Citation: Li Yingjun, Zhao Yue, Jin Kun, Liu Jihong, Zhou Xiaoxia, Yang Kaidong. A Novel Benzimidazole-Hydrazone Derivative for Colorimetric and Fluorescent Recognition of F- and AcO-[J]. Chinese Journal of Organic Chemistry, ;2019, 39(4): 1013-1022. doi: 10.6023/cjoc201809025 shu

A Novel Benzimidazole-Hydrazone Derivative for Colorimetric and Fluorescent Recognition of F- and AcO-

  • Corresponding author: Li Yingjun, chemlab.lnnu@163.com
  • Received Date: 20 September 2018
    Revised Date: 3 December 2018
    Available Online: 21 April 2019

    Fund Project: Project supported by the Natural Science Foundation of Liaoning Province (No. 20102126)the Natural Science Foundation of Liaoning Province 20102126

Figures(11)

  • A novel benzimidazole-hydrazone derivative, N'-(2-hydroxy-1-naphthyl)methylene-2-[2-(4-methylphenylsulfonyl-methyl)-1H-benzoimidazol-1-yl]acetohydrazide (L), was synthesized and characterized by IR, 1H NMR, 13C NMR, HRMS and elemental analysis. The recognition properties of L for anions were studied by naked eye, ultraviolet-vis and fluorescence spectroscopy. The results showed that the color of the solution changes from colorless to bright yellow upon addition of F-, AcO- and H2PO4- to the CH3CN solution of compound L. The solution of L emitted yellow fluorescence after the addition of F- and AcO- under the UV lamp (λ=365 nm). It indicated that compound L can be used as a probe for the naked eye to recognize F-, AcO- and H2PO4-. The experimental results of UV and fluorescence spectroscopy showed that the probe L can recognize F- and AcO- with high selectivity and sensitivity. The binding constants (Ka) of probe L to F- and AcO- were 4.25×103 and 2.96×104 L·mol-1, respectively. The detection limits (DL) were 3.63×10-7 and 8.51×10-8 mol·L-1, respectively. The stoichiometry of complexation between L and F-/AcO- was 1:1, which was supported by the Job's plot and density functional theory (DFT) calculations. The mechanism of binding of L with F-/AcO- was established by 1H NMR titration. The results showed that compound L can be used as a colorimetric and fluorescent probe for detecting F- and AcO-.
  • 加载中
    1. [1]

      Mohammadi, A.; Sahragard, R.; Rassa, M. J. Photochem. Photobiol. A: Chem. 2017, 344, 114.  doi: 10.1016/j.jphotochem.2017.05.010

    2. [2]

      Wang, L. Y.; Tian, Y.; He, X. Y.; Zhao, B.; Ma, W. H.; Yang, J.; Song, B. J. Photochem. Photobiol. A: Chem. 2018, 358, 300.  doi: 10.1016/j.jphotochem.2018.03.037

    3. [3]

      Shi, B. B.; Zhang, Y. M.; Wei, T. B.; Lin, Q.; Yao, H.; Zhang, P.; You, X. M. Sens. Actuators, B 2014, 190, 555.  doi: 10.1016/j.snb.2013.09.043

    4. [4]

      Wang, C. C.; Feng, S.; Wu, L. Y.; Yan, S. Y.; Zhong, C.; Guo, P.; Huang, R.; Weng, X. C.; Zhou, X. Sens. Actuators, B 2014, 190, 792.  doi: 10.1016/j.snb.2013.09.045

    5. [5]

      Uahengo, V.; Zhang, Y.; Xiong, B.; Zhao, P. P.; Cai, P.; Rhyman, L.; Ramasam, P.; Hu, K.; Cheng, G. Z. J. Fluoresc. 2017, 27, 1.  doi: 10.1007/s10895-016-1930-0

    6. [6]

      Khanmohammadi, H.; Rezaeian, K. New J. Chem. 2014, 38, 5536.  doi: 10.1039/C4NJ01077A

    7. [7]

      Murali, M. G.; Vishnumurthy, K. A.; Seethamraju, S.; Ramamurthy, P. C. RSC Adv. 2014, 4, 20592.  doi: 10.1039/C4RA01555J

    8. [8]

      Pandian, T. S.; Cho, S. J.; Kang, J. J. Org. Chem. 2013, 78, 12121.  doi: 10.1021/jo402103d

    9. [9]

      Jeong, H. Y.; Lee, S. Y.; Kim, C. J. Fluoresc. 2017, 27, 4.

