Citation: Zhang Huijun, Gu Qing, You Shuli. Recent Advances in Ni-Catalyzed Allylic Substitution Reactions[J]. Chinese Journal of Organic Chemistry, ;2019, 39(1): 15-27. doi: 10.6023/cjoc201809037 shu

Recent Advances in Ni-Catalyzed Allylic Substitution Reactions

  • Corresponding author: Gu Qing, qinggu@sioc.ac.cn You Shuli, slyou@sioc.ac.cn
  • Received Date: 28 September 2018
    Revised Date: 22 October 2018
    Available Online: 26 January 2018

    Fund Project: the National Basic Research Program of China 973 Programthe National Key R&D Program of China 2016YFA0202900the National Basic Research Program of China 2015CB856600the Chinese Academy Sciences XDB20000000the National Natural Science Foundation of China 21572252the National Natural Science Foundation of China 21332009the National Natural Science Foundation of China 21572250the Chinese Academy Sciences QYZDY-SSW-SLH012Project supported by the National Key R&D Program of China (No. 2016YFA0202900), the National Basic Research Program of China (973 Program, No. 2015CB856600), the National Natural Science Foundation of China (Nos. 21332009, 21572250, 21572252), and the Chinese Academy Sciences (Nos. XDB20000000, QYZDY-SSW-SLH012)

Figures(13)

  • Transition-metal catalyzed allylic substitution reaction is an important approach for constructing carbon-carbon bond and carbon-heteroatom bond. Due to its cheapness, easy access, and wide applicability in organic synthesis, nickel has attracted intense attention. Over the past 50 years, nickel-catalyzed allylic substitution reactions have been extensively studied. The progresses on nickel-catalyzed allylic substitution reactions and their applications in organic synthesis are summarized according to bond formation and nucleophilic reagent.
  • 加载中
    1. [1]

      For selected reviews, see: (a) Helmchen, G. J. Organomet. Chem. 1999, 576, 203.
      (b) Tenaglia, A.; Heumann, A. Angew. Chem., Int. Ed. 1999, 38, 2180.
      (c) Trost, B. M. Chem. Pharm. Bull. 2002, 50, 1.
      (d) Kazmaier, U. Curr. Org. Chem. 2003, 7, 317.
      (e) Trost, B. M. J. Org. Chem. 2004, 69, 5813.
      (f) Jensen, T.; Fristrup, P. Chem.-Eur. J. 2009, 15, 9632.
      (g) Milhau, L.; Guiry, P. J. Top. Organomet. Chem. 2012, 38, 95.

    2. [2]

      For selected reviews, see: (a) Takeuchi, R.; Kezuka, S. Synthesis 2006, 3349.
      (b) Helmchen, G.; Dahnz, A.; Döbon, P.; Schelwies, M.; Weihofen, R. Chem. Commun. 2007, 675.
      (c) Hartwig, J. F.; Stanley, L. M. Acc. Chem. Res. 2010, 43, 1461.
      (d) Hartwig, J. F.; Pouy, M. J. Top. Organomet. Chem. 2011, 34, 169.
      (e) Liu, W.-B.; Xia, J.-B.; You, S.-L. Top. Organomet. Chem. 2012, 38, 155.
      (f) Tosatti, P.; Nelson, A.; Marsden, S. P. Org. Biomol. Chem. 2012, 10, 3147.
      (g) Helmchen, G. In Molecular Catalysis, Eds.: Gade, L. H.; Hofmann, P., Wiley-VCH, Weinheim, 2014, pp. 235~254.
      (h) Zhuo, C.-X.; Zheng, C.; You, S.-L. Acc. Chem. Res. 2014, 47, 2558.
      (i) Hethcox, J. C.; Shockley, S. E.; Stoltz, B. M. ACS Catal. 2016, 6, 6207. (j) Qu, J.; Helmchen, G. Acc. Chem. Res. 2017, 50, 2539.

    3. [3]

      For selected reviews, see: (a) Evans, P. A.; Nelson, J. D. J. Am. Chem. Soc. 1998, 120, 5581.
      (b) Selvakumar, K.; Valentini, M.; Pregosin, P. S.; Albinati, A. Organometallics 1999, 18, 4591.
      (c) Hayashi, T.; Okada, A.; Suzuka, T.; Kawatsura, M. Org. Lett. 2003, 5, 1713.
      (d) Ashfeld, B. L.; Miller, K. A.; Martin, S. F. Org. Lett. 2004, 6, 1321.

