Citation: Jiao Chunpeng, Liu Yuanyuan, Lu Wenjuan, Zhang Pingping, Wang Yanfeng. Molecular Fluorescence Probe for Detecting Reactive Nitrogen/Reactive Oxygen[J]. Chinese Journal of Organic Chemistry, ;2019, 39(3): 591-616. doi: 10.6023/cjoc201810013 shu

Molecular Fluorescence Probe for Detecting Reactive Nitrogen/Reactive Oxygen

  • Corresponding author: Wang Yanfeng, wyfshiwoya@126.com
  • Received Date: 12 October 2018
    Revised Date: 2 November 2018
    Available Online: 30 March 2018

    Fund Project: Project supported by the National Natural Science Foundation of China (No. 21305079)the National Natural Science Foundation of China 21305079

Figures(24)

  • Reactive nitrogen and reactive oxygen are chemical substances with strong biological activity. In human cells, peroxides can be generated due to enzymatic or non-enzymatic processes. Abnormal levels of peroxide can cause oxidative damage and aging and various diseases such as cardiovascular disease, neurological diseases, Alzheimer's disease, Parkinson's disease and even cancer. In order to effectively cure these diseases, health workers must find the source of the problem. Currently, there is no better way to detect reactive oxygen species and reactive nitrogen. Fluorescence spectrometry in recent years becomes the preferred method for the majority of researchers for detecting active oxygen and reactive nitrogen. Therefore, the development of selective recognition and high sensitivity molecular fluorescent probes to achieve effective detection of reactive nitrogen and reactive oxygen species is of great significance. On one hand, molecular fluorescent probe detecting and imaging technology has excellent characteristics such as high sensitivity, strong selectivity, small damage and good cell compatibility. On the other hand, fluorescent probes play an important role in the pathophysiological process of reactive nitrogen and reactive oxygen species. Therefore, the fluorescent probe method is widely used in the fields of biology and medicine. However, due to the inherent specificity of reactive nitrogen and reactive oxygen species, it has become an urgent problem for researchers, such as high reactivity, short cycle, etc. In order to overcome the shortcomings of fluorescent probe analysis, researchers are constantly striving to find better active fluorescent probes for the detection of reactive nitrogen and reactive oxygen species. Recent evolutions in the development of molecular fluorescent probes for the detection of active nitrogen and reactive oxygen species and cell imaging work are reviewed. Finally, a new type of molecular fluorescent probe is proposed to be used for the challenge of active nitrogen and active oxygen detection, and the future development direction and prospect.
  • 加载中
    1. [1]

      Abdel-Fattah, M. M.; Messiha, B. A.; Salama, A. A. Pharmacology 2015, 96, 167.  doi: 10.1159/000438705

    2. [2]

      Hernandez-Barrera, A.; Velarde-Buendia, A.; Zepeda, I.; Sanchez, F.; Quinto, C.; Sanchez-Lopez, R.; Cheung, A. Y.; Wu, H. M.; Cardenas, L. Sensors (Basel) 2015, 15, 855.  doi: 10.3390/s150100855

    3. [3]

      Hu, J. J.; Wong, N. K.; Ye, S.; Chen, X.; Lu, M. Y.; Zhao, A. Q.; Guo, Y.; Ma, A. C.; Leung, A. Y.; Shen, J.; Yang, D. J. Am. Chem. Soc. 2015, 137, 6837.  doi: 10.1021/jacs.5b01881

    4. [4]

      Hu, Q.; Gao, M.; Feng, G.; Liu, B. Angew. Chem., Int. Ed. 2014, 53, 14225.  doi: 10.1002/anie.v53.51

    5. [5]

      Huang, Y.; Yu, F.; Wang, J.; Chen, L. Anal. Chem. 2016, 88, 4122.  doi: 10.1021/acs.analchem.6b00458

    6. [6]

      Kavok, N. S.; Averchenko, K. A.; Klochkov, V. K.; Yefimova, S. L.; Malyukin, Y. V. Eur. Phys. J. E:Soft Matter Biol. Phys. 2014, 37, 127.  doi: 10.1140/epje/i2014-14127-9

    7. [7]

      Kim, D.; Kim, G.; Nam, S. J.; Yin, J.; Yoon, J. Sci. Rep. 2015, 5, 8488.  doi: 10.1038/srep08488

    8. [8]

      Li, Y.; Li, J.; Li, S.; Li, Y.; Wang, X.; Liu, B.; Fu, Q.; Ma, S. Toxicol. Appl. Pharmacol. 2015, 286, 53.  doi: 10.1016/j.taap.2015.03.010

    9. [9]

      Zhang, J.; Bao, X.; Zhou, J.; Peng, F.; Ren, H.; Dong, X.; Zhao, W. Biosens. Bioelectron. 2016, 85, 164.  doi: 10.1016/j.bios.2016.05.005

    10. [10]

      Zhang, J.; Huang, L. L.; Liang, X. J.; Wang, Y.; Duan, N.; Xiang, X. H.; Shu, S. S.; Guo, T. T.; Yang, L.; Tang, X. J. South. Med. Univ. 2016, 36, 833.