    10. [10]

      Ghosh, S.; Masum, A. A.; Ganguly, A.; Islam, M. M.; Alam, M. A.; Guchhait, N. Spectrochim. Acta, Part A 2017, 178, 24.  doi: 10.1016/j.saa.2017.01.044

    11. [11]

      Parthiban, C.; Elango, K. P. Sens. Actuators, B 2017, 245, 321.  doi: 10.1016/j.snb.2017.01.153

    12. [12]

      Fu, Y.; Tang, H.; Liu, Z.; Zhang, W.-X.; Ren, J. Chin. J. Org. Chem. 2018, 38, 1806 (in Chinese).
       

    13. [13]

      Zhang, C.-L.; Li, Y.-Z.; Li, J.-C.; Wang, J.; Wang, H.-Y.; Gong, R.-Q. Chin. J. Appl. Chem. 2018, 35, 197 (in Chinese).  doi: 10.11944/j.issn.1000-0518.2018.02.170129

    14. [14]

      Singh, A.; Tom, S.; Trivedi, D. R. J. Photochem. Photobiol. A: Chem. 2018, 353, 507.  doi: 10.1016/j.jphotochem.2017.12.002

    15. [15]

      Temirak, A.; Shaker, Y. M.; Ragab, F. A. F.; Ali, M. M.; Soliman, S. M.; Mortier, J.; Wolber, G.; Ali, H. I.; El Diwani, H. Arch. Pharm. Chem. Life Sci. 2014, 347, 291.  doi: 10.1002/ardp.v347.4

    16. [16]

      Onnis, V.; Demurtas M.; Deplano, A.; Balboni, G.; Baldisserotto, A.; Manfredini, T.; Pacifico, S.; Liekens, S.; Balzarini, J. Molecules 2016, 21, 579.  doi: 10.3390/molecules21050579

    17. [17]

      Li, Z. C.; Zhang, S. C.; Deng, L.; Hu, J.; Li, H.; Zhao, Y. G.; Luo, Y. F.; Huang, W. C. Med. Chem. Res. 2014, 23, 4050.  doi: 10.1007/s00044-014-0981-5

    18. [18]

      Kumar, V.; Basavarajaswamy, G.; Rai, M. V.; Poojary, B.; Pai, V. R.; N., S.; Bhat, M. Bioorg. Med. Chem. Lett. 2015, 25, 1420.  doi: 10.1016/j.bmcl.2015.02.043

    19. [19]

    20. [20]

      Taha, M.; Ismail, N. H.; Jamil, W.; Rashwan, H.; Kashif, S. M.; Sain, A. A.; Adenan, M. I.; Anouar, E. H.; Ali, M.; Rahim, F.; Khan, K. M. Eur. J. Med. Chem. 2014, 84, 731.  doi: 10.1016/j.ejmech.2014.07.078

    21. [21]

      Bouhadir, K. H.; Koubeissi, A.; Mohsen, F. A.; El-Harakeh, M. D.; Cheaib, R.; Younes, J.; Azzi, G.; Eid, A. A. Bioorg. Med. Chem. Lett. 2016, 26, 1020.  doi: 10.1016/j.bmcl.2015.12.042

    22. [22]

      Eldehna, W. M.; Fares, M.; Abdel-Aziz, M. M.; Abdel-Aziz, H. A. Molecules 2015, 20, 8800.  doi: 10.3390/molecules20058800

    23. [23]

      Zou, G. G.; Liu, C. X.; Cong, C.; Fang, Z. T.; Yang, W.; Luo, X. M.; Jia, S. K.; Wu, F.; Zhao, X. Chem. Commun. 2018, 54, 13107.  doi: 10.1039/C8CC08232D

    24. [24]

      Hu, J. H.; Li, J. B.; Qi, J.; Sun, Y. Sens. Actuators, B 2015, 208, 581.  doi: 10.1016/j.snb.2014.11.066

    25. [25]

      Zhao, J. Y.; Zhao, Y. K.; Xu, S.; Luo, N.; Tang, R. Inorg. Chim. Acta 2015, 38, 105.