    4. [4]

      For selected reviews, see: (a) Minami, I.; Shimizu, I.; Tsuji, J. J. Organomet. Chem. 1985, 296, 269.
      (b) Zhang, S.-W.; Mitsudo, T.; Kondo, T.; Watanabe, Y. J. Organomet. Chem. 1993, 450, 197.
      (c) Matsushima, Y.; Onitsuka, K.; Kondo, T.; Mitsudo, T.; Takahashi, S. J. Am. Chem. Soc. 2001, 123, 10405.
      (d) Trost, B. M.; Fraisse, P. L.; Ball, Z. T. Angew. Chem., Int. Ed. 2002, 41, 1059.
      (e) Mbaye, M. D.; Demerseman, B.; Renaud, J.-L.; Toupet, L.; Bruneau, C. Angew. Chem., Int. Ed. 2003, 42, 5066.
      (f) Hermatschweiler, R.; Fernandez, I.; Breher, F.; Pregosin, P. S.; Veiros, L. F.; Calhorda, M. J. Angew. Chem., Int. Ed. 2005, 44, 4397.
      (g) Kawatsura, M.; Ata, F.; Wada, S.; Hayase, S.; Uno, H.; Itoh, T. Chem. Commun. 2007, 298.

    5. [5]

      For selected reviews, see: (a) Consiglio, G.; Waymouth, R. M. Chem. Rev. 1989, 89, 257.
      (b) Ho, C.-Y.; Schleicher, K. D.; Chan, C.-W.; Jamison, T. F. Synlett 2009, 2565.
      (c) Pigge, F. C. Synthesis 2010, 1745.

    6. [6]

      Henrion, M.; Ritleng, V.; Chetcuti, M. J. ACS Catal. 2015, 5, 1283.  doi: 10.1021/cs5014927

    7. [7]

      For selected examples, see:
      (a) Schaub, T.; Backes, M.; Radius, U. J. Am. Chem. Soc. 2006, 128, 15964.
      (b) Rosen, B. M.; Quasdorf, K. W.; Wilson, D. A.; Zhang, N.; Resmerita, A.-M.; Garg, N. K.; Percec, V. Chem. Rev. 2011, 111, 1346.
      (c) Li, B.-J.; Yu, D.-G.; Sun, C.-L.; Shi, Z.-J. Chem.-Eur. J. 2011, 17, 1728.
      (d) Tobisu, M.; Xu, T.; Shimasaki, T.; Chatani, N. J. Am. Chem. Soc. 2011, 133, 19505.

    8. [8]

      Chuit, C.; Felkin, H.; Frajerman, C.; Roussi, G.; Swierczewski, G. Chem. Commun. 1968, 1604.

    9. [9]

      Felkin, H.; Swierczewski, G. Tetrahedron Lett. 1972, 15, 1433.

    10. [10]

      Felkin, H.; Joly-Goudket, M.; Davies, S. G. Tetrahedron Lett. 1981, 22, 1157.  doi: 10.1016/S0040-4039(01)90263-1

    11. [11]

      Consiglio, G.; Morandini, F.; Piccolol, O. Helv. Chim. Acta 1980, 63, 987.  doi: 10.1002/(ISSN)1522-2675

    12. [12]

      Consiglio, G.; Morandini, F.; Piccolo, O. J. Chem. Soc., Chem. Commun. 1983, 112.

    13. [13]

      Consiglio, G.; Piccolo, O.; Roncetti, L.; Morandini, F. Tetrahedron 1986, 42, 2043.  doi: 10.1016/S0040-4020(01)87621-3

    14. [14]

      Hiyama, T.; Wakasa, N. Tetrahedron Lett. 1985, 26, 3259.  doi: 10.1016/S0040-4039(00)98166-8

    15. [15]

      Nomura, N.; RajanBabu, T. V. Tetrahedron Lett. 1997, 38, 1713.  doi: 10.1016/S0040-4039(97)00178-0

    16. [16]

      Gomez-Bengoa, E.; Heron, N. M.; Didiuk, M. T.; Luchaco, C. A.; Hoveyda, A. H. J. Am. Chem. Soc. 1998, 120, 7649.  doi: 10.1021/ja980499l

    17. [17]

      Chung, K.-G.; Miyake, Y.; Uemura, S. J. Chem. Soc., Perkin Trans. 1 2000, 2725.