    11. [11]

      Suzuki, N.; Kojima, H.; Urano, Y.; Kikuchi, K.; Hirata, Y.; Nagano, T. J. Biol. Chem. 2002, 277, 47.  doi: 10.1074/jbc.M108195200

    12. [12]

      Liu, Q.; Xue, L.; Zhu, D. J.; Li, G. P.; Jiang, H. Chin. Chem. Lett. 2014, 25, 19.  doi: 10.1016/j.cclet.2013.11.024

    13. [13]

      Dong, X.; Heo, C. H.; Chen, S.; Kim, H. M.; Liu, Z. Anal. Chem. 2014, 86, 308.  doi: 10.1021/ac403226h

    14. [14]

      Vegesna, G. K.; Sripathi, S. R.; Zhang, J.; Zhu, S.; He, W.; Luo, F. T.; Jahng, W. J.; Frost, M.; Liu, H. ACS Appl. Mater. Interfaces 2013, 5, 4107.  doi: 10.1021/am303247s

    15. [15]

      Wang, M.; Xu, Z.; Wang, X.; Cui, J. Dyes Pigm. 2013, 96, 333.  doi: 10.1016/j.dyepig.2012.08.024

    16. [16]

      Feng, W.; Qiao, Q. L.; Leng, S.; Miao, L.; Yin, W. T.; Wang, L. Q.; Xu, Z. C. Chin. Chem. Lett. 2016, 27, 1554.  doi: 10.1016/j.cclet.2016.06.016

    17. [17]

      Wu, C. M.; Chen, Y. H.; Dayananda, K.; Shiue, T. W.; Hung, C. H.; Liaw, W. F.; Wang, Y. M. Anal. Chim. Acta 2011, 708, 141.  doi: 10.1016/j.aca.2011.10.005

    18. [18]

      Yu, H.; Zhang, X.; Xiao, Y.; Zou, W.; Wang, L.; Jin, L. Anal. Chem. 2013, 85, 7076.  doi: 10.1021/ac401916z

    19. [19]

      Ouyang, J.; Hong, H.; Shen, C.; Zhao, Y.; Ouyang, C.; Dong, L.; Zhang, C. Free Radical Biol. Med. 2008, 45, 1426.  doi: 10.1016/j.freeradbiomed.2008.08.016

    20. [20]

      Alam, R.; Mistri, T.; Mondal, P.; Das, D.; Mandal, S. K.; Khuda-Bukhsh, A. R.; Ali, M. Dalton Trans. 2014, 43, 2566.  doi: 10.1039/C3DT52521J

    21. [21]

      Rout, K. C.; Chaturvedi, S. K.; Khan, R. H.; Mondal, B. Inorg. Chim. Acta 2015, 437, 201.  doi: 10.1016/j.ica.2015.08.014

    22. [22]

      Chen, L. Y.; Park, J. S.; Wu, D.; Kim, C. H.; Yoon, J. Sens. Actuators, B 2018, 259, 347.  doi: 10.1016/j.snb.2017.12.073

    23. [23]

      Dai, C. G.; Wang, J. L.; Fu, Y. L.; Zhou, H. P.; Song, Q. H. Anal. Chem. 2017, 89, 10511.  doi: 10.1021/acs.analchem.7b02680

    24. [24]

      Beltrán, A.; Burguete, M. I.; Abánades, D. R.; Pérez-Sala, D.; Luis, S. V.; Galindo, F. Chem. Commun. 2014, 50, 3579.  doi: 10.1039/c3cc49555h

    25. [25]

      Liu, S.; Zhao, J.; Zhang, K.; Yang, L.; Sun, M.; Yu, H.; Yan, Y.; Zhang, Y.; Wu, L.; Wang, S. Analyst 2016, 141, 2296.  doi: 10.1039/C5AN02261D

    26. [26]

      Mao, G. J.; Zhang, X. B.; Shi, X. L.; Liu, H. W.; Wu, Y. X.; Zhou, L. Y.; Tan, W.; Yu, R. Q. Chem. Commun. 2014, 50, 5790.  doi: 10.1039/c4cc01440e

    27. [27]

      Miao, Z.; Reisz, J. A.; Mitroka, S. M.; Pan, J., Xian, M.; King, S. B. Bioorg. Med. Chem. Lett. 2015, 25, 16.  doi: 10.1016/j.bmcl.2014.11.041

    28. [28]

      Liu, C.; Cao, Z.; Wang, Z.; Jia, P.; Liu, J.; Wang, Z.; Han, B.; Huang, X.; Li, X.; Zhu, B.; Zhang, X. Sens. Actuators, B 2015, 220, 727.  doi: 10.1016/j.snb.2015.06.013

    29. [29]