    26. [26]

      Li, D. X.; Sun, X.; Huang, J. M.; Wang, Q.; Feng, Y.; Chen, M.; Meng, X. M.; Zhu, M. Z.; Wang, X. Dyes Pigm. 2016, 25, 185.

    27. [27]

      Erdemir, S.; Malkondu, S. J. Lumin. 2015, 158, 401.  doi: 10.1016/j.jlumin.2014.10.043

    28. [28]

      Juliano, C.; Mattana, A.; Solinas, C. Transition Met. Chem. 2010, 35, 253.  doi: 10.1007/s11243-009-9321-x

    29. [29]

      Liao, Z.; Liu, Y.; Han, S. F.; Wang, D.; Zheng, J. Q.; Zheng, X. J.; Jin, L. P. Sens. Actuators, B 2017, 244, 914.  doi: 10.1016/j.snb.2017.01.074

    30. [30]

      Hu, J. H.; Li, J. B.; Sun, Y.; Pei, P. X.; Qi, J. RSC Adv. 2017, 7, 29697.  doi: 10.1039/C7RA04462C

    31. [31]

      Nakane, Y.; Takeda, T.; Hoshino, N.; Sakai, K.; Akutagawa, T. J. Mater. Chem. 2017, 5, 25.

    32. [32]

      Wei, J.; Chai, Q.; He, L. H.; Bai, B. L.; Wang, H. T.; Li, M. Tetrahedron 2016, 72, 3073.  doi: 10.1016/j.tet.2016.04.035

    33. [33]

      Das, A. K.; Goswami, S. Sens. Actuators, B 2017, 245, 1062.  doi: 10.1016/j.snb.2017.01.068

    34. [34]

      Zhou, M. Q.; Eun, Y, J.; Guzei, I. A.; Weibel, D. B. ACS Med. Chem. Lett. 2013, 4, 880.  doi: 10.1021/ml400234x

    35. [35]

      Li, Y.-J.; Li, J.-Y.; Jin, K.; Cao, X. Chin. J. Magn. Reson. 2017, 34, 25 (in Chinese).  doi: 10.11938/cjmr20170104

    36. [36]

      Li, Y.-J.; Li, Y.-J.; Peng, L.-N.; Gao, L.-X.; Jin, K.; Sheng, L.; Zhang, N.; Wang, S.-Y.; Li, J. Chin. J. Org. Chem. 2017, 37, 485 (in Chinese).
       

    37. [37]

      Liu, C. X.; Chen, Y. Q.; Wang, Y. F.; Wu, F.; Zhang, X.; Yang, W.; Wang, J. Q.; Chen, Y.; He, Z. Y.; Zou, G. G.; Wang, S. R.; Zhou, X. Nano Res. 2017, 10, 2449.  doi: 10.1007/s12274-017-1445-2

    38. [38]

      Liu, G.; Shao, J. J. Fluoresc. 2012, 22, 397.  doi: 10.1007/s10895-011-0972-6

    39. [39]

      Yu, M. M.; Xu, J.; Peng, C.; Li, Z. X.; Liu, C. X.; Wei, L. H. Tetrahedron 2016, 72, 273.  doi: 10.1016/j.tet.2015.11.017

    40. [40]

      Srikala, P.; Tarafder, K.; Trivedi, D. R. Spectrochim. Acta, Part A 2017, 170, 29.  doi: 10.1016/j.saa.2016.07.001

    41. [41]

      Liu, C. X.; Zou, G. G.; Peng, S.; Wang, Y. F.; Yang, W.; Wu, F.; Jiang, Z. R.; Zhang, X.; Zhou, X. Angew. Chem., Int. Ed. 2018, 57, 9689.  doi: 10.1002/anie.v57.31

    42. [42]

      Rahmani, R.; Boukabcha, N.; Chouaih, A.; Hamzaoui, F.; Goumri-Said, S. J. Mol. Struct. 2018, 1155, 484.  doi: 10.1016/j.molstruc.2017.11.033

    43. [43]

      Li, Y.-J.; Zhang, N.; Liu, J.-H.; Jin, K.; Wang, S.-Y. Chin. J. Org. Chem. 2018, 38, 485 (in Chinese).
       