    18. [18]

      Trost, B. M.; Spagnol, M. D. J. Chem. Soc., Perkin Trans. 1 1995, 2083.

    19. [19]

      (a) Kobayashi, Y.; Ikeda, E. J. Chem. Soc., Chem. Commun. 1994, 1789.
      (b) Kobayashi, Y.; Tokoro, Y.; Watatani, K. Eur. J. Org. Chem. 2000, 3825.
      (c) Kobayashi, Y.; Watatani, K.; Kikori, Y.; Mizojiri, R. Tetrahedron Lett. 1996, 37, 6125.
      (d) Kobayashi, Y.; Takahisa, E.; Usmani, S. B. Tetrahedron Lett. 1998, 39, 597.
      (e) Kobayashi, Y.; Takahisa, E.; Usmani, S. B. Tetrahedron Lett. 1998, 39, 601.
      (f) Jimenez-Aquino, A.; Flegeau, E. F.; Schneider, U.; Kobayashi, S. Chem. Commun. 2011, 47, 9456.

    20. [20]

      Chung, K.-G.; Miyake, Y.; Uemura, S. J. Chem. Soc., Perkin Trans. 1 2000, 15.

    21. [21]

      Chen, H.; Deng, M.-Z. J. Organomet. Chem. 2000, 603, 189.  doi: 10.1016/S0022-328X(00)00164-9

    22. [22]

      (a) Shields, J. D.; Ahneman, D. T.; Graham, T. J. A.; Doyle, A. G. Org. Lett. 2014, 16, 142.
      (b) Sylvester, K. T.; Wu, K.; Doyle, A. G. J. Am. Chem. Soc. 2012, 134, 16967.
      (c) Graham, T. J. A.; Shields, J. D.; Doyle, A. G. Chem. Sci. 2011, 2, 980.

    23. [23]

      Srinivas, H. D.; Zhou, Q.; Watson, M. P. Org. Lett. 2014, 16, 3596.  doi: 10.1021/ol5016724

    24. [24]

      Nazari, S. H.; Bourdeau, J. E.; Talley, M. R.; Valdivia-Berroeta, G. A.; Smith, S. J.; Michaelis, D. J. ACS Catal. 2018, 8, 86.  doi: 10.1021/acscatal.7b03079

    25. [25]

      Chau, S. T.; Lutz, J. P.; Wu, K.; Doyle, A. G. Angew. Chem., Int. Ed. 2013, 52, 9153.  doi: 10.1002/anie.201303994

    26. [26]

      For some recent examples synthesis of biologically active 4-piperidines, see: (a) Tawara, J. N.; Lorenz, P. F.; Stermitz, R. J. Nat. Prod. 1999, 62, 321.
      (b) Watson, P. S.; Jiang, B.; Scott, B. Org. Lett. 2000, 2, 3679.
      (c) Brooks, C. A.; Comins, D. L. Tetrahedron Lett. 2000, 41, 3551.

    27. [27]

      (a) Wu, D.; Wang, Z.-X. Org. Biomol. Chem. 2014, 12, 6414.
      (b) Wu, D.; Tao, J.-L.; Wang, Z.-X. Org. Chem. Front. 2015, 2, 265.

    28. [28]

      Tao, J.-L.; Yang, B.; Wang, Z.-X. J. Org. Chem. 2015, 80, 12627.  doi: 10.1021/acs.joc.5b02151

    29. [29]

      Yang, B.; Wang, Z.-X. J. Org. Chem. 2017, 82, 4542.  doi: 10.1021/acs.joc.6b02564

    30. [30]

      Bricout, H.; Carpentier, J.-F.; Mortreux, A. J. Chem. Soc., Chem. Commun. 1995, 1863.