      Gong, X.; Yang, X. F.; Zhong, Y.; Chen, Y.; Li, Z. Dyes Pigm. 2016, 131, 24  doi: 10.1016/j.dyepig.2016.03.046

    30. [30]

      Dong, B. L.; Zheng, K. B.; Tang, Y. H.; Lin, W. Y. J. Mater. Chem. B 2016, 4, 1263.  doi: 10.1039/C5TB02073E

    31. [31]

      Ali, F.; Sreedharan, S.; Ashoka, A. H.; Saeed, H. K.; Smythe, C. G. W.; Thomas, J. A.; Das, A. Anal. Chem. 2017, 89, 12087.  doi: 10.1021/acs.analchem.7b02567

    32. [32]

      Li, H.; Yao, Q.; Fan, J; Long, S.; Du, J.; Peng, X. Anal. Chem. 2018, 90, 4641.  doi: 10.1021/acs.analchem.7b05172

    33. [33]

      Ren, M. G.; Deng, B. B.; Zhou K.; Lin, W. Y. J. Mater. Chem. B 2017, 5, 1954.  doi: 10.1039/C6TB03388A

    34. [34]

      Dong, B. B.; Song, X. Z.; Kong, X. Q.; Wang, C.; Zhang, N.; Lin, W. Y. J. Mater. Chem. B 2017, 5, 5218.  doi: 10.1039/C7TB00703E

    35. [35]

      Jing, X. T.; Yu, F. B.; Chen, L. X. Chem. Commun. 2014, 50, 14253.  doi: 10.1039/C4CC07561G

    36. [36]

      Rosenthal, J.; Lippard, S. J. J. Am. Chem. Soc. 2010, 132, 5536.  doi: 10.1021/ja909148v

    37. [37]

      Wrobel, A. T.; Johnstone, T. C.; Deliz, L. A.; Lippard, S. J.; Rivera-Fuentes, P. J. Am. Chem. Soc. 2014, 136, 4697.  doi: 10.1021/ja500315x

    38. [38]

      Wrobel, A. T.; Johnstone, T. C.; Deliz Liang, A.; Lippard, S. J.; Rivera-Fuentes, P. Chem. Sci. 2015, 6, 4131.  doi: 10.1039/C5SC00880H

    39. [39]

      Sun, X.; Kim, G.; Xu, Y.; Yoon, J.; James, T. D. ChemPlusChem 2016, 81, 30.  doi: 10.1002/cplu.v81.1

    40. [40]

      Lv, H. J.; Ma, R. F.; Zhang, X. T.; Li, M. H., Wang, Y. T.; Wang, S.; Xing, G. W. Tetrahedron 2016, 72, 5495.  doi: 10.1016/j.tet.2016.07.039

    41. [41]

      Pino, N. W.; Davis Ⅲ, J.; Yu, Z.; Chan, J. J. Am. Che. Soc. 2017, 139, 18476.  doi: 10.1021/jacs.7b11471

    42. [42]

      Purdey, M. S.; Connaughton, H. S.; Whiting, S.; Schartner, E. P.; Monro, T. M.; Thompson, J. G.; Aitken, R. J.; Abell, A. D. Free Radical Biol. Med. 2015, 81, 69.  doi: 10.1016/j.freeradbiomed.2015.01.015

    43. [43]

      Puskullu, M. O.; Shirinzadeh, H.; Nenni, M.; Gurer-Orhan, H.; Suzen, S. J. Enzyme Inhib. Med. Chem. 2016, 31, 121.  doi: 10.3109/14756366.2015.1005012

    44. [44]

      Debowska, K.; Debski, D.; Michalowski, B.; Dybala-Defratyka, A.; Wojcik, T.; Michalski, R.; Jakubowska, M.; Selmi, A.; Smulik, R.; Piotrowski, L.; Adamus, J.; Marcinek, A.; Chlopicki, S.; Sikora, A. Chem. Res. Toxicol. 2016, 29, 735.  doi: 10.1021/acs.chemrestox.5b00431

    45. [45]

      Palanisamy, S.; Wu, P. Y.; Wu, S. C.; Chen, Y. J.; Tzou, S. C.; Wang, C. H.; Chen, C. Y.; Wang, Y. M. Biosens. Bioelectron. 2017, 91, 849.  doi: 10.1016/j.bios.2017.01.027

    46. [46]

      Zhu, B. C.; Wu, L.; Wang, Y.; Zhang, M.; Zhao, Z.; Liu, C.; Wang, Z.; Duan, Q.; Jia, P. Sens. Actuators, B 2018, 259, 797.  doi: 10.1016/j.snb.2017.12.135

    47. [47]

      Zhou, X.; Kwon, Y.; Kim, G.; Ryu, J. H.; Yoon, J. Biosens. Bioelectron. 2015, 64, 285.  doi: 10.1016/j.bios.2014.08.089

    48. [48]

      Shen, Y.; Zhang, X.; Zhang, Y.; Li, H.; Dai, L.; Peng, X.; Peng, Z.; Xie, Y. Anal. Chim. Acta 2018, 1014, 71.  doi: 10.1016/j.aca.2018.01.046