  • 加载中
    1. [1]

      Yanxi LIUMengjia XUHaonan CHENQuan LIUYuming ZHANG . A fluorescent-colorimetric probe for peroxynitrite-anion-imaging in living cells. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1112-1122. doi: 10.11862/CJIC.20240423

    2. [2]

      Qiaojia GUOJunkai CAIChunying DUAN . Effects of anions on the structural regulation of Zn-salen-modified metal-organic cage. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2203-2211. doi: 10.11862/CJIC.20240209

    3. [3]

      Jiandong LiuXin LiDaxiong WuHuaping WangJunda HuangJianmin Ma . Anion-Acceptor Electrolyte Additive Strategy for Optimizing Electrolyte Solvation Characteristics and Electrode Electrolyte Interphases for Li||NCM811 Battery. Acta Physico-Chimica Sinica, 2024, 40(6): 2306039-0. doi: 10.3866/PKU.WHXB202306039

    4. [4]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    5. [5]

      Jinlong YANWeina WUYuan WANG . A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1653-1660. doi: 10.11862/CJIC.20240154

    6. [6]

      Yuyao WangZhitao CaoZeyu DuXinxin CaoShuquan Liang . Research Progress of Iron-based Polyanionic Cathode Materials for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 2406014-0. doi: 10.3866/PKU.WHXB202406014

    7. [7]

      Zilin HuYaoshen NiuXiaohui RongYongsheng Hu . Suppression of Voltage Decay through Ni3+ Barrier in Anionic-Redox Active Cathode for Na-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(6): 2306005-0. doi: 10.3866/PKU.WHXB202306005

    8. [8]

      Pingping LUShuguang ZHANGPeipei ZHANGAiyun NI . Preparation of zinc sulfate open frameworks based probe materials and detection of Pb2+ and Fe3+ ions. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 959-968. doi: 10.11862/CJIC.20240411

    9. [9]

      Ye WangRuixiang GeXiang LiuJing LiHaohong Duan . An Anion Leaching Strategy towards Metal Oxyhydroxides Synthesis for Electrocatalytic Oxidation of Glycerol. Acta Physico-Chimica Sinica, 2024, 40(7): 2307019-0. doi: 10.3866/PKU.WHXB202307019

    10. [10]

      Benhua Wang Chaoyi Yao Yiming Li Qing Liu Minhuan Lan Guipeng Yu Yiming Luo Xiangzhi Song . 一种基于香豆素氟离子荧光探针的合成、表征及性能测试——“科研反哺教学”在有机化学综合实验教学中的探索与实践. University Chemistry, 2025, 40(6): 201-209. doi: 10.12461/PKU.DXHX202408070

    11. [11]

      Jun LUOBaoshu LIUYunchang ZHANGBingkai WANGBeibei GUOLan SHETianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240

    12. [12]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    13. [13]

      Jingjie Tang Luying Xie Jiayu Liu Shangyu Shi Xinyu Sun Jiayang Lin Qikun Yang Chuan'ang Yu Zecheng Wang Yingying Wang Zengyang Xie . Efficient Rapid Synthesis and Antibacterial Activities of Tosylhydrazones: A Recommended Innovative Chemistry Experiment for Undergraduate Medical University. University Chemistry, 2024, 39(3): 316-326. doi: 10.3866/PKU.DXHX202309091

    14. [14]

      Lina GuoRuizhe LiChuang SunXiaoli LuoYiqiu ShiHong YuanShuxin OuyangTierui Zhang . Effect of Interlayer Anions in Layered Double Hydroxides on the Photothermocatalytic CO2 Methanation of Derived Ni-Al2O3 Catalysts. Acta Physico-Chimica Sinica, 2025, 41(1): 100002-0. doi: 10.3866/PKU.WHXB202309002

    15. [15]

      Guang Huang Lei Li Dingyi Zhang Xingze Wang Yugai Huang Wenhui Liang Zhifen Guo Wenmei Jiao . Cobalt’s Valor, Nickel’s Foe: A Comprehensive Chemical Experiment Utilizing a Cobalt-based Imidazolate Framework for Nickel Ion Removal. University Chemistry, 2024, 39(8): 174-183. doi: 10.3866/PKU.DXHX202311051

    16. [16]

      Yingpeng ZHANGXingxing LIYunshang YANGZhidong TENG . A pyrazole-based turn-off fluorescent probe for visual detection of hydrazine. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1301-1308. doi: 10.11862/CJIC.20250064

    17. [17]

      Yuting DUJing YUANPeiyao DