

Citation: Zhang Cheng, Jiang Shichun, Chen Ying, Guo Tao, Xia Rongjiao, Tang Xu, Chen Lijuan, He Ming, Xue Wei. Synthesis and Biological of Novel Myricetin Derivatives Containing 1, 3, 4-Oxadiazoles[J]. Chinese Journal of Organic Chemistry, 2019, 39(4): 1160-1168. doi: 10.6023/cjoc201809040

含噁二唑杨梅素衍生物的合成及生物活性研究
English
Synthesis and Biological of Novel Myricetin Derivatives Containing 1, 3, 4-Oxadiazoles
-
Key words:
- myricetin
- / oxadiazole
- / biological activity
- / protein
-
植物病害会造成巨大的经济损失, 例如烟草花叶病毒(TMV), 能轻易感染烟草、番茄、黄瓜等经济农作物, 每年造成约1亿美元的损失[1]; 南方水稻黑条矮缩病毒(SRBSDV)是近年来新发现的斐济病毒, 能导致水稻、玉米等作物出现发育迟缓、黑叶等症状[2, 3]; 水稻白叶枯病菌(Xoo)在水稻的分蘖期侵染叶片而导致白叶枯病, 造成80%的减产[4].传统农药的使用, 虽然对植物病害起到了一定的控制, 但由于其高毒、低活性以及农药残留等问题, 已经渐渐被人们淘汰.因此, 开发新型农药已经是大势所趋.
天然产物又称次级代谢产物, 它的化学成分种类繁多、结构新颖且具有独特的生物活性, 使之成为开发新农药先导的热门[5, 6].黄酮类化合物是植物生长过程中产生的一种次生代谢产物, 是一种重要的天然产物, 具有广泛的生物活性和药理作用[7].杨梅素是一种多羟基黄酮类化合物, 具有抗病毒[8~10]、抑菌[11~13]、抗氧化[14, 15]、抗癌细胞[16, 17]等作用, 我们课题组以杨梅素和黄酮类化合物为先导体, 发现了一系列具有较好抑菌和抗病毒活性的新颖的杨梅素和黄酮类衍生物[10, 13, 16, 18].
1, 3, 4-噁二唑类化合物是一种重要的杂环化合物, 因其具有广泛的生物活性和药理作用等特点, 引起了广泛的关注[19].目前, 人们报道了1, 3, 4-噁二唑类化合物, 具有抗菌[20]、抗病毒[21, 22]、抗癌[23, 24]等生物活性.同时研究发现, 对1, 3, 4-噁二唑的结构进行修饰, 会对它的生物活性引起很大的变化[25].
鉴于此, 我们利用活性拼接原理将2-氨基-1, 3, 4-噁二唑基团引入杨梅素(Scheme 1), 设计合成了16个含噁二唑基团的杨梅素新型化合物(合成路线见Scheme 2).通过浊度法和半叶枯斑法, 测试目标化合物的抑菌和抗病毒活性, 部分化合物的抑菌、抗病毒活性优于商品对照药剂宁南霉素和叶枯唑, 具有进一步研究的潜质.
图式 1
图式 2
1. 结果与讨论
1.1 中间体2的合成
根据参考文献[26], 以苯为溶剂, 在回流条件下, 可以得到中间体2.由于苯是致癌物质, 故放弃该方法; 通过筛选反应条件, 用N, N-二甲基甲酰胺(DMF)为溶剂, 再加入适量的二氯甲烷, 以碳酸钾为缚酸剂, 在冰浴条件下过夜, 得到较高收率的中间体2.
1.2 目标化合物的抑菌活性测试
目标化合物的抑菌活性测试结果见表 1.实验表明, 所有化合物对供试的植物细菌都有一定的抑制作用.其中, 当浓度为100 μg/mL, 化合物4a、4b、4f对柑橘溃疡病菌(Xac)的抑制作用均超过叶枯唑(63.3%); 化合物4c、4f、4j对水稻白叶枯病菌(Xoo)的抑制作用均超过叶枯唑(56.0%).
表 1
表 1 目标化合物4a~4p的抑菌活性(抑制率/%)aTable 1. Antibacterial activities (inhibition rate/%) of target compound 4a~4pCompound R Xanthomonas axonopodis pv. citri Xanthomonas oryzae pv. Oryzae 100 μg/mL 50 μg/mL 100 μg/mL 50 μg/mL 4a H 94.6±3.3 68.7±2.2 29.7±1.8 29.7±4.0 4b 4-CH3 65.1±1.1 50.0±0.7 30.0±1.7 29.9±3.8 4c 4-OCH3 42.4±4.1 22.2±1.8 64.0±5.8 41.5±6.8 4d 4-tert-Butyl 58.8±2.9 46.2±3.3 42.0±8.0 30.8±3.2 4e 4-Cl 24.6±1.5 17.3±0.5 31.2±3.4 22.4±2.6 4f 2-OCH3 86.1±1.5 58.0±0.9 72.4±3.0 48.8±7.1 4g 2, 4-(OCH3)2 9.9±.3 7.7±3.1 39.2±2.5 15.6±3.6 4h 4-Isopropyl 19.2±3.2 14.2±3.5 49.2±1.2 30.0±1.7 4i 3, 4-(CH3)2 28.5±2.0 18.1±1.6 19.8±4.3 16.1±1.2 4j 3-CH3 61.6±1.5 50.5±4.2 94.2±1.4 52.6±2.3 4k 3, 4-Cl2 31.1±1.9 10.1±2.9 40.5±4.6 17.9±1.5 4l 4-Br 9.7±2.4 7.1±2.9 47.9±3.5 24.1±3.5 4m 2, 4-Cl2 26.1±2.2 13.0±2.0 44.5±3.4 24.4±6.9 4n 3, 4-(OCH3)2 35.6±6.8 16.6±1.8 41.3±2.8 28.0±2.6 4o 3-Br 19.4±0.9 18.5±2.3 31.1±1.8 19.7±2.7 4p 2-Br 21.2±1.1 14.3±2.3 25.7±0.7 13.9±1.0 MYRb — 42.1±2.3 30.2±3.0 47.1±2.3 28.2±1.5 Bismerthiazolc — 63.3±1.1 41.5±1.6 56.0±1.2 33.8±2.0 a Average of three replicates. b The lead compound of myricetin. c The commercial bactericide (Bismerthizol) was used for comparison of antibacterial activity. 以叶枯唑(Bismerthiazol)为对照药剂, 测试4a、4b、4d、4f、4j的EC50值, 结果如表 2所示, 上述5个化合物对柑橘溃疡病菌的EC50值分别为18.5、40.7、57.0、26.9、32.4 μg/mL, 优于叶枯唑(68.8 μg/mL); 同样, 以叶枯唑(Bismerthiazol)为对照药剂, 测试4c、4f、4j的EC50值, 结果如表 3所示, 上述3个化合物对水稻白叶枯病菌的EC50值分别为66.3、45.9、35.7 μg/mL, 优于叶枯唑(69.3 μg/mL).