    49. [49]

      Hou, J. T.; Yang, J.; Li, K.; Liao, Y. X.; Yu, K. K.; Xie, Y. M.; Yu, X. Q. Chem. Commun. 2014, 50, 9947.  doi: 10.1039/C4CC04192E

    50. [50]

      Sun, C.; Du, W.; Wang, P.; Wu, Y.; Wang, B.; Wang, J.; Xie, W. Biochem. Biophys. Res. Commun. 2017, 494, 518.  doi: 10.1016/j.bbrc.2017.10.123

    51. [51]

      Yu, F.; Li, P.; Wang, B.; Han, K. L. J. Am. Chem. Soc. 2013, 135, 7674.  doi: 10.1021/ja401360a

    52. [52]

      Li, Z. H.; Liu, R.; Tan, Z. L.; He, L.; Lu, Z. L.; Gong, B. ACS Sens. 2017, 2, 501.  doi: 10.1021/acssensors.7b00139

    53. [53]

      Cheng, D.; Pan, Y.; Wang, L.; Zeng, Z.; Yuan, L.; Zhang, X.; Chang, Y. T. J. Am. Chem. Soc. 2017, 139, 285.  doi: 10.1021/jacs.6b10508

    54. [54]

      Lin, K. K.; Wu, S. C.; Hsu, K. M.; Hung, C. H.; Liaw, W. F.; Wang, Y. M. Org. Lett. 2013, 15, 4242.  doi: 10.1021/ol401932p

    55. [55]

      Sun, X.; Xu, Q.; Kim, G.; Flower, S. E.; Lowe, J. P.; Yoon, J.; Fossey, J. S.; Qian, X.; Bull, S. D.; James, T. D. Chem. Sci. 2014, 5, 3368.  doi: 10.1039/C4SC01417K

    56. [56]

      Li, H. Y.; Li, X. H.; Wu, X. F.; Shi, W.; Ma, H. M. Anal. Chem. 2017, 89, 5519.  doi: 10.1021/acs.analchem.7b00503

    57. [57]

      Zhu, B. C.; Zhang, M.; Wu, L.; Zhao, Z.; Liu, C.; Wang, Z.; Duan, Q.; Wang, Y.; Jia, P. Sens. Actuators, B 2018, 257, 436.  doi: 10.1016/j.snb.2017.10.170

    58. [58]

      Wolff, I. A.; Wasserman, A. E. Science 1972, 177, 15.  doi: 10.1126/science.177.4043.15

    59. [59]

      Adarsh, N.; Shanmugasundaram, M.; Ramaiah, D. Anal. Chem. 2013, 85, 10008.  doi: 10.1021/ac4031303

    60. [60]

      Zhang, J.; Pan, F. C.; Jin, Y.; Wang, N. N.; He, J.; Zhang, W. J.; Zhao, W. L. Dyes Pigm. 2018, 74, 525.

    61. [61]

      Yan, Y.; Krishnakumar, S.; Yu, H.; Ramishetti, S.; Deng, L. W.; Wang, S. H.; Huang, L.; Huang, D. J. J. Am. Chem. Soc. 2013, 135, 5312.  doi: 10.1021/ja401555y

    62. [62]

      Chen, J. B.; Li, B.; Xiong, Y. Sens. Actuators, B 2017, 255, 275.

    63. [63]

      Zuo, L.; Diaz, P. T.; Chien, M. T.; Roberts, W. J.; Kishek, J.; Best, T. M.; Wagner, P. D. PLoS One 2014, 9, e109884.  doi: 10.1371/journal.pone.0109884

    64. [64]

      Zuo, L.; Pannell, B. K.; Re, A. T.; Best, T. M.; Wagner, P. D. Am. J. Physiol.:Cell Physiol. 2015, 309, C759.  doi: 10.1152/ajpcell.00174.2015

    65. [65]

      Chen, W. C.; Venkatesan, P.; Wu, S. P. New J. Chem. 2015, 39, 6892.  doi: 10.1039/C5NJ01083G

    66. [66]

      Zang, L.; Liang, C.; Wang, Y.; Bu, W.; Sun, H.; Jiang, S. Sens. Actuators, B 2015, 211, 164.  doi: 10.1016/j.snb.2015.01.046

    67. [67]

      Wu, G. F.; Zeng, F.; Wu, S. Z. Anal. Methods 2013, 5, 5589.  doi: 10.1039/c3ay41268g

    68. [68]

      Chen, Y.; Wei, T.; Zhang, Z.; Zhang, W.; Lv, J.; Chen, T.; Chi, B.; Wang, F.; Chen, X. Chin. Chem. Lett. 2017, 28, 1957.  doi: 10.1016/j.cclet.2017.05.010

    69. [69]

      Lv, J.; Chen, Y.; Wang, F.; Wei, T.; Zhang, Z.; Qiang, J.; Chen, X. Dyes Pigm. 2018, 148, 353.  doi: 10.1016/j.dyepig.2017.09.037

