Recent Advances in Ni-Catalyzed Allylic Substitution Reactions
- Corresponding author: Gu Qing, qinggu@sioc.ac.cn You Shuli, slyou@sioc.ac.cn
Citation:
Zhang Huijun, Gu Qing, You Shuli. Recent Advances in Ni-Catalyzed Allylic Substitution Reactions[J]. Chinese Journal of Organic Chemistry,
;2019, 39(1): 15-27.
doi:
10.6023/cjoc201809037
For selected reviews, see: (a) Helmchen, G. J. Organomet. Chem. 1999, 576, 203.
(b) Tenaglia, A.; Heumann, A. Angew. Chem., Int. Ed. 1999, 38, 2180.
(c) Trost, B. M. Chem. Pharm. Bull. 2002, 50, 1.
(d) Kazmaier, U. Curr. Org. Chem. 2003, 7, 317.
(e) Trost, B. M. J. Org. Chem. 2004, 69, 5813.
(f) Jensen, T.; Fristrup, P. Chem.-Eur. J. 2009, 15, 9632.
(g) Milhau, L.; Guiry, P. J. Top. Organomet. Chem. 2012, 38, 95.
For selected reviews, see: (a) Takeuchi, R.; Kezuka, S. Synthesis 2006, 3349.
(b) Helmchen, G.; Dahnz, A.; Döbon, P.; Schelwies, M.; Weihofen, R. Chem. Commun. 2007, 675.
(c) Hartwig, J. F.; Stanley, L. M. Acc. Chem. Res. 2010, 43, 1461.
(d) Hartwig, J. F.; Pouy, M. J. Top. Organomet. Chem. 2011, 34, 169.
(e) Liu, W.-B.; Xia, J.-B.; You, S.-L. Top. Organomet. Chem. 2012, 38, 155.
(f) Tosatti, P.; Nelson, A.; Marsden, S. P. Org. Biomol. Chem. 2012, 10, 3147.
(g) Helmchen, G. In Molecular Catalysis, Eds.: Gade, L. H.; Hofmann, P., Wiley-VCH, Weinheim, 2014, pp. 235~254.
(h) Zhuo, C.-X.; Zheng, C.; You, S.-L. Acc. Chem. Res. 2014, 47, 2558.
(i) Hethcox, J. C.; Shockley, S. E.; Stoltz, B. M. ACS Catal. 2016, 6, 6207. (j) Qu, J.; Helmchen, G. Acc. Chem. Res. 2017, 50, 2539.
For selected reviews, see: (a) Evans, P. A.; Nelson, J. D. J. Am. Chem. Soc. 1998, 120, 5581.
(b) Selvakumar, K.; Valentini, M.; Pregosin, P. S.; Albinati, A. Organometallics 1999, 18, 4591.
(c) Hayashi, T.; Okada, A.; Suzuka, T.; Kawatsura, M. Org. Lett. 2003, 5, 1713.
(d) Ashfeld, B. L.; Miller, K. A.; Martin, S. F. Org. Lett. 2004, 6, 1321.
For selected reviews, see: (a) Minami, I.; Shimizu, I.; Tsuji, J. J. Organomet. Chem. 1985, 296, 269.
(b) Zhang, S.-W.; Mitsudo, T.; Kondo, T.; Watanabe, Y. J. Organomet. Chem. 1993, 450, 197.
(c) Matsushima, Y.; Onitsuka, K.; Kondo, T.; Mitsudo, T.; Takahashi, S. J. Am. Chem. Soc. 2001, 123, 10405.
(d) Trost, B. M.; Fraisse, P. L.; Ball, Z. T. Angew. Chem., Int. Ed. 2002, 41, 1059.
(e) Mbaye, M. D.; Demerseman, B.; Renaud, J.-L.; Toupet, L.; Bruneau, C. Angew. Chem., Int. Ed. 2003, 42, 5066.
(f) Hermatschweiler, R.; Fernandez, I.; Breher, F.; Pregosin, P. S.; Veiros, L. F.; Calhorda, M. J. Angew. Chem., Int. Ed. 2005, 44, 4397.
(g) Kawatsura, M.; Ata, F.; Wada, S.; Hayase, S.; Uno, H.; Itoh, T. Chem. Commun. 2007, 298.
For selected reviews, see: (a) Consiglio, G.; Waymouth, R. M. Chem. Rev. 1989, 89, 257.
(b) Ho, C.-Y.; Schleicher, K. D.; Chan, C.-W.; Jamison, T. F. Synlett 2009, 2565.
(c) Pigge, F. C. Synthesis 2010, 1745.