表 2
表 2 目标化合物4a、4b、4d、4f和4j对柑橘溃疡病菌的抑制作用aTable 2. Inhibitory effects of compounds 4a, 4b, 4d, 4f and 4j against Xanthomonas axonopodis pv. citriCompound R Toxic regression equation r EC50/(μg•mL-1) 4a H y=1.1662x+3.5310 0.9623 18.5 4b 4-CH3 y=0.7203x+3.8400 0.9920 40.7 4d 4-tert-Butyl y=0.7785x+3.6328 0.9938 57.0 4f 2-OCH3 y=1.6223x+2.6802 0.9804 26.9 4j 3-CH3 y=0.4471x+4.3244 0.9708 32.4 Bismerthiazolb - y=1.2051x+2.7851 0.9726 68.8 a Average of three replicates. b The commercial bactericide (Bismerthizol) was used for comparison of antibacterial activity. 表 3
表 3 目标化合物4c、4f和4j对水稻白叶枯病菌的抑制作用aTable 3. Inhibitory effects of compounds 4c, 4f and 4j against Xanthomonas oryzae pv. OryzaeCompound R Toxic regression equation r EC50/(μg•mL-1) 4c 4-OCH3 y=1.6378x+2.0161 0.9846 66.3 4f 2-OCH3 y=1.6652x+2.2318 0.9851 45.9 4j 3-CH3 y=2.8364x+0.5935 0.9635 35.7 Bismerthiazolb - y=2.8364x+0.5935 0.9897 69.3 a Average of three replicates. b The commercial bactericide (Bismerthizol) was used for comparison of antibacterial activity. 抑菌活性测试表明, 大部分化合物都具有一定的抑菌活性.构效关系分析表明, 当取代基团为H, 4-CH3, 2-OCH3, 3-CH3时, 目标化合物对Xac表现出了很好的抑制率, 如4a, 4b, 4f, 4j, 它们的EC50值分别为18.5, 40.7, 26.9, 32.4 μg/mL, 优于对照药剂叶枯唑; 当取代基团为4-OCH3, 2-OCH3, 3-CH3时, 目标化合物对Xoo表现出了很好的抑制率, 如4c, 4f, 4j, 它们的EC50值分别为66.3, 45.9, 35.7 μg/mL, 优于对照药剂叶枯唑; 但是, 当取代基为2, 4-(OCH3)2 (4g), 3, 4-(CH3)2 (4i), 3, 4- (OCH3)2 (4n)以及卤素原子时, 目标化合物的抑菌活性比较差, 即当取代基为H原子或是单取代的供电子基团时, 目标化合物的抑菌活性远远大于双取代的供电子基团和卤素基团.
1.3 目标化合物的抗TMV活性
目标化合物的抗TMV活性测试结果如表 4所示, 在药剂浓度为500 μg/mL时, 大部分化合物对TMV病毒都具有一定的抑制作用.其中, 在治疗活性方面, 化合物4a、4n的抑制作用分别为57.1%、62.9 %, 优于对照药宁南霉素(53.2%), 在保护活性方面, 化合物4d、4f的抑制作用分别为56.0%、65.3%, 优于宁南霉素(55.7%).
表 4
Compound R Curative activity/% Protection
activity/%4a H 57.1 40.9 4b 4-CH3 51.3 48.0 4c 4-OCH3 40.9 23.3 4d 4-tert-butyl 26.8 56.0 4e 4-Cl 32.0 51.7 4f 2-OCH3 37.0 65.3 4g 2, 4-(OCH3)2 44.5 18.2 4h 4-Isopropyl 31.6 35.8 4i 3, 4-(CH3)2 28.2 27.8 4j 3-CH3 42.8 27.5 4k 3, 4-Cl2 35.0 30.0 4l 4-Br 50.7 48.7 4m 2, 4-Cl2 39.8 17.5 4n 3, 4-(OCH3)2 62.9 34.0 4o 3-Br 35.4 16.8 4p 2-Br 37.8 19.2 MYRb 35.7 41.5 Ningnamycinc 53.2 55.7 a Average of three replicates. b The lead compound of myricetin. c The commercial antivirotic (Ningnamycin) was used for comparison of antiviral activity. 以宁南霉素为对照药剂, 对化合物4a、4b、4l和4n进行抗TMV的治疗活性EC50测试, 结果见表 5, 它们的EC50值分别为362.6、385.0、502.5和272.8 μg/mL.其中, 化合物4a、4b和4n的EC50优于宁南霉素(428.8 μg/mL).同样, 对化合物4b、4d、4e、4f和4l进行抗TMV的保护活性EC50测试, 结果见表 6, 它们的EC50值分别为626.2、404.0、406.0、235.6和562.0 μg/mL.其中, 化合物4f的EC50值远远优于宁南霉素(447.9 μg/mL).
表 5
表 5 目标化合物4a、4b、4l和4n对TMV的治疗活性aTable 5. Curative activity of compounds 4a, 4b, 4l and 4n against TMVCompound R Toxic regression equation r EC50/(μg•mL-1) 4a H y=1.0698x+2.2618 0.9893 362.6 4b 4-CH3 y=1.9125x-0.0551 0.9710 385.0 4l 4-Br y=1.2688x+1.5728 0.9922 502.5 4n 3, 4-(OCH3)2 y=1.1024x+2.3146 0.9769 272.8 Ningnamycinb - y=0.7650x+2.9863 0.9830 428.8 a Average of three replicates. b The commercial antivirotic (Ningnamycin) was used for comparison of antiviral activity. 表 6
表 6 目标化合物4b、4d、4e、4f和4l对TMV的保护活性aTable 6. Protective activity of compounds 4b, 4d, 4e, 4f and 4l against TMVCompound R Toxic regression equation r EC50/(μg•mL-1) 4b 4-CH3 y=0.3375x+4.0561 0.9600 626.2 4d 4-tert-Butyl y=1.2188x+1.8227 0.9837 404.0 4e 4-Cl y=0.8601x+2.7564 0.9832 406.0 4f 2-OCH3 y=1.0608x+2.4835 0.9786 235.6 4l 4-Br y=1.3146x+1.3951 0.9973 562.0 Ningnamycinb - y=1.5482x+0.8954 0.9819 447.9 a Average of three replicates. b The commercial antivirotic (Ningnamycin) was used for comparison of antiviral activity. 1.4 目标化合物与P9-1微量热涌动实验分析
以目标化合物4j为代表, 研究含酰胺噁二唑的杨梅素衍生物的初步抗水稻病毒机制, 通过微量热涌动实验(MST) NT.115分析软件得到4j、MYR与P9-1发生相互作用的荧光光谱(图 1)和解离常数, 通过分析4j的浓度与相对荧光Fnorm的关系, 发现化合物4j与P9-1的解离常数Kd=(0.049±0.017) μmol/L, 远远优于先导化合物杨梅素的解离常数Kd=(7.789±5.678) μmol/L(图 2), 说明了它们之间有很好的结合作用.
