: 10.3866/PKU.DXHX202310074

    14. [14]

      Yang YANGPengcheng LIZhan SHUNengrong TUZonghua WANG . Plasmon-enhanced upconversion luminescence and application of molecular detection. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 877-884. doi: 10.11862/CJIC.20230440

    15. [15]

      Chenyue HuangHongfei ZhengNing QinCanpei WangLiguang WangJun Lu . Single-Crystal Nickel-Rich Cathode Materials: Challenges and Strategies. Acta Physico-Chimica Sinica, 2024, 40(9): 2308051-0. doi: 10.3866/PKU.WHXB202308051

    16. [16]

      Minna Ma Yujin Ouyang Yuan Wu Mingwei Yuan Lijuan Yang . Green Synthesis of Medical Chemiluminescence Reagents by Photocatalytic Oxidation. University Chemistry, 2024, 39(5): 134-143. doi: 10.3866/PKU.DXHX202310093

    17. [17]

      Qingying Gao Tao Luo Jianyuan Su Chaofan Yu Jiazhu Li Bingfei Yan Wenzuo Li Zhen Zhang Yi Liu . Refinement and Expansion of the Classic Cinnamic Acid Synthesis Experiment. University Chemistry, 2024, 39(5): 243-250. doi: 10.3866/PKU.DXHX202311074

    18. [18]

      Wenjun Zheng . Application in Inorganic Synthesis of Ionic Liquids. University Chemistry, 2024, 39(8): 163-168. doi: 10.3866/PKU.DXHX202401020

    19. [19]

      Hongyan Chen Yajun Hou Shui Hu Zhuoxun Wei Fang Zhu Chengyong Su . Construction of Synthetic Chemistry Experiment of the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 58-63. doi: 10.12461/PKU.DXHX202409109

    20. [20]

      Huijuan Liao Yulin Xiao Dong Xue Mingyu Yang Jianyang Dong . Synthesis of 1-Benzyl Isoquinoline via the Minisci Reaction. University Chemistry, 2025, 40(7): 294-299. doi: 10.12461/PKU.DXHX202409092

Metrics
  • PDF Downloads(68)
  • Abstract views(3601)
  • HTML views(775)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return