    31. [31]

      Bricout, H.; Carpentier, J.-F.; Mortreux, A. Tetrahedron Lett. 1996, 37, 6105.  doi: 10.1016/0040-4039(96)01302-0

    32. [32]

      Sha, S.-C.; Jiang, H.; Mao, J.; Bellomo, A.; Jeong, S. A.; Walsh, P. J. Angew. Chem., Int. Ed. 2016, 55, 1070.  doi: 10.1002/anie.201507494

    33. [33]

      For selected examples, see:
      (a) Lu, X.; Lu, L. J. Organomet. Chem. 1986, 307, 285.
      (b) Lu, X.; Lu, L.; Sun, J. J. Mol. Catal. 1987, 41, 245.
      (c) Lu, X.; Jiang, X.; Tao, X. J. Organomet. Chem. 1988, 344, 109.

    34. [34]

      For selected examples, see:
      (a) Starý, I.; Stará, I. G.; Kočovský, P. Tetrahedron Lett. 1993, 34, 179.
      (b) Starý, I.; Stará, I. G.; Kočovský, P. Tetrahedron 1994, 50, 529.
      (c) Tamaru, Y.; Horino, Y.; Araki, M.; Tanaka, S.; Kimura, M. Tetrahedron Lett. 2000, 41, 5705.
      (d) Takacs, J. M.; Jiang, X.-T.; Leonov, A. P. Tetrahedron Lett. 2003, 44, 7075.
      (e) Kimura, M.; Mukai, R.; Tanigawa, N.; Tanaka, S.; Tamaru, Y. Tetrahedron 2003, 59, 7767.

    35. [35]

      Itoh, K.; Hamaguchi, N.; Miura, M.; Nomura, M. J. Chem. Soc., Perkin Trans. 1 1992, 1, 2833.

    36. [36]

      Kita, Y.; Kavthe, R. D.; Oda, H.; Mashima, K. Angew. Chem., Int. Ed. 2016, 55, 1098.  doi: 10.1002/anie.201508757

    37. [37]

      Blieck, R.; Azizi, M. S.; Mifleur, A.; Roger, M.; Persyn, C.; Sauthier, M.; Bonin, H. Eur. J. Org. Chem. 2016, 1194.

    38. [38]

      Bernhard, Y.; Thomson, B.; Ferey, V.; Sauthier, M. Angew. Chem., Int. Ed. 2017, 56, 7460.  doi: 10.1002/anie.201703486

    39. [39]

      For selected examples, see:
      (a) Kimura, M.; Horino, Y.; Mukai, R.; Tanaka, S.; Tamaru, Y. J. Am. Chem. Soc. 2001, 123, 10401.
      (b) Kimura, M.; Shimizu, M.; Shibata, K.; Tazoe, M.; Tamaru, Y. Angew. Chem., Int. Ed. 2003, 42, 3392.

    40. [40]

      Jiang, G.; List, B. Adv. Synth. Catal. 2011, 353, 1667.  doi: 10.1002/adsc.201100260

    41. [41]

      For selected examples, see:
      (a) Ibrahem, I.; Clrdova, A. Angew. Chem., Int. Ed. 2006, 45, 1952.
      (b) Mukherjee, S.; List, B. J. Am. Chem. Soc. 2007, 129, 11336.
      (c) Jiang, G.; List, B. Angew. Chem., Int. Ed. 2011, 50, 9471.

    42. [42]

      Wang, J.; Wang, P.; Wang, L.; Li, D.; Wang, K.; Wang, Y.; Zhu, H.; Yang, D.; Wang, R. Org. Lett. 2017, 19, 4826.  doi: 10.1021/acs.orglett.7b02264

    43. [43]

      Ngamnithiporn, A.; Jette, C. I.; Bachman, S.; Virgil, S. C.; Stoltz, B. M. Chem. Sci. 2018, 9, 2547.  doi: 10.1039/C7SC05216B

    44. [44]

      Cui, D.-M.; Hashimoto, N.; Ikeda, S.-I.; Sato, Y. J. Org. Chem. 1995, 60, 5752.  doi: 10.1021/jo00123a006

    45. [45]

      For selected examples, see:(a) Ng, S.-S.; Ho, C.-Y.; Schleicher, K. D.; Jamison, T. F. Pure Appl. Chem. 2008, 80, 929.
      (b) Ogoshi, S.; Haba, T.; Ohashi, M. J. Am. Chem. Soc. 2009, 131, 10350.