图 1
图 2
2. 结论
本文以杨梅苷、氨基脲盐酸盐和取代苯甲醛为原料, 合成了16个含噁二唑的杨梅素衍生物.生物活性测试证明, 大部分化合物对Xoo、Xac以及TMV都具有一定的抑制作用.其中化合物4a对Xac的抑制作用优于对照药叶枯唑; 化合物4j对Xoo的抑制作用优于对照药叶枯唑; 化合物4n对TMV治疗活性优于对照药宁南霉素; 化合物4f对TMV保护活性优于对照药宁南霉素.化合物4j与南方水稻黑条矮缩病毒P9-1作用的微量热涌动实验表明, 该化合物与P9-1蛋白的结合力优于没有进行分子修饰的杨梅素, 为研究杨梅素衍生物的抑菌抗病毒的作用机制奠定了一定基础.
3. 实验部分
3.1 仪器与试剂
1H NMR、13C NMR由Bruker Ascend-400 spectrometer, JEOL ECX-500型核磁共振仪测定[TMS为内标, CDCl3或二甲基亚砜(DMSO)为溶剂]; 高分辨质谱为美国Thermofisher公司Q Exactive型液质联用仪; 熔点仪采用上海仪电物理光学仪器有限公司的X-4B熔点仪.氨基脲盐酸盐、碘单质、取代苯甲醛等购自上海泰坦科技股份有限公司, 杨梅苷购自上海诺特生物科技有限公司, 其他试剂均为市售分析纯.
3.2 实验方法
3.2.1 中间体1a~1p的合成方法
合成方法参照文献[27], 理化性质及谱图见辅助材料.
3.2.2 中间体2a~2p的合成方法
向100 mL圆底烧瓶中加入1 (2.48 mmol)、碳酸钾(7.45 mmol)以及30 mL DMF, 常温搅拌至化合物1完全溶解后, 加入15~20 mL二氯甲烷, 常温搅拌0.5~1 h, 冰浴条件下缓慢滴加氯乙酰氯(7.45 mmol), 反应过夜.将二氯甲烷旋干后, 将反应物倒入冰水中, 得到中间体2, 无需提纯, 直接进行下一步反应.理化性质及谱图见辅助材料.
3.2.3 中间体3的合成
中间体3的合成参照文献[16]的方法合成.
3.2.4 目标化合物的合成
向50 mL圆底烧瓶中加入中间体3 (1.03 mmol)、碳酸钾(3.09 mmol)和DMF 20 mL, 85 ℃下搅拌1 h后, 缓慢滴加10 mL含有中间体2 (1.04 mmol)的DMF, 105 ℃下搅拌5~7 h, 将反应物倒入200 mL水中, 在搅拌下缓慢滴加6 mol/L的盐酸调节pH至酸性, 有大量固体析出, 抽滤, 用二次水冲洗2~3次, DMF和甲醇重结晶, 得到目标化合4.
2-[5, 7-二甲氧基-4-酮-2-(3, 4, 5-三甲氧基苯基)-4H-色烯-3-基]氧基-N-(5-苯基-1, 3, 4-噁二唑-2-基)乙酰胺(4a):灰色固体, 产率47.1%. m.p. 247.3~248.5 ℃; 1H NMR (500 MHz, CDCl3) δ: 12.54 (s, 1H), 8.09 (dd, J=7.9, 1.6 Hz, 2H), 7.52~7.46 (m, 3H), 7.26 (s, 2H), 6.57 (d, J=2.2 Hz, 1H), 6.43 (d, J=2.2 Hz, 1H), 4.41 (s, 2H), 4.00 (s, 3H), 3.96~3.96 (m, 3H), 3.95 (s, 6H), 3.94 (s, 3H); 13C NMR (126 MHz, CDCl3) δ: 174.81, 166.76, 165.18, 161.62, 161.23, 159.18, 157.00, 154.54, 153.66, 141.21, 141.15, 131.45, 128.97, 126.83, 124.54, 123.94, 108.58, 106.01, 96.63, 92.85, 73.50, 61.18, 56.68, 56.62, 56.08; HRMS calcd for C30H28N3O10 [M+H]+ 590.1769, found 590.1759.
2-[5, 7-二甲氧基-4-酮-2-(3, 4, 5-三甲氧基苯基)-4H-色烯-3-基]氧基-N-[5-(4-甲基苯基)-1, 3, 4-噁二唑-2-基]乙酰胺(4b):灰色固体, 产率40.4%. m.p. 243.9~245.4 ℃; 1H NMR (500 MHz, CDCl3) δ: 12.47 (s, 1H), 7.98 (d, J=8.2 Hz, 2H), 7.29 (d, J=8.0 Hz, 2H), 7.26 (s, 2H), 6.57 (d, J=2.2 Hz, 1H), 6.43 (d, J=2.2 Hz, 1H), 4.41 (s, 2H), 4.01 (s, 3H), 3.96 (s, 3H), 3.95 (s, 6H), 3.94 (s, 3H), 2.42 (s, 3H); 13C NMR (101 MHz, CDCl3) δ: 174.74, 166.70, 165.09, 161.70, 161.11, 159.09, 156.68, 154.44, 153.56, 141.88, 141.13, 140.98, 129.61, 126.71, 124.48, 121.04, 108.48, 105.86, 96.55, 92.76, 73.41, 61.11, 56.61, 56.52, 56.03, 21.63; HRMS calcd for C31H30N3O10 [M+H]+ 604.1925, found 604.1913.
2-[5, 7-二甲氧基-4-酮-2-(3, 4, 5-三甲氧基苯基)-4H-色烯-3-基]氧基-N-[5-(4-甲氧基)苯基)-1, 3, 4-噁二唑-2-基]乙酰胺(4c):灰色固体, 产率39.2%. m.p. 252.6~253.9 ℃; 1H NMR (400 MHz, CDCl3) δ: 12.40 (s, 1H), 8.03 (d, J=8.5 Hz, 2H), 7.26 (s, 2H), 6.99 (d, J=8.5 Hz, 2H), 6.57 (s, 1H), 6.43 (s, 1H), 4.41 (s, 2H), 4.01 (s, 3H), 3.95 (t, J=4.1 Hz, 12H), 3.88 (s, 3H); 13C NMR (101 MHz, CDCl3) δ: 174.52, 166.52, 164.90, 161.94, 161.41, 161.00, 158.95, 156.27, 154.24, 153.42, 140.98, 140.87, 128.37, 124.34, 116.28, 114.18, 108.39, 105.75, 96.39, 92.60, 73.23, 60.95, 56.47, 56.38, 55.84, 55.29; HRMS calcd for C31H30N3O11 [M+H]+ 620.1874, found 620.1862.
2-[5, 7-二甲氧基-4-酮-2-(3, 4, 5-三甲氧基苯基)-4H-色烯-3-基]氧基-N-[5-(4-叔丁基苯基)-1, 3, 4-噁二唑-2-基]乙酰胺(4d):灰色固体, 产率32.2%. m.p. 241.3~242.2 ℃; 1H NMR (500 MHz, CDCl3) δ: 12.43 (s, 1H), 8.02 (d, J=8.5 Hz, 2H), 7.51 (d, J=8.5 Hz, 2H), 7.26 (s, 2H), 6.57 (d, J=2.2 Hz, 1H), 6.43 (d, J=2.2 Hz, 1H), 4.42 (s, 2H), 4.01 (s, 3H), 3.96 (s, 3H), 3.95 (s, 6H), 3.94 (s, 3H), 1.35 (s, 9H); 13C NMR (126 MHz, CDCl3) δ: 174.75, 166.73, 165.14, 161.76, 161.23, 159.18, 156.74, 154.99, 154.46, 153.65, 141.19, 141.12, 126.66, 125.93, 124.57, 121.12, 108.62, 106.00, 96.62, 92.84, 73.45, 61.17, 56.70, 56.61, 56.07, 35.12, 31.22; HRMS calcd for C34H36N3O10 [M+H]+ 646.2395, found 646.2383.