    70. [70]

      Xi, L. L.; Guo, X. F.; Wang, C. L.; Wu, W. L.; Huang, M. F.; Miao, J. Y.; Zhao, B. X. Senso. Actuators, B 2018, 255, 666.  doi: 10.1016/j.snb.2017.08.073

    71. [71]

      Sun, M.; Yu, H.; Zhu, H.; Ma, F.; Zhang, S.; Huang, D.; Wang, S. Anal. Chem., 2014, 86, 671.  doi: 10.1021/ac403603r

    72. [72]

      Xu, J.; Yuan, H.; Qin, C.; Zeng, L.; Bao, G. M. RSC Adv. 2016, 6, 107525.  doi: 10.1039/C6RA22868B

    73. [73]

      Xing, P.; Feng, Y.; Niu, Y.; Li, Q.; Zhang, Z.; Dong, L.; Wang, C. Chem.-Eur. J. 2018, 24, 5748.  doi: 10.1002/chem.v24.22

    74. [74]

      Sun, M.; Yu, H.; Zhu, H.; Ma, F.; Zhang, S.; Huang, D.; Wang, S. Anal. Chem. 2014, 86, 671.  doi: 10.1021/ac403603r

    75. [75]

      Song, X.; Dong, B.; Kong, X.; Wang, C.; Zhang, N.; Lin, W. Spectrochim. Acta, Part A 2018, 188, 394.  doi: 10.1016/j.saa.2017.07.011

    76. [76]

      Zhu, H.; Fan, J.; Wang, J.; Mu, H.; Peng, X. J. Am. Chem. Soc. 2014, 136, 12820.  doi: 10.1021/ja505988g

    77. [77]

      Xu, Q.; Lee, K. A.; Lee, S.; Lee, K. M.; Lee, W. J.; Yoon, J. J. Am. Chem. Soc. 2013, 135, 9944.  doi: 10.1021/ja404649m

    78. [78]

      Zhou, J.; Li, L. H.; Shi, W.; Gao, X. H.; Li, X. H.; Ma, H. M. Chem. Sci. 2015, 6, 4884.  doi: 10.1039/C5SC01562F

    79. [79]

      Chen, S. M.; Lu, J. X; Sun, C. D.; Ma, H. M. Analyst 2010, 135, 577.  doi: 10.1039/b921187j

    80. [80]

      Jia, J.; Ma, H. M. Sci. Bull. 2011, 56, 3266.  doi: 10.1007/s11434-011-4645-2

    81. [81]

      Zhang, Z.; Deng, C.; Meng, L.; Zheng, Y.; Yan, X. Anal. Methods 2015, 7, 107.  doi: 10.1039/C4AY02281E

    82. [82]

      Zhang, Z.; Zou, Y.; Deng, C.; Meng, L. Luminescence 2016, 31, 997.  doi: 10.1002/bio.v31.4

    83. [83]

      Li, L.; Wang, S.; Lan, H.; Gong, G.; Zhu, Y.; Tse, Y. C.; Wong, K. M. C. ChemistryOpen 2018, 7, 136.  doi: 10.1002/open.v7.2

    84. [84]

      Zhang, Y. R.; Zhao, Z. M.; Su, L.; Miao, J. Y.; Zhao, B. X. RSC Adv. 2016, 6, 17059.  doi: 10.1039/C5RA26027B

    85. [85]

      Shen, S. L.; Ning, J. Y.; Zhang, X. F.; Miao, J. Y.; Zhao, B. X. Sens. Actuators, B 2017, 244, 907.  doi: 10.1016/j.snb.2017.01.073

    86. [86]

      Zhang, Y. R.; Meng, N.; Miao, J. Y.; Zhao, B. X. Chemistry 2015, 21, 19058.  doi: 10.1002/chem.201503500

    87. [87]

      Zhang, Y. R.; Zhao, Z. M.; Su, L.; Miao, J. Y.; Zhao, B. X. RSC Adv. 2016, 6, 17059.  doi: 10.1039/C5RA26027B

    88. [88]

      Deng, B.; Ren, M.; Kong, X.; Zhou, K.; Lin, W. Sens. Actuators, B 2018, 255, 963.  doi: 10.1016/j.snb.2017.08.146

    89. [89]

      Vedamalai, M.; Kedaria, D.; Vasita, R.; Gupta, I. Sens. Actuators, B 2018, 263, 137.  doi: 10.1016/j.snb.2018.02.071

    90. [90]

      Zhang, B.; Yang, X.; Zhang, R.; Liu, Y.; Ren, X.; Xian, M.; Ye, Y.; Zhao, Y. Anal. Chem. 2017, 89, 10384.  doi: 10.1021/acs.analchem.7b02361

    91. [91]

      Li, G. P.; Zhu, D. J.; Liu, Q.; Xue, L.; Jiang, H. Org. Lett. 2013, 15, 2002.  doi: 10.1021/ol4006823