    46. [46]

      Matsubara, R.; Jamison, T. F. J. Am. Chem. Soc. 2010, 132, 6880.  doi: 10.1021/ja101186p

    47. [47]

      Matsubara, R.; Gutierrez, A. C.; Jamison, T. F. J. Am. Chem. Soc. 2011, 133, 19020.  doi: 10.1021/ja209235d

    48. [48]

      For selected examples, see: (a) Miller, J. A.; Negishi, E.-I. Tetrahedron Lett. 1984, 25, 5863.
      (b) Sabarre, A.; Love, J. Org. Lett. 2008, 10, 3941.

    49. [49]

      For selected examples, see:
      (a) Milstein, D.; Stille, J. K. J. Am. Chem. Soc. 1979, 101, 4992.
      (b) Kamlage, S.; Sefkow, M.; Peter, M. G. J. Org. Chem. 1999, 64, 2938.
      (c) Zhang, S.; Marshall, D.; Liebeskind, L. S. J. Org. Chem. 1999, 64, 2796.
      (d) Perez, I.; Sestelo, J. P.; Sarandeses, L. A. J. Am. Chem. Soc. 2001, 123, 4155.

    50. [50]

      Standley, E. A.; Jamison, T. F. J. Am. Chem. Soc. 2013, 135, 1585.  doi: 10.1021/ja3116718

    51. [51]

      Furukawa, J.; Kui, J.; Yamamoto, K.; Tojo, T. Tetrahedron 1973, 29, 3149.  doi: 10.1016/S0040-4020(01)93457-X

    52. [52]

      Moberg, C. Tetrahedron Lett. 1980, 21, 4539.  doi: 10.1016/S0040-4039(00)74545-X

    53. [53]

      Yamamoto, T.; Ishizu, J.; Yamamoto, A. J. Am. Chem. Soc. 1981, 103, 6863.  doi: 10.1021/ja00413a014

    54. [54]

      Bricout, H.; Carpentier, J.-F.; Mortreux, A. Tetrahedron 1998, 54, 1073.  doi: 10.1016/S0040-4020(97)10208-3

    55. [55]

      Berkowitz, D. B.; Maiti, G. Org. Lett. 2004, 6, 2661.  doi: 10.1021/ol049159x

    56. [56]

      Kita, Y.; Sakaguchi, H.; Hoshimoto, Y.; Nakauchi, D.; Nakahara, Y.; Carpentier, J.-F.; Ogoshi, S.; Mashima, K. Chem.-Eur. J. 2015, 21, 14571.  doi: 10.1002/chem.201502329

    57. [57]

      For selected examples, see:
      (a) Brunkan, N. M.; Jones, W. D. J. Organomet. Chem. 2003, 683, 77.
      (b) Brunkan, N. M.; Brestensky, D. M.; Jones, W. D. J. Am. Chem. Soc. 2004, 126, 3627.
      (c) Chaumonnot, A.; Lamy, F.; Sabo-Etienne, S.; Donnadieu, B.; Chaudret, B.; Barthelat, J.-C.; Galland, J.-C. Organometallics 2004, 23, 3363.
      (d) Acosta-Ramírez, A.; Muñoz-Hernández, M.; Jones, W. D.; Garcia, J. J. J. Organomet. Chem. 2006, 691, 3895.

    58. [58]

      Azizi, M. S.; Edder, Y.; Karim, A.; Sauthier, M. Eur. J. Org. Chem. 2016, 3796.