2-[5, 7-二甲氧基-4-酮-2-(3, 4, 5-三甲氧基苯基)-4H-色烯-3-基]氧基-N-[5-(4-氯苯基)-1, 3, 4-噁二唑-2-基]乙酰胺(4e):灰色固体, 产率35.8%. m.p. 238.2~239.5 ℃; 1H NMR (400 MHz, CDCl3) δ: 12.73 (s, 1H), 8.02 (t, J=10.0 Hz, 2H), 7.47 (d, J=8.5 Hz, 2H), 7.26 (s, 2H), 6.58 (d, J=1.6 Hz, 1H), 6.43 (s, 1H), 4.41 (s, 2H), 4.01 (s, 3H), 3.97 (s, 3H), 3.96 (s, 6H), 3.95 (s, 3H); 13C NMR (101 MHz, CDCl3) δ: 174.81, 166.73, 165.13, 161.09, 160.64, 159.10, 157.05, 154.52, 153.57, 141.15, 140.99, 137.60, 129.30, 128.01, 124.42, 122.31, 108.42, 105.84, 96.59, 92.77, 73.45, 61.13, 56.64, 56.52, 56.05; HRMS calcd for C30H27ClN3O10 [M+H]+ 624.1379, found 624.1369.
2-[5, 7-二甲氧基-4-酮-2-(3, 4, 5-三甲氧基苯基)-4H-色烯-3-基]氧基-N-[5-(2-甲氧基苯基)-1, 3, 4-噁二唑-2-基]乙酰胺(4f):灰色固体, 产率45.3%. m.p. 222.3~223.1 ℃; 1H NMR (500 MHz, CDCl3) δ: 12.28 (s, 1H), 7.93 (d, J=7.7 Hz, 1H), 7.48 (t, J=7.3 Hz, 1H), 7.25 (s, 2H), 7.08~7.01 (m, 2H), 6.56 (d, J=1.8 Hz, 1H), 6.42 (d, J=1.7 Hz, 1H), 4.42 (s, 2H), 3.99 (s, 3H), 3.98 (s, 3H), 3.96 (s, 3H), 3.95 (s, 6H), 3.94 (s, 3H); 13C NMR (126 MHz, CDCl3) δ: 174.80, 166.92, 165.27, 161.43, 160.60, 159.35, 158.22, 156.97, 154.55, 153.83, 141.30, 141.27, 133.00, 130.80, 124.81, 120.89, 113.45, 112.16, 108.86, 106.18, 96.77, 93.01, 73.55, 61.36, 56.84, 56.80, 56.32, 56.25; HRMS calcd for C31H30N3O11 [M+H]+ 620.1874, found 620.1868.
2-[5, 7-二甲氧基-4-酮-2-(3, 4, 5-三甲氧基苯基)-4H-色烯-3-基]氧基-N-[5-(2, 4-二甲氧基苯基)-1, 3, 4-噁二唑-2-基]乙酰胺(4g):黄色固体, 产率43.6%. m.p. 198.1~199.5 ℃; 1H NMR (500 MHz, DMSO-d6) δ: 11.95 (s, 1H), 7.71 (d, J=8.6 Hz, 1H), 7.51 (s, 2H), 6.92 (d, J=2.2 Hz, 1H), 6.78 (d, J=2.3 Hz, 2H), 6.74 (dd, J=8.7, 2.3 Hz, 1H), 6.55 (d, J=2.2 Hz, 1H), 4.86 (s, 2H), 3.94 (s, 3H), 3.92 (s, 6H), 3.90 (s, 3H), 3.89 (s, 3H), 3.88 (s, 3H), 3.78 (s, 3H); 13C NMR (126 MHz, DMSO-d6) δ: 172.82, 167.44, 164.59, 163.91, 160.85, 160.33, 159.35, 158.71, 156.94, 153.29, 152.00, 140.19, 139.86, 131.58, 125.66, 108.67, 106.69, 106.57, 105.51, 99.64, 96.67, 93.72, 70.69, 60.71, 56.71, 56.67, 56.54, 56.18; HRMS calcd for C32H32N3O12 [M+H]+ 650.1980, found 650.1976.
2-[5, 7-二甲氧基-4-酮-2-(3, 4, 5-三甲氧基苯基)-4H-色烯-3-基]氧基-N-[5-(4-异丙基苯基)-1, 3, 4-噁二唑-2-基]乙酰胺(4h):灰色固体, 产率43.1%. m.p. 213.9~214.3 ℃; 1H NMR (400 MHz, CDCl3) δ: 12.54 (s, 1H), 8.01 (d, J=8.2 Hz, 2H), 7.35 (d, J=8.3 Hz, 2H), 7.26 (s, 2H), 6.57 (d, J=2.1 Hz, 1H), 6.43 (d, J=2.1 Hz, 1H), 4.41 (s, 2H), 4.01 (s, 3H), 3.96 (s, 3H), 3.95 (s, 6H), 3.94 (s, 3H), 2.97 (dt, J=13.8, 7.0 Hz, 1H), 1.29 (d, J=6.9 Hz, 6H); 13C NMR (101 MHz, CDCl3) δ: 174.73, 166.69, 165.08, 161.69, 161.11, 159.09, 156.68, 154.43, 153.56, 152.69, 141.12, 140.97, 127.02, 126.85, 124.48, 121.36, 108.48, 105.85, 96.55, 92.76, 73.40, 61.11, 56.62, 56.52, 56.03, 34.23, 23.74; HRMS calcd for C33H34N3O10 [M+ H]+ 632.2238, found 632.2229.
2-[5, 7-二甲氧基-4-酮-2-(3, 4, 5-三甲氧基苯基)-4H-色烯-3-基]氧基-N-[5-(3, 4-二甲基苯基)-1, 3, 4-噁二唑-2-基]乙酰胺(4i):灰色固体, 产率37.4%. m.p. 203.4~213.8 ℃; 1H NMR (500 MHz, DMSO-d6) δ: 12.09 (s, 1H), 7.72 (s, 1H), 7.67 (d, J=7.8 Hz, 1H), 7.51 (s, 2H), 7.39 (d, J=7.9 Hz, 1H), 6.94 (d, J=2.1 Hz, 1H), 6.57 (d, J=2.1 Hz, 1H), 4.87 (s, 2H), 3.95 (s, 3H), 3.92 (s, 6H), 3.90 (s, 3H), 3.77 (s, 3H), 2.34 (d, J=4.9 Hz, 6H); 13C NMR (101 MHz, DMSO-d6) δ: 172.78, 167.41, 164.53, 161.45, 160.77, 158.66, 157.22, 153.21, 151.93, 141.19, 140.06, 139.83, 138.11, 130.91, 127.18, 125.61, 124.00, 121.31, 108.58, 106.45, 96.62, 93.65, 70.70, 60.64, 56.65, 56.60, 56.58, 19.99, 19.79; HRMS calcd for C32H32N3O10 [M+H]+ 618.2082, found 618.2078.