    92. [92]

      Mulay, S. V.; Choi, M.; Jang, Y. J.; Kim, Y.; Jon, S.; Churchill, D. G. Chemistry 2016, 22, 9642.  doi: 10.1002/chem.201601270

    93. [93]

      Mulay, S. V.; Yudhistira, T.; Choi, M.; Kim, Y.; Kim, J.; Jang, Y. J.; Jon, S.; Churchill, D. G. Chem.-Asian J. 2016, 11, 3598.  doi: 10.1002/asia.v11.24

    94. [94]

      Chen, P.; Zheng, Z.; Zhu, Y.; Dong, Y.; Wang, F.; Liang, G. Anal. Chem. 2017, 89, 5693.  doi: 10.1021/acs.analchem.7b01103

    95. [95]

      Shu, W.; Jia, P.; Chen, X.; Li, X.; Huo, Y.; Liu, F.; Wang, Z.; Liu, C.; Zhu, B.; Yan, L.; Du, B. RSC Adv. 2016, 6, 64315.  doi: 10.1039/C6RA15266J

    96. [96]

      Pan, Y.; Huang, J.; Han, Y. Tetrahedron Lett. 2017, 58, 1301.  doi: 10.1016/j.tetlet.2017.02.043

    97. [97]

      Zhang, P.; Wang, H.; Hong, Y.; Yu, M.; Zeng, R.; Long, Y.; Chen, J. Biosens. Bioelectron. 2018, 99, 318.  doi: 10.1016/j.bios.2017.08.001

    98. [98]

      Zhang, P.; Wang, H.; Hong, Y.; Yu, M.; Zeng, R.; Long, Y.; Chen, J. Biosens. Bioelectron. 2018, 99, 318.  doi: 10.1016/j.bios.2017.08.001

    99. [99]

      Li, J.; Yin, C.; Huo, F.; Xiong, K.; Chao, J.; Zhang, Y. Sens. Actuators, B 2016, 231, 547.  doi: 10.1016/j.snb.2016.03.067

    100. [100]

      Lo, L. C.; Chu, C. Y. Chem. Commun. 2003, 21, 2728.

    101. [101]

      Chang, M. C. Y.; Pralle, A.; Isacoff, E. Y.; Chang, C. J. J. Am. Chem. Soc. 2004, 126, 15392.  doi: 10.1021/ja0441716

    102. [102]

      Srikun, D.; Miller, E. W.; Domaille, D. W.; Chang, C. J. J. Am. Chem. Soc. 2008, 130, 4596.  doi: 10.1021/ja711480f

    103. [103]

      Xu, J.; Li, Q.; Yue, Y.; Guo, Y.; Shao, S. Biosens. Bioelectron. 2014, 56, 58.  doi: 10.1016/j.bios.2013.12.065

    104. [104]

      Xu, J.; Zhang, Y.; Yu, H.; Gao, X.; Shao, S. Anal. Chem. 2016, 88, 1455.  doi: 10.1021/acs.analchem.5b04424

    105. [105]

      Zhang, W.; Liu, W.; Li, P.; Huang, F.; Wang, H.; Tang, B. Anal. Chem. 2015, 87, 9825.  doi: 10.1021/acs.analchem.5b02194

    106. [106]

      Ren, M.; Deng, B.; Zhou, K.; Kong, X.; Wang, J. Y.; Lin, W. Anal. Chem. 2017, 89, 552.  doi: 10.1021/acs.analchem.6b04385

    107. [107]

      Carroll, V.; Michel, B. W.; Blecha, J.; VanBrocklin, H.; Keshari, K.; Wilson, D.; Chang, C. J. J. Am. Chem. Soc. 2014, 136, 14742.  doi: 10.1021/ja509198w

    108. [108]

      Shen, Y.; Zhang, X.; Zhang, Y.; Wu, Y.; Zhang, C.; Chen, Y.; Jin, J.; Li, H. Sens. Actuators, B 2018, 255, 42.  doi: 10.1016/j.snb.2017.08.020

    109. [109]

      Li, G.; Zhu, D.; Liu, Q.; Xue, L.; Jiang, H. Org. Lett. 2013, 15, 924.  doi: 10.1021/ol4000845

    110. [110]

      Qian, Y. Y.; Xue, L.; Hu, D. X.; Li, G. P.; Jiang, H. Dyes Pigm. 2012, 95, 373.  doi: 10.1016/j.dyepig.2012.05.013

    111. [111]

      Zhu, D.; Li, G.; Xue, L.; Jiang, H. Org. Biomol. Chem. 2013, 11, 4577.  doi: 10.1039/c3ob40932e

    112. [112]

      Zhu, D.; Xue, L.; Li, G.; Che, Y.; Jiang, H. Org. Chem. Front. 2014, 1, 501.  doi: 10.1039/c4qo00048j

    113. [113]

      Li, G.; Zhu, D.; Xue, L.; Jiang, H. Org. Lett. 2013, 15, 5020.  doi: 10.1021/ol4023547