    59. [59]

      Cuvigny, T.; Julia, M. J. Organomet. Chem. 1983, 250, C21.  doi: 10.1016/0022-328X(83)85087-6

    60. [60]

      Yatsumonji, Y.; Ishida, Y.; Tsubouchi, A.; Takeda, T. Org. Lett. 2007, 9, 4603.  doi: 10.1021/ol702122d

  • 加载中
    1. [1]

      Hong Lu Yidie Zhai Xingxing Cheng Yujia Gao Qing Wei Hao Wei . Advancements and Expansions in the Proline-Catalyzed Asymmetric Aldol Reaction. University Chemistry, 2024, 39(5): 154-162. doi: 10.3866/PKU.DXHX202310074

    2. [2]

      Ke QIAOYanlin LIShengli HUANGGuoyu YANG . Advancements in asymmetric catalysis employing chiral iridium (ruthenium) complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2091-2104. doi: 10.11862/CJIC.20240265

    3. [3]

      Tingyu Zhu Hui Zhang Wenwei Zhang . Exploration and Practice of Ideological and Political Education in the Course of Experiments on Chemical Functional Molecules: Synthesis and Catalytic Performance Study of Chiral Mn(III)Cl-Salen Complex. University Chemistry, 2024, 39(4): 75-80. doi: 10.3866/PKU.DXHX202311011

    4. [4]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    5. [5]

      Geyang Song Dong Xue Gang Li . Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides. University Chemistry, 2024, 39(2): 321-329. doi: 10.3866/PKU.DXHX202308030

    6. [6]

      Kaimin WANGXiong GUNa DENGHongmei YUYanqin YEYulu MA . Synthesis, structure, fluorescence properties, and Hirshfeld surface analysis of three Zn(Ⅱ)/Cu(Ⅱ) complexes based on 5-(dimethylamino) isophthalic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1397-1408. doi: 10.11862/CJIC.20240009

    7. [7]

      Qianwen Han Tenglong Zhu Qiuqiu Lü Mahong Yu Qin Zhong . 氢电极支撑可逆固体氧化物电池性能及电化学不对称性优化. Acta Physico-Chimica Sinica, 2025, 41(1): 2309037-. doi: 10.3866/PKU.WHXB202309037

    8. [8]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    9. [9]

      Zhicheng JUWenxuan FUBaoyan WANGAo LUOJiangmin JIANGYueli SHIYongli CUI . MOF-derived nickel-cobalt bimetallic sulfide microspheres coated by carbon: Preparation and long cycling performance for sodium storage. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 661-674. doi: 10.11862/CJIC.20240363

    10. [10]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    11. [11]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    12. [12]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    13. [13]

      Fei Xie Chengcheng Yuan Haiyan Tan Alireza Z. Moshfegh Bicheng Zhu Jiaguo Yud带中心调控过渡金属单原子负载COF吸附O2的理论计算研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2407013-. doi: 10.3866/PKU.WHXB202407013

    14. [14]

      Jing WUPuzhen HUIHuilin ZHENGPingchuan YUANChunfei WANGHui WANGXiaoxia GU . Synthesis, crystal structures, and antitumor activities of transition metal complexes incorporating a naphthol-aldehyde Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2422-2428. doi: 10.11862/CJIC.20240278

    15. [15]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    16. [16]

      Hao GUOTong WEIQingqing SHENAnqi HONGZeting DENGZheng FANGJichao SHIRenhong LI . Electrocatalytic decoupling of urea solution for hydrogen production by nickel foam-supported Co9S8/Ni3S2 heterojunction. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2141-2154. doi: 10.11862/CJIC.20240085

    17. [17]

      Tingbo Wang Yao Luo Bingyan Hu Ruiyuan Liu Jing Miao Huizhe Lu . Quantitative Computational Study on the Claisen Rearrangement Reaction of Allyl Phenyl Ethers: An Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(11): 278-285. doi: 10.12461/PKU.DXHX202403082

    18. [18]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    19. [19]

      Guang Huang Lei Li Dingyi Zhang Xingze Wang Yugai Huang Wenhui Liang Zhifen Guo Wenmei Jiao . Cobalt’s Valor, Nickel’s Foe: A Comprehensive Chemical Experiment Utilizing a Cobalt-based Imidazolate Framework for Nickel Ion Removal. University Chemistry, 2024, 39(8): 174-183. doi: 10.3866/PKU.DXHX202311051

    20. [20]

      Yi DINGPeiyu LIAOJianhua JIAMingliang TONG . Structure and photoluminescence modulation of silver(Ⅰ)-tetra(pyridin-4-yl)ethene metal-organic frameworks by substituted benzoates. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 141-148. doi: 10.11862/CJIC.20240393

Metrics
  • PDF Downloads(112)
  • Abstract views(2737)
  • HTML views(626)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return