2-[5, 7-二甲氧基-4-酮-2-(3, 4, 5-三甲氧基苯基)-4H-色烯-3-基]氧基-N-[5-(3-甲基苯基)-1, 3, 4-噁二唑-2-基]乙酰胺(4j):灰色固体, 产率45.3%. m.p. 196.6~197.7 ℃; 1H NMR (400 MHz, DMSO-d6) δ: 12.12 (s, 1H), 7.72 (d, J=11.8 Hz, 2H), 7.51~7.45 (m, 3H), 7.43 (d, J=7.6 Hz, 1H), 6.90 (d, J=2.2 Hz, 1H), 6.53 (d, J=2.2 Hz, 1H), 4.85 (s, 2H), 3.91 (s, 3H), 3.88 (s, 6H), 3.86 (s, 3H), 3.74 (s, 3H), 2.40 (s, 3H); 13C NMR (101 MHz, DMSO-d6) δ: 172.60, 167.19, 164.35, 161.12, 160.58, 158.48, 157.24, 153.03, 151.75, 139.86, 139.65, 139.22, 132.70, 131.23, 129.69, 126.58, 125.43, 123.49, 108.39, 106.26, 96.44, 93.46, 70.52, 60.46, 56.47, 56.43, 56.40, 21.15; HRMS calcd for C31H30N3O10 [M+H]+ 604.1925, found 604.1919.
2-[5, 7-二甲氧基-4-酮-2-(3, 4, 5-三甲氧基苯基)-4H-色烯-3-基]氧基-N-[5-(3, 4-二氯苯基)-1, 3, 4-噁二唑-2-基]乙酰胺(4k):黄色固体, 产率27.6%. m.p. 220.1~220.3 ℃; 1H NMR (400 MHz, CDCl3) δ: 12.95 (s, 1H), 8.19 (d, J=1.9 Hz, 1H), 7.95 (dd, J=8.4, 2.0 Hz, 1H), 7.58 (d, J=8.4 Hz, 1H), 7.26 (s, 2H), 6.58 (d, J=2.1 Hz, 1H), 6.44 (d, J=2.1 Hz, 1H), 4.41 (s, 2H), 4.03 (s, 3H), 3.97 (s, 3H), 3.96 (s, 6H), 3.95 (s, 3H); 13C NMR (101 MHz, CDCl3) δ: 174.95, 166.78, 165.21, 161.09, 159.56, 159.12, 157.34, 154.68, 153.59, 141.20, 141.00, 135.82, 133.55, 131.15, 128.38, 125.78, 124.37, 123.58, 108.35, 105.81, 96.64, 92.76, 73.54, 61.15, 56.66, 56.53, 56.06; HRMS calcd for C30H26Cl2N3O10 [M+H]+ 658.0989, found 658.0977.
2-[5, 7-二甲氧基-4-酮-2-(3, 4, 5-三甲氧基苯基)-4H-色烯-3-基]氧基-N-[5-(4-溴苯基)-1, 3, 4-噁二唑-2-基]乙酰胺(4l):白色固体, 产率30.0%. m.p. 243.1~247.7 ℃; 1H NMR (400 MHz, DMSO-d6) δ: 12.17 (s, 1H), 7.87~7.80 (m, 4H), 7.48 (s, 2H), 6.90 (s, 1H), 6.53 (s, 1H), 4.86 (s, 2H), 3.92 (s, 3H), 3.89 (s, 6H), 3.87 (s, 3H), 3.75 (s, 3H); 13C NMR (101 MHz, DMSO-d6) δ: 172.78, 167.28, 164.53, 160.78, 160.50, 158.65, 157.66, 153.21, 151.93, 140.10, 139.82, 133.03, 128.35, 125.69, 125.59, 123.00, 108.59, 106.50, 96.61, 93.65, 70.71, 60.64, 56.65, 56.60; HRMS calcd for C30H27BrN3O10 [M+H]+ 668.0874, found 668.0863.
2-[5, 7-二甲氧基-4-酮-2-(3, 4, 5-三甲氧基苯基)-4H-色烯-3-基]氧基-N-[5-(2, 4-二氯苯基)-1, 3, 4-噁二唑-2-基]乙酰胺(4m):白色固体, 产率24.5%. m.p. 228.7~229.3 ℃; 1H NMR (400 MHz, DMSO-d6) δ: 12.26 (s, 1H), 7.96 (s, 1H), 7.93 (d, J=1.2 Hz, 1H), 7.70 (dd, J=8.5, 2.1 Hz, 1H), 7.50 (s, 2H), 6.92 (d, J=2.2 Hz, 1H), 6.55 (d, J=2.2 Hz, 1H), 4.88 (s, 2H), 3.94 (s, 3H), 3.90 (s, 6H), 3.88 (s, 3H), 3.77 (s, 3H); 13C NMR (101 MHz, DMSO-d6) δ: 172.78, 167.23, 164.54, 160.79, 158.65, 158.43, 157.97, 153.21, 151.92, 140.12, 139.82, 137.33, 133.12, 132.51, 131.20, 128.71, 125.59, 121.98, 108.59, 106.52, 96.62, 93.66, 70.72, 60.64, 56.65, 56.61; HRMS calcd for C30H26Cl2N3O10 [M+H]+ 658.0989, found 658.0984.
2-[5, 7-二甲氧基-4-酮-2-(3, 4, 5-三甲氧基苯基)-4H-色烯-3-基]氧基-N-[5-(3, 4-二甲氧基苯基)-1, 3, 4-噁二唑-2-基]乙酰胺(4n):白色固体, 产率27.4%. m.p. 247.3~237.7 ℃; 1H NMR (400 MHz, CDCl3) δ: 12.51 (s, 1H), 7.68 (dd, J=8.4, 1.9 Hz, 1H), 7.63 (d, J=1.8 Hz, 1H), 7.29 (s, 2H), 6.97 (d, J=8.5 Hz, 1H), 6.59 (d, J=2.1 Hz, 1H), 6.45 (d, J=2.1 Hz, 1H), 4.44 (s, 2H), 4.03 (s, 3H), 4.00 (s, 3H), 3.98 (d, J=3.3 Hz, 12H), 3.96 (s, 3H); 13C NMR (101 MHz, CDCl3) δ: 174.72, 166.75, 165.08, 161.61, 161.07, 159.08, 156.54, 154.43, 153.55, 151.76, 149.24, 141.10, 140.97, 124.47, 120.30, 116.44, 110.95, 109.24, 108.46, 105.85, 96.56, 92.76, 73.37, 61.11, 56.61, 56.52, 56.19, 56.03; HRMS calcd for C32H32N3O12 [M+ H]+ 650.1980, found 650.1978.