Henrion, M.; Ritleng, V.; Chetcuti, M. J. ACS Catal. 2015, 5, 1283.
doi: 10.1021/cs5014927
For selected examples, see:
(a) Schaub, T.; Backes, M.; Radius, U. J. Am. Chem. Soc. 2006, 128, 15964.
(b) Rosen, B. M.; Quasdorf, K. W.; Wilson, D. A.; Zhang, N.; Resmerita, A.-M.; Garg, N. K.; Percec, V. Chem. Rev. 2011, 111, 1346.
(c) Li, B.-J.; Yu, D.-G.; Sun, C.-L.; Shi, Z.-J. Chem.-Eur. J. 2011, 17, 1728.
(d) Tobisu, M.; Xu, T.; Shimasaki, T.; Chatani, N. J. Am. Chem. Soc. 2011, 133, 19505.
Chuit, C.; Felkin, H.; Frajerman, C.; Roussi, G.; Swierczewski, G. Chem. Commun. 1968, 1604.
Felkin, H.; Swierczewski, G. Tetrahedron Lett. 1972, 15, 1433.
Felkin, H.; Joly-Goudket, M.; Davies, S. G. Tetrahedron Lett. 1981, 22, 1157.
doi: 10.1016/S0040-4039(01)90263-1
Consiglio, G.; Morandini, F.; Piccolol, O. Helv. Chim. Acta 1980, 63, 987.
doi: 10.1002/(ISSN)1522-2675
Consiglio, G.; Morandini, F.; Piccolo, O. J. Chem. Soc., Chem. Commun. 1983, 112.
Consiglio, G.; Piccolo, O.; Roncetti, L.; Morandini, F. Tetrahedron 1986, 42, 2043.
doi: 10.1016/S0040-4020(01)87621-3
Hiyama, T.; Wakasa, N. Tetrahedron Lett. 1985, 26, 3259.
doi: 10.1016/S0040-4039(00)98166-8
Nomura, N.; RajanBabu, T. V. Tetrahedron Lett. 1997, 38, 1713.
doi: 10.1016/S0040-4039(97)00178-0
Gomez-Bengoa, E.; Heron, N. M.; Didiuk, M. T.; Luchaco, C. A.; Hoveyda, A. H. J. Am. Chem. Soc. 1998, 120, 7649.
doi: 10.1021/ja980499l
Chung, K.-G.; Miyake, Y.; Uemura, S. J. Chem. Soc., Perkin Trans. 1 2000, 2725.
Trost, B. M.; Spagnol, M. D. J. Chem. Soc., Perkin Trans. 1 1995, 2083.
(a) Kobayashi, Y.; Ikeda, E. J. Chem. Soc., Chem. Commun. 1994, 1789.
(b) Kobayashi, Y.; Tokoro, Y.; Watatani, K. Eur. J. Org. Chem. 2000, 3825.
(c) Kobayashi, Y.; Watatani, K.; Kikori, Y.; Mizojiri, R. Tetrahedron Lett. 1996, 37, 6125.
(d) Kobayashi, Y.; Takahisa, E.; Usmani, S. B. Tetrahedron Lett. 1998, 39, 597.
(e) Kobayashi, Y.; Takahisa, E.; Usmani, S. B. Tetrahedron Lett. 1998, 39, 601.
(f) Jimenez-Aquino, A.; Flegeau, E. F.; Schneider, U.; Kobayashi, S. Chem. Commun. 2011, 47, 9456.
Chung, K.-G.; Miyake, Y.; Uemura, S. J. Chem. Soc., Perkin Trans. 1 2000, 15.
Chen, H.; Deng, M.-Z. J. Organomet. Chem. 2000, 603, 189.
doi: 10.1016/S0022-328X(00)00164-9
(a) Shields, J. D.; Ahneman, D. T.; Graham, T. J. A.; Doyle, A. G. Org. Lett. 2014, 16, 142.
(b) Sylvester, K. T.; Wu, K.; Doyle, A. G. J. Am. Chem. Soc. 2012, 134, 16967.
(c) Graham, T. J. A.; Shields, J. D.; Doyle, A. G. Chem. Sci. 2011, 2, 980.
Srinivas, H. D.; Zhou, Q.; Watson, M. P. Org. Lett. 2014, 16, 3596.
doi: 10.1021/ol5016724
Nazari, S. H.; Bourdeau, J. E.; Talley, M. R.; Valdivia-Berroeta, G. A.; Smith, S. J.; Michaelis, D. J. ACS Catal. 2018, 8, 86.
doi: 10.1021/acscatal.7b03079
Chau, S. T.; Lutz, J. P.; Wu, K.; Doyle, A. G. Angew. Chem., Int. Ed. 2013, 52, 9153.
doi: 10.1002/anie.201303994
For some recent examples synthesis of biologically active 4-piperidines, see: (a) Tawara, J. N.; Lorenz, P. F.; Stermitz, R. J. Nat. Prod. 1999, 62, 321.