    114. [114]

      Zhu, D.; Xue, L.; Li, G.; Jiang, H. Sens. Actuators, B 2016, 222, 419.  doi: 10.1016/j.snb.2015.08.093

    115. [115]

      Wu, G.; Zeng, F.; Yu, C.; Wu, S.; Li, W. J. Mater. Chem. B 2014, 2, 8528.  doi: 10.1039/C4TB01432D

    116. [116]

      Lim, C. S.; Cho, M. K.; Park, M. Y.; Kim, H. M. ChemistryOpen 2018, 7, 53.  doi: 10.1002/open.v7.1

    117. [117]

      Zhang, K.; Wu, W.; Li, Y.; Sun, M.; Yu, H.; Wong, M. S. RSC Adv. 2016, 6, 115298.  doi: 10.1039/C6RA21260C

    118. [118]

      Gao, C.; Tian, Y.; Zhang, R.; Jing, J.; Zhang, X. Anal. Chem. 2017, 89, 12945.  doi: 10.1021/acs.analchem.7b03809

    119. [119]

      Peng, J.; Hou, X.; Zeng, F.; Wu, S. Biosens. Bioelectron. 2017, 94, 278.  doi: 10.1016/j.bios.2017.03.003

    120. [120]

      Abo, M.; Minakami, R.; Miyano, K.; Kamiya, M.; Nagano, T.; Urano, Y.; Sumimoto, H. Anal. Chem. 2014, 86, 5983.  doi: 10.1021/ac501041w

    121. [121]

      Reja, S. I.; Gupta, M.; Gupta, N.; Bhalla, V.; Ohri, P.; Kaur, G.; Kumar, M. Chem. Commun. 2017, 53, 3701.  doi: 10.1039/C6CC09127J

    122. [122]

      Liao, Y. X.; Li, K.; Wu, M. Y.; Wu, T.; Yu, X. Q. Org. Biomol. Chem. 2014, 12, 3004.  doi: 10.1039/c4ob00206g

    123. [123]

      Shanmugapriya, J.; Rajaguru, K.; Sivaraman, G.; Muthusubramanian, S.; Bhuvanesh, N. RSC Adv. 2016, 6, 85838.  doi: 10.1039/C6RA17863D

    124. [124]

      Zhuang, Z.; Yang, Q.; Zhang, Z.; Zhang, Q.; Zheng, G.; Zhan, F. J. Photochem. Photobiol., A 2017, 344, 8.  doi: 10.1016/j.jphotochem.2017.04.009

    125. [125]

      Zhang, K. M.; Dou, W.; Li, P. X.; Shen, R.; Ru, J. X.; Liu, W.; Cui, Y. M.; Chen, C. Y.; Liu, W. S.; Bai, D. C. Biosens. Bioelectron. 2015, 64, 542.  doi: 10.1016/j.bios.2014.09.073

    126. [126]

      Yang, Y.; Yang, D.; Yang, D.; Jia, R.; Ding, G. Nephron. Exp. Nephrol. 2014, 128, 30.  doi: 10.1159/000366063

    127. [127]

      Zeng, L.; Xia, T.; Hu, W.; Chen, S.; Chi, S.; Lei, Y.; Liu, Z. Anal. Chem. 2018, 90, 1317.  doi: 10.1021/acs.analchem.7b04191

    128. [128]

      Bai, X.; Huang, Y.; Lu, M.; Yang, D. Angew. Chem., Int. Ed. 2017, 56, 12873.  doi: 10.1002/anie.201705873

    129. [129]

      Kim, M.; Ko, S. K.; Kim, H.; Shin, I.; Tae, J. Chem. Commun. 2013, 49, 7959.  doi: 10.1039/c3cc44627a

    130. [130]

      Lu, D.; Zhou, L.; Wang, R.; Zhang, X.-B.; He, L.; Zhang, J.; Hu, X.; Tan, W. Sens. Actuators, B 2017, 250, 259.  doi: 10.1016/j.snb.2017.04.041

    131. [131]

      Gao, X.; Feng, G.; Manghnani, P. N.; Hu, F.; Jiang, N.; Liu, J.; Liu, B.; Sun, J. Z.; Tang, B. Z. Chem. Commun. 2017, 53, 1653.  doi: 10.1039/C6CC09307H

    132. [132]

      Zhang, Q.; Zhu, Z.; Zheng, Y.; Cheng, J.; Zhang, N.; Long, Y. T.; Zheng, J.; Qian, X.; Yang, Y. J. Am. Chem. Soc. 2012, 134, 18479.  doi: 10.1021/ja305046u

    133. [133]

      Sivaraman, G.; Anand, T.; Chellappa, D. ChemPlusChem 2014, 79, 1761.