2-[5, 7-二甲氧基-4-酮-2-(3, 4, 5-三甲氧基苯基)-4H-色烯-3-基]氧基-N-[5-(3-溴苯基)-1, 3, 4-噁二唑-2-基]乙酰胺(4o):白色固体, 产率32.3%. m.p. 224.3~224.7 ℃; 1H NMR (400 MHz, CDCl3) δ: 12.86 (s, 1H), 8.18 (d, J=1.9 Hz, 1H), 7.94 (dd, J=8.4, 2.0 Hz, 1H), 7.58 (d, J=8.4 Hz, 1H), 7.26 (s, 3H), 6.58 (d, J=2.1 Hz, 1H), 6.43 (d, J=2.1 Hz, 1H), 4.41 (s, 2H), 4.02 (s, 3H), 3.97 (s, 3H), 3.96 (s, 6H), 3.95 (s, 3H); 13C NMR (101 MHz, CDCl3) δ: 174.86, 166.74, 165.17, 161.09, 159.53, 159.10, 157.30, 154.58, 153.58, 141.16, 141.05, 135.77, 133.52, 131.12, 128.35, 125.75, 124.37, 123.62, 108.38, 105.88, 96.61, 92.77, 73.47, 61.12, 56.63, 56.53, 56.04; HRMS calcd for C30H27BrN3O10 [M+H]+ 668.0874, found 668.0861.
2-[5, 7-二甲氧基-4-酮-2-(3, 4, 5-三甲氧基苯基)-4H-色烯-3-基]氧基-N-[5-(2-溴苯基)-1, 3, 4-噁二唑-2-基]乙酰胺(4p):白色固体, 产率38.5%. m.p. 209.9~210.3 ℃; 1H NMR (400 MHz, DMSO-d6) δ: 12.21 (s, 1H), 8.02 (s, 1H), 7.88 (d, J=33.0 Hz, 2H), 7.58 (s, 1H), 7.48 (s, 2H), 6.92 (s, 1H), 6.54 (s, 1H), 4.85 (s, 2H), 3.89 (s, 12H), 3.74 (s, 3H); 13C NMR (101 MHz, DMSO-d6) δ: 172.78, 167.27, 164.53, 160.76, 159.77, 158.65, 157.79, 153.20, 151.93, 140.06, 139.83, 134.85, 132.23, 128.73, 125.92, 125.60, 125.48, 122.84, 108.57, 106.46, 96.62, 93.65, 70.74, 60.64, 56.65, 56.58; HRMS calcd for C30H27BrN3O10 [M+H]+668.0874, found 668.0862.
3.3 目标化合物4j与南方水稻黑条矮缩病毒P9-1的微量热涌动实验
取75 μL已纯化的SRBSDV P9-1蛋白(PDB号: 5EFT)[2], 向其中加入1 μL NHS-647染料, 黑暗条件下孵育30 min; 将已标记的蛋白装入洗脱柱, 用磷酸缓冲液(phosphate buffer saline, PBS)进行洗脱并收集蛋白.分别向16个PCR管中加入10 μL梯度稀释(分别为500、250、125、62.5、31.25、15.625、7.813、3.906、1.953、0.977、0.488、0.244、0.122、0.061、0.0305、0.01525 μmol/L)的化合物4j, 然后将10 μL的已标记的蛋白和10 μL已稀释的分子混合, 5 min孵育后, 将每管复合物装载到毛细吸管之中, 然后放置到毛细吸管的托盘上, 使用NT.115仪器测量.
3.4 目标化合物的抑菌活性测试
通过浊度法, 用商品化的叶枯唑(Bismerthiazol)为阳性对照药剂, 以Xoo和Xac对目标化合物进行抑菌活性测试.
配制无菌营养肉汤培养基: 3.0 g牛肉提取物, 5.0 g蛋白胨, 1.0 g酵母粉, 10.0 g葡萄糖和1000 mL二次水, pH 7.0~7.2.
在试管中将待测化合物和对照药剂配制成100和50 μg/mL浓度的培养基, 测试其OD值, 该值即为无菌培养基的OD值.将40 μL含菌的肉汤培养基加入到无菌培养基中, 将接菌的试管在28 ℃下以180 r/min连续摇动孵育36~48 h, 然后测其OD值.以下列公式计算抑制率:
抑制率(%)=(校正后对照培养基菌液OD值-校正后含毒培养基OD值)/校正后对照培养基菌液OD值×100%
校正OD值=含菌培养基OD值-无菌培养基OD值
3.5 目标化合物的抗TMV活性测试
3.5.1 目标化合物对TMV的治疗活性测试
取一株心叶烟, 将其修剪保留3~5片烟叶, 在每片叶子上均匀地撒上金刚砂, 用排笔蘸取TMV病毒(500 μg/mL), 均匀地刷在烟叶上.待病毒接种上烟叶(0.5~1 h), 用清水洗去金刚砂, 自然晾干后, 用毛笔蘸取目标化合物溶剂(500 mg/mL)均匀地涂抹在烟叶的右半叶.晾干后, 将其移至28 ℃条件下保湿培养. 2~3 d后, 叶片出现明显的斑点, 记录左右两边的斑点数, 带入公式计算其抑制率.每个化合物平行进行2~3次.
3.5.2 目标化合物对TMV的保护活性测试
取一株心叶烟, 将其修剪保留3~5片烟叶, 用毛笔蘸取目标化合物溶剂(500 mg/mL)均匀地涂抹在烟叶的右半叶. 12 h后, 将金刚砂均匀地撒在叶片的左右两边, 用排笔蘸取TMV病毒(500 μg/mL), 均匀地刷在烟叶上.待病毒接种上烟叶(0.5~1 h), 用清水洗去金刚砂, 自然晾干后, 移至28 ℃条件下保湿培养. 2~3 d后, 叶片出现明显的斑点, 记录左右两边的斑点数, 带入公式计算其抑制率.每个化合物平行进行2~3次.
3.5.3 抗TMV的抑制率计算
2~3 d后观察叶片, 当叶片上出现明显枯斑, 以同叶左半叶作为空白对照, 宁南霉素作为药剂对照, 记录下每叶片左右斑点数, 如下公式计算其抗TMV活性的抑制率.
$ I=(L-R) / L \times 100 \% $
其中, I为目标化合物抗TMV活性的抑制率; L为左半叶的枯斑数, R为右半叶的枯斑数.
辅助材料(Supporting Information)文中所有化合物的核磁共振谱图以及目标化合物的HRMS.这些材料可以免费从本刊网站(http://sioc-journal.cn/)上下载.