(b) Watson, P. S.; Jiang, B.; Scott, B. Org. Lett. 2000, 2, 3679.
(c) Brooks, C. A.; Comins, D. L. Tetrahedron Lett. 2000, 41, 3551.
(a) Wu, D.; Wang, Z.-X. Org. Biomol. Chem. 2014, 12, 6414.
(b) Wu, D.; Tao, J.-L.; Wang, Z.-X. Org. Chem. Front. 2015, 2, 265.
Tao, J.-L.; Yang, B.; Wang, Z.-X. J. Org. Chem. 2015, 80, 12627.
doi: 10.1021/acs.joc.5b02151
Yang, B.; Wang, Z.-X. J. Org. Chem. 2017, 82, 4542.
doi: 10.1021/acs.joc.6b02564
Bricout, H.; Carpentier, J.-F.; Mortreux, A. J. Chem. Soc., Chem. Commun. 1995, 1863.
Bricout, H.; Carpentier, J.-F.; Mortreux, A. Tetrahedron Lett. 1996, 37, 6105.
doi: 10.1016/0040-4039(96)01302-0
Sha, S.-C.; Jiang, H.; Mao, J.; Bellomo, A.; Jeong, S. A.; Walsh, P. J. Angew. Chem., Int. Ed. 2016, 55, 1070.
doi: 10.1002/anie.201507494
For selected examples, see:
(a) Lu, X.; Lu, L. J. Organomet. Chem. 1986, 307, 285.
(b) Lu, X.; Lu, L.; Sun, J. J. Mol. Catal. 1987, 41, 245.
(c) Lu, X.; Jiang, X.; Tao, X. J. Organomet. Chem. 1988, 344, 109.
For selected examples, see:
(a) Starý, I.; Stará, I. G.; Kočovský, P. Tetrahedron Lett. 1993, 34, 179.
(b) Starý, I.; Stará, I. G.; Kočovský, P. Tetrahedron 1994, 50, 529.
(c) Tamaru, Y.; Horino, Y.; Araki, M.; Tanaka, S.; Kimura, M. Tetrahedron Lett. 2000, 41, 5705.
(d) Takacs, J. M.; Jiang, X.-T.; Leonov, A. P. Tetrahedron Lett. 2003, 44, 7075.
(e) Kimura, M.; Mukai, R.; Tanigawa, N.; Tanaka, S.; Tamaru, Y. Tetrahedron 2003, 59, 7767.
Itoh, K.; Hamaguchi, N.; Miura, M.; Nomura, M. J. Chem. Soc., Perkin Trans. 1 1992, 1, 2833.
Kita, Y.; Kavthe, R. D.; Oda, H.; Mashima, K. Angew. Chem., Int. Ed. 2016, 55, 1098.
doi: 10.1002/anie.201508757
Blieck, R.; Azizi, M. S.; Mifleur, A.; Roger, M.; Persyn, C.; Sauthier, M.; Bonin, H. Eur. J. Org. Chem. 2016, 1194.
Bernhard, Y.; Thomson, B.; Ferey, V.; Sauthier, M. Angew. Chem., Int. Ed. 2017, 56, 7460.
doi: 10.1002/anie.201703486
For selected examples, see:
(a) Kimura, M.; Horino, Y.; Mukai, R.; Tanaka, S.; Tamaru, Y. J. Am. Chem. Soc. 2001, 123, 10401.
(b) Kimura, M.; Shimizu, M.; Shibata, K.; Tazoe, M.; Tamaru, Y. Angew. Chem., Int. Ed. 2003, 42, 3392.
Jiang, G.; List, B. Adv. Synth. Catal. 2011, 353, 1667.
doi: 10.1002/adsc.201100260
For selected examples, see:
(a) Ibrahem, I.; Clrdova, A. Angew. Chem., Int. Ed. 2006, 45, 1952.
(b) Mukherjee, S.; List, B. J. Am. Chem. Soc. 2007, 129, 11336.
(c) Jiang, G.; List, B. Angew. Chem., Int. Ed. 2011, 50, 9471.