    134. [134]

      Zhang, R.; Zhao, J.; Han, G.; Liu, Z.; Liu, C.; Zhang, C.; Han, M. Y. J. Am. Chem. Soc. 2016, 138, 3769.  doi: 10.1021/jacs.5b12848

    135. [135]

      Yu, F.; Gao, M.; Li, M.; Chen, L. Biomaterials 2015, 63, 93.  doi: 10.1016/j.biomaterials.2015.06.007

    136. [136]

      Ong, J. X.; Pang, V. Y. T.; Tng, L. M.; Ang, W. H. Chemistry 2018, 24, 1870.  doi: 10.1002/chem.201703554

  • 加载中
    1. [1]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    2. [2]

      Jinlong YANWeina WUYuan WANG . A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1653-1660. doi: 10.11862/CJIC.20240154

    3. [3]

      Jun LUOBaoshu LIUYunchang ZHANGBingkai WANGBeibei GUOLan SHETianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240

    4. [4]

      Ping Song Nan Zhang Jie Wang Rui Yan Zhiqiang Wang Yingxue Jin . Experimental Teaching Design on Synthesis and Antitumor Activity Study of Cu-Pyropheophorbide-a Methyl Ester. University Chemistry, 2024, 39(6): 278-286. doi: 10.3866/PKU.DXHX202310087

    5. [5]

      Jianjun LIMingjie RENLili ZHANGLingling ZENGHuiling WANGXiangwu MENG . UV-assisted degradation of tetracycline hydrochloride by MnFe2O4@activated carbon activated persulfate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1869-1880. doi: 10.11862/CJIC.20240187

    6. [6]

      Yu SUXinlian FANYao YINLin WANG . From synthesis to application: Development and prospects of InP quantum dots. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2105-2123. doi: 10.11862/CJIC.20240126

    7. [7]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    8. [8]

      Peng GENGGuangcan XIANGWen ZHANGHaichuang LANShuzhang XIAO . Hollow copper sulfide loaded protoporphyrin for photothermal-sonodynamic therapy of cancer cells. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1903-1910. doi: 10.11862/CJIC.20240155

    9. [9]

      Lijuan Wang Yuping Ning Jian Li Sha Luo Xiongfei Luo Ruiwen Wang . Enhancing the Advanced Nature of Natural Product Chemistry Laboratory Courses with New Research Findings: A Case Study of the Application of Berberine Hydrochloride in Photodynamic Antimicrobial Films. University Chemistry, 2024, 39(11): 241-250. doi: 10.12461/PKU.DXHX202403017

    10. [10]

      Yadan Luo Hao Zheng Xin Li Fengmin Li Hua Tang Xilin She . 调节O,S共掺杂C3N4中的活性氧生成以促进光催化降解微塑料. Acta Physico-Chimica Sinica, 2025, 41(6): 100052-. doi: 10.1016/j.actphy.2025.100052

    11. [11]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    12. [12]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    13. [13]

      Hong RAOYang HUYicong MAChunxin LÜWei ZHONGLihua DU . Synthesis and in vitro anticancer activity of phenanthroline-functionalized nitrogen heterocyclic carbene homo- and heterobimetallic silver/gold complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2429-2437. doi: 10.11862/CJIC.20240275

    14. [14]

      Yue WANGZhizhi GUJingyi DONGJie ZHUCunguang LIUGuohan LIMeichen LUJian HANShengnan CAOWei WANG . Effects of kelp-derived carbon dots on embryonic development of zebrafish. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1209-1217. doi: 10.11862/CJIC.20230423

    15. [15]

      Pengcheng Yan Peng Wang Jing Huang Zhao Mo Li Xu Yun Chen Yu Zhang Zhichong Qi Hui Xu Henan Li . Engineering Multiple Optimization Strategy on Bismuth Oxyhalide Photoactive Materials for Efficient Photoelectrochemical Applications. Acta Physico-Chimica Sinica, 2025, 41(2): 100014-. doi: 10.3866/PKU.WHXB202309047

    16. [16]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302

    17. [17]

      Meirong HANXiaoyang WEISisi FENGYuting BAI . A zinc-based metal-organic framework for fluorescence detection of trace Cu2+. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1603-1614. doi: 10.11862/CJIC.20240150

    18. [18]

      Yuan ZHUXiaoda ZHANGShasha WANGPeng WEITao YI . Conditionally restricted fluorescent probe for Fe3+ and Cu2+ based on the naphthalimide structure. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 183-192. doi: 10.11862/CJIC.20240232

    19. [19]

      Shuwen SUNGaofeng WANG . Design and synthesis of a Zn(Ⅱ)-based coordination polymer as a fluorescent probe for trace monitoring 2, 4, 6-trinitrophenol. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 753-760. doi: 10.11862/CJIC.20240399

    20. [20]

      Zhifeng CAIYing WUYanan LIGuiyu MENGTianyu MIAOYihao ZHANG . Effective detection of malachite green by folic acid stabilized silver nanoclusters. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 983-993. doi: 10.11862/CJIC.20240394

Metrics
  • PDF Downloads(126)
  • Abstract views(6083)
  • HTML views(1835)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return