-
-
[1]
Bos, L. Trends Microbiol. 2000, 8, 82. doi: 10.1016/S0966-842X(99)01678-9
-
[2]
Li, X. Y.; Liu, J.; Yang, X.; Ding, Y.; Wu, J.; Hu, D. Y.; Song, B. A. Bioorg. Med. Chem. Lett. 2015, 23, 3629. doi: 10.1016/j.bmc.2015.04.008
-
[3]
Zhou, G. H.; Wen, J. J.; Cai, D. J.; Li, P.; Xu, D. L.; Zhang, S. G. Chin. Sci. Bull. 2008, 53, 3677. doi: 10.1007/s11434-008-0467-2
-
[4]
Huang, N.; Angeles, E. R.; Domingo, J.; Magpanty, G.; Singh, S.; Zhan, G.; Kumarvadivel, N.; Bennett, J.; Khush, G. S. Theor. Appl. Genet. 1997, 95, 313. doi: 10.1007/s001220050565
-
[5]
郭瑞霞, 李力更, 王于方, 霍长虹, 付炎, 王磊, 史文清, 中草药, 2015, 46, 2019. doi: 10.7501/j.issn.0253-2670.2015.14.001Guo, R.-X.; Li, L.-G.; Wang, Y.-F.; Huo, C.-H.; Fu, Y.; Wang, L.; Shi, W.-Q. Chin. Tradit. Herbal Drugs 2015, 46, 2019 (in Chinese). doi: 10.7501/j.issn.0253-2670.2015.14.001
-
[6]
刘长令, 李正名, 农药, 2003, 42, 1. http://www.cnki.com.cn/Article/CJFDTotal-NYZZ200311000.htmLiu, C.-L.; Li, Z.-M. Pesticides 2003, 42, 1 (in Chinese). http://www.cnki.com.cn/Article/CJFDTotal-NYZZ200311000.htm
-
[7]
梅青刚, 袁伟成, 王淳, 有机化学, 2015, 35, 70. http://manu19.magtech.com.cn/Jwk_yjhx/CN/abstract/abstract344624.shtmlMei, Q.-G.; Yuan, W.-C.; Wang, C. Chin. J. Org. Chem. 2015, 35, 70 (in Chinese). http://manu19.magtech.com.cn/Jwk_yjhx/CN/abstract/abstract344624.shtml
-
[8]
Yu, M. S.; Lee, J.; Lee, J. M.; Kim, Y.; Chin, Y. W.; Jee, J. G.; Keum, Y. S.; Jeong, Y. J. Bioorg. Med. Chem. Let. 2012, 22, 4049. doi: 10.1016/j.bmcl.2012.04.081
-
[9]
Nguyen, T. H. V.; Trinh, A. V.; Nguyen, X. N.; Kiem, P. V.; Minh, C. V.; Long, P. Q.; Anh, L.T.; Cuong, N. M.; Song, J. H.; Ko, H. J.; Kim, N, Park, S. J.; Kim, S. H. Nat. Prod. Commun. 2014, 9, 643.
-
[10]
Zhong, X. M.; Wang, X. B.; Chen, L. J.; Ruan, X. H.; Li, Q.; Zhang, J. P.; Chen, Z.; Xue, W. Chem. Cent. J. 2017, 11, 106. doi: 10.1186/s13065-017-0336-7
-
[11]
Chen, C. C; Huang, C. Y. Protein J. 2011, 30, 59. doi: 10.1007/s10930-010-9302-0
-
[12]
Rashed, K.; Ćirić, A.; Glamočlija, J.; Sokovic, M. Ind. Crop. Prod. 2014, 59, 210. doi: 10.1016/j.indcrop.2014.05.021
-
[13]
肖维, 阮祥辉, 李琴, 张菊平, 钟新敏, 谢艳, 王晓斌, 黄民国, 薛伟, 高等学校化学学报, 2017, 38, 35. doi: 10.7503/cjcu20160654Xiao, W.; Ruan, X.-H.; Li, Q.; Zhang, J.-P.; Zhong, X.-M.; Xie, Y.; Wang, X.-B.; Huang, M.-G.; Xue, W. Chem. J. Chin. Univ. 2017, 38, 35 (in Chinese). doi: 10.7503/cjcu20160654
-
[14]
Chobot, V.; Hadacek, F. Redox Rep. 2011, 16, 242. doi: 10.1179/1351000211Y.0000000015
-
[15]
Zhao, L.; Xu, S. P.; Li, Z. Y.; Zhang, L.; Zhang, Z. S.; Pan, R. L. Sci. Technol. Food Ind. 2012, 33, 56.
-
[16]
Xue, W.; Song, B. A.; Zhao, H. J. Eur. J. Med. Chem. 2015, 97, 155. doi: 10.1016/j.ejmech.2015.04.063
-
[17]
Tae, K. H.; Inae, J.; Mi, E. K.; Bae, S. K.; Lee, J. K. Biomed. Pharmacother. 2017, 91, 378. doi: 10.1016/j.biopha.2017.04.100
-
[18]
黄民国, 阮祥辉, 张菊平, 李琴, 王一会, 陈丽娟, 张橙, 李普, 有机化学, 2017, 37, 2145. http://manu19.magtech.com.cn/Jwk_yjhx/CN/abstract/abstract346037.shtmlHuang, M.-G.; Ruan, X.-H.; Zhang, J.-P.; Li, Q.; Wang, Y.-H.; Chen, L.-J.; Zhang, C.; Li, P. Chin. J. Org. Chem. 2017, 37, 2145 (in Chinese). http://manu19.magtech.com.cn/Jwk_yjhx/CN/abstract/abstract346037.shtml
-
[19]
Ningaiah, S.; Bhadraiah, U. K.; Doddaramappa, S. D.; Keshavamurthy, K. Bioorg. Med. Chem. Lett. 2014, 24, 245. doi: 10.1016/j.bmcl.2013.11.029
-
[20]
Li, P.; Shi, L.; Gao, M. L.; Yang, X.; Xue, W.; Jin, L. H.; Hu, D. Y.; Song, B. A. Bioorg. Med. Chem. Lett. 2015, 25, 481. doi: 10.1016/j.bmcl.2014.12.038
-
[21]
Gan, X. H.; Hu, D. Y.; Chen, Z.; Wang, Y. J.; Song, B. A. Bioorg. Med. Chem. Lett. 2017, 27, 4298. doi: 10.1016/j.bmcl.2017.08.038
-
[22]
Wu, W. N; Chen, Q.; Tai, A. Q.; Jiang, G. Q.; Ouyang, G. P. Bioorg. Med. Chem. Lett. 2015, 25, 2243. doi: 10.1016/j.bmcl.2015.02.069
-
[23]
Ragab, F. A. F.; Abou-Seri, S. M.; Abdel-Aziz, S. A.; Alfayomy, A. M; Aboelmagd, M. Eur. J. Med. Chem. 2017, 138, 140 doi: 10.1016/j.ejmech.2017.06.026
-
[24]
Zhang, S.; Luo, Y.; He, L. Q.; Liu, Z. J.; Jiang, A. Q.; Yang, Y. H.; Zhu, H. L. Bioorg. Med. Chem. Lett. 2013, 21, 3723.. doi: 10.1016/j.bmc.2013.04.043
-
[25]
Aziz-Ur-Rehman; Siddiqui, S. Z.; Abbasi, M. A.; Abbas, N.; Khan, K. M.; Shahid, M.; Mahmood, Y. Int. J. Pharm. Pharm. Sci. 2012, 4, 676.