Wang, J.; Wang, P.; Wang, L.; Li, D.; Wang, K.; Wang, Y.; Zhu, H.; Yang, D.; Wang, R. Org. Lett. 2017, 19, 4826.
doi: 10.1021/acs.orglett.7b02264
Ngamnithiporn, A.; Jette, C. I.; Bachman, S.; Virgil, S. C.; Stoltz, B. M. Chem. Sci. 2018, 9, 2547.
doi: 10.1039/C7SC05216B
Cui, D.-M.; Hashimoto, N.; Ikeda, S.-I.; Sato, Y. J. Org. Chem. 1995, 60, 5752.
doi: 10.1021/jo00123a006
For selected examples, see:(a) Ng, S.-S.; Ho, C.-Y.; Schleicher, K. D.; Jamison, T. F. Pure Appl. Chem. 2008, 80, 929.
(b) Ogoshi, S.; Haba, T.; Ohashi, M. J. Am. Chem. Soc. 2009, 131, 10350.
Matsubara, R.; Jamison, T. F. J. Am. Chem. Soc. 2010, 132, 6880.
doi: 10.1021/ja101186p
Matsubara, R.; Gutierrez, A. C.; Jamison, T. F. J. Am. Chem. Soc. 2011, 133, 19020.
doi: 10.1021/ja209235d
For selected examples, see: (a) Miller, J. A.; Negishi, E.-I. Tetrahedron Lett. 1984, 25, 5863.
(b) Sabarre, A.; Love, J. Org. Lett. 2008, 10, 3941.
For selected examples, see:
(a) Milstein, D.; Stille, J. K. J. Am. Chem. Soc. 1979, 101, 4992.
(b) Kamlage, S.; Sefkow, M.; Peter, M. G. J. Org. Chem. 1999, 64, 2938.
(c) Zhang, S.; Marshall, D.; Liebeskind, L. S. J. Org. Chem. 1999, 64, 2796.
(d) Perez, I.; Sestelo, J. P.; Sarandeses, L. A. J. Am. Chem. Soc. 2001, 123, 4155.
Standley, E. A.; Jamison, T. F. J. Am. Chem. Soc. 2013, 135, 1585.
doi: 10.1021/ja3116718
Furukawa, J.; Kui, J.; Yamamoto, K.; Tojo, T. Tetrahedron 1973, 29, 3149.
doi: 10.1016/S0040-4020(01)93457-X
Moberg, C. Tetrahedron Lett. 1980, 21, 4539.
doi: 10.1016/S0040-4039(00)74545-X
Yamamoto, T.; Ishizu, J.; Yamamoto, A. J. Am. Chem. Soc. 1981, 103, 6863.
doi: 10.1021/ja00413a014
Bricout, H.; Carpentier, J.-F.; Mortreux, A. Tetrahedron 1998, 54, 1073.
doi: 10.1016/S0040-4020(97)10208-3
Berkowitz, D. B.; Maiti, G. Org. Lett. 2004, 6, 2661.
doi: 10.1021/ol049159x
Kita, Y.; Sakaguchi, H.; Hoshimoto, Y.; Nakauchi, D.; Nakahara, Y.; Carpentier, J.-F.; Ogoshi, S.; Mashima, K. Chem.-Eur. J. 2015, 21, 14571.
doi: 10.1002/chem.201502329
For selected examples, see:
(a) Brunkan, N. M.; Jones, W. D. J. Organomet. Chem. 2003, 683, 77.
(b) Brunkan, N. M.; Brestensky, D. M.; Jones, W. D. J. Am. Chem. Soc. 2004, 126, 3627.
(c) Chaumonnot, A.; Lamy, F.; Sabo-Etienne, S.; Donnadieu, B.; Chaudret, B.; Barthelat, J.-C.; Galland, J.-C. Organometallics 2004, 23, 3363.
(d) Acosta-Ramírez, A.; Muñoz-Hernández, M.; Jones, W. D.; Garcia, J. J. J. Organomet. Chem. 2006, 691, 3895.
Azizi, M. S.; Edder, Y.; Karim, A.; Sauthier, M. Eur. J. Org. Chem. 2016, 3796.