-
[26]
Rajak, H.; Kharya, M. D.; Mishra, P. Arch. Pharm. Chem. Life Sci. 2008, 341, 247. doi: 10.1002/(ISSN)1521-4184
-
[27]
Niu, P. F.; Kang, J. F.; Tian, X. H.; Song, L. N.; Liu, H. X.; Wu, J.; Yu, W. Q.; Chang, J. B. J. Org. Chem. 2015, 80, 1018. doi: 10.1021/jo502518c
-
[1]
-
表 1 目标化合物4a~4p的抑菌活性(抑制率/%)a
Table 1. Antibacterial activities (inhibition rate/%) of target compound 4a~4p
Compound R Xanthomonas axonopodis pv. citri Xanthomonas oryzae pv. Oryzae 100 μg/mL 50 μg/mL 100 μg/mL 50 μg/mL 4a H 94.6±3.3 68.7±2.2 29.7±1.8 29.7±4.0 4b 4-CH3 65.1±1.1 50.0±0.7 30.0±1.7 29.9±3.8 4c 4-OCH3 42.4±4.1 22.2±1.8 64.0±5.8 41.5±6.8 4d 4-tert-Butyl 58.8±2.9 46.2±3.3 42.0±8.0 30.8±3.2 4e 4-Cl 24.6±1.5 17.3±0.5 31.2±3.4 22.4±2.6 4f 2-OCH3 86.1±1.5 58.0±0.9 72.4±3.0 48.8±7.1 4g 2, 4-(OCH3)2 9.9±.3 7.7±3.1 39.2±2.5 15.6±3.6 4h 4-Isopropyl 19.2±3.2 14.2±3.5 49.2±1.2 30.0±1.7 4i 3, 4-(CH3)2 28.5±2.0 18.1±1.6 19.8±4.3 16.1±1.2 4j 3-CH3 61.6±1.5 50.5±4.2 94.2±1.4 52.6±2.3 4k 3, 4-Cl2 31.1±1.9 10.1±2.9 40.5±4.6 17.9±1.5 4l 4-Br 9.7±2.4 7.1±2.9 47.9±3.5 24.1±3.5 4m 2, 4-Cl2 26.1±2.2 13.0±2.0 44.5±3.4 24.4±6.9 4n 3, 4-(OCH3)2 35.6±6.8 16.6±1.8 41.3±2.8 28.0±2.6 4o 3-Br 19.4±0.9 18.5±2.3 31.1±1.8 19.7±2.7 4p 2-Br 21.2±1.1 14.3±2.3 25.7±0.7 13.9±1.0 MYRb — 42.1±2.3 30.2±3.0 47.1±2.3 28.2±1.5 Bismerthiazolc — 63.3±1.1 41.5±1.6 56.0±1.2 33.8±2.0 a Average of three replicates. b The lead compound of myricetin. c The commercial bactericide (Bismerthizol) was used for comparison of antibacterial activity. 表 2 目标化合物4a、4b、4d、4f和4j对柑橘溃疡病菌的抑制作用a
Table 2. Inhibitory effects of compounds 4a, 4b, 4d, 4f and 4j against Xanthomonas axonopodis pv. citri
Compound R Toxic regression equation r EC50/(μg•mL-1) 4a H y=1.1662x+3.5310 0.9623 18.5 4b 4-CH3 y=0.7203x+3.8400 0.9920 40.7 4d 4-tert-Butyl y=0.7785x+3.6328 0.9938 57.0 4f 2-OCH3 y=1.6223x+2.6802 0.9804 26.9 4j 3-CH3 y=0.4471x+4.3244 0.9708 32.4 Bismerthiazolb - y=1.2051x+2.7851 0.9726 68.8 a Average of three replicates. b The commercial bactericide (Bismerthizol) was used for comparison of antibacterial activity. 表 3 目标化合物4c、4f和4j对水稻白叶枯病菌的抑制作用a
Table 3. Inhibitory effects of compounds 4c, 4f and 4j against Xanthomonas oryzae pv. Oryzae
Compound R Toxic regression equation r EC50/(μg•mL-1) 4c 4-OCH3 y=1.6378x+2.0161 0.9846 66.3 4f 2-OCH3 y=1.6652x+2.2318 0.9851 45.9 4j 3-CH3 y=2.8364x+0.5935 0.9635 35.7 Bismerthiazolb - y=2.8364x+0.5935 0.9897 69.3 a Average of three replicates. b The commercial bactericide (Bismerthizol) was used for comparison of antibacterial activity. 表 4 目标化合物4a~4p的抗TMV活性a
Table 4. Antiviral activities of target compound 4a~4p against TMV
Compound R Curative activity/% Protection
activity/%4a H 57.1 40.9 4b 4-CH3 51.3 48.0 4c 4-OCH3 40.9 23.3 4d 4-tert-butyl 26.8 56.0 4e 4-Cl 32.0 51.7 4f 2-OCH3 37.0 65.3 4g 2, 4-(OCH3)2 44.5 18.2 4h 4-Isopropyl 31.6 35.8 4i 3, 4-(CH3)2 28.2 27.8 4j 3-CH3 42.8 27.5 4k 3, 4-Cl2 35.0 30.0 4l 4-Br 50.7 48.7 4m 2, 4-Cl2 39.8 17.5 4n 3, 4-(OCH3)2 62.9 34.0 4o 3-Br 35.4 16.8 4p 2-Br 37.8 19.2 MYRb 35.7 41.5 Ningnamycinc 53.2 55.7 a Average of three replicates. b The lead compound of myricetin. c The commercial antivirotic (Ningnamycin) was used for comparison of antiviral activity. 表 5 目标化合物4a、4b、4l和4n对TMV的治疗活性a
Table 5. Curative activity of compounds 4a, 4b, 4l and 4n against TMV
Compound R Toxic regression equation r EC50/(μg•mL-1) 4a H y=1.0698x+2.2618 0.9893 362.6 4b 4-CH3 y=1.9125x-0.0551 0.9710 385.0 4l 4-Br y=1.2688x+1.5728 0.9922 502.5 4n 3, 4-(OCH3)2 y=1.1024x+2.3146 0.9769 272.8 Ningnamycinb - y=0.7650x+2.9863 0.9830 428.8 a Average of three replicates. b The commercial antivirotic (Ningnamycin) was used for comparison of antiviral activity. 表 6 目标化合物4b、4d、4e、4f和4l对TMV的保护活性a
Table 6. Protective activity of compounds 4b, 4d, 4e, 4f and 4l against TMV
Compound R Toxic regression equation r EC50/(μg•mL-1) 4b 4-CH3 y=0.3375x+4.0561 0.9600 626.2 4d 4-tert-Butyl y=1.2188x+1.8227 0.9837 404.0 4e 4-Cl y=0.8601x+2.7564 0.9832 406.0 4f 2-OCH3 y=1.0608x+2.4835 0.9786 235.6 4l 4-Br y=1.3146x+1.3951 0.9973 562.0 Ningnamycinb - y=1.5482x+0.8954 0.9819 447.9 a Average of three replicates. b The commercial antivirotic (Ningnamycin) was used for comparison of antiviral activity. -

计量
- PDF下载量: 10
- 文章访问数: 780
- HTML全文浏览量: 54