Cuvigny, T.; Julia, M. J. Organomet. Chem. 1983, 250, C21.
doi: 10.1016/0022-328X(83)85087-6
Yatsumonji, Y.; Ishida, Y.; Tsubouchi, A.; Takeda, T. Org. Lett. 2007, 9, 4603.
doi: 10.1021/ol702122d
Hong Lu , Yidie Zhai , Xingxing Cheng , Yujia Gao , Qing Wei , Hao Wei . Advancements and Expansions in the Proline-Catalyzed Asymmetric Aldol Reaction. University Chemistry, 2024, 39(5): 154-162. doi: 10.3866/PKU.DXHX202310074
Ke QIAO , Yanlin LI , Shengli HUANG , Guoyu YANG . Advancements in asymmetric catalysis employing chiral iridium (ruthenium) complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2091-2104. doi: 10.11862/CJIC.20240265
Tingyu Zhu , Hui Zhang , Wenwei Zhang . Exploration and Practice of Ideological and Political Education in the Course of Experiments on Chemical Functional Molecules: Synthesis and Catalytic Performance Study of Chiral Mn(III)Cl-Salen Complex. University Chemistry, 2024, 39(4): 75-80. doi: 10.3866/PKU.DXHX202311011
Yan LIU , Jiaxin GUO , Song YANG , Shixian XU , Yanyan YANG , Zhongliang YU , Xiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043
Geyang Song , Dong Xue , Gang Li . Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides. University Chemistry, 2024, 39(2): 321-329. doi: 10.3866/PKU.DXHX202308030
Kaimin WANG , Xiong GU , Na DENG , Hongmei YU , Yanqin YE , Yulu MA . Synthesis, structure, fluorescence properties, and Hirshfeld surface analysis of three Zn(Ⅱ)/Cu(Ⅱ) complexes based on 5-(dimethylamino) isophthalic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1397-1408. doi: 10.11862/CJIC.20240009
Qianwen Han , Tenglong Zhu , Qiuqiu Lü , Mahong Yu , Qin Zhong . 氢电极支撑可逆固体氧化物电池性能及电化学不对称性优化. Acta Physico-Chimica Sinica, 2025, 41(1): 2309037-. doi: 10.3866/PKU.WHXB202309037
Weina Wang , Lixia Feng , Fengyi Liu , Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022
Zhicheng JU , Wenxuan FU , Baoyan WANG , Ao LUO , Jiangmin JIANG , Yueli SHI , Yongli CUI . MOF-derived nickel-cobalt bimetallic sulfide microspheres coated by carbon: Preparation and long cycling performance for sodium storage. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 661-674. doi: 10.11862/CJIC.20240363
Wen YANG , Didi WANG , Ziyi HUANG , Yaping ZHOU , Yanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276
Bo YANG , Gongxuan LÜ , Jiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346
Qingqing SHEN , Xiangbowen DU , Kaicheng QIAN , Zhikang JIN , Zheng FANG , Tong WEI , Renhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028
Fei Xie , Chengcheng Yuan , Haiyan Tan , Alireza Z. Moshfegh , Bicheng Zhu , Jiaguo Yu . d带中心调控过渡金属单原子负载COF吸附O2的理论计算研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2407013-. doi: 10.3866/PKU.WHXB202407013
Jing WU , Puzhen HUI , Huilin ZHENG , Pingchuan YUAN , Chunfei WANG , Hui WANG , Xiaoxia GU . Synthesis, crystal structures, and antitumor activities of transition metal complexes incorporating a naphthol-aldehyde Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2422-2428. doi: 10.11862/CJIC.20240278
Qiangqiang SUN , Pengcheng ZHAO , Ruoyu WU , Baoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454
Hao GUO , Tong WEI , Qingqing SHEN , Anqi HONG , Zeting DENG , Zheng FANG , Jichao SHI , Renhong LI . Electrocatalytic decoupling of urea solution for hydrogen production by nickel foam-supported Co9S8/Ni3S2 heterojunction. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2141-2154. doi: 10.11862/CJIC.20240085
Tingbo Wang , Yao Luo , Bingyan Hu , Ruiyuan Liu , Jing Miao , Huizhe Lu . Quantitative Computational Study on the Claisen Rearrangement Reaction of Allyl Phenyl Ethers: An Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(11): 278-285. doi: 10.12461/PKU.DXHX202403082
Xiaofeng Zhu , Bingbing Xiao , Jiaxin Su , Shuai Wang , Qingran Zhang , Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005
Guang Huang , Lei Li , Dingyi Zhang , Xingze Wang , Yugai Huang , Wenhui Liang , Zhifen Guo , Wenmei Jiao . Cobalt’s Valor, Nickel’s Foe: A Comprehensive Chemical Experiment Utilizing a Cobalt-based Imidazolate Framework for Nickel Ion Removal. University Chemistry, 2024, 39(8): 174-183. doi: 10.3866/PKU.DXHX202311051
Yi DING , Peiyu LIAO , Jianhua JIA , Mingliang TONG . Structure and photoluminescence modulation of silver(Ⅰ)-tetra(pyridin-4-yl)ethene metal-organic frameworks by substituted benzoates. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 141-148. doi: 10.11862/CJIC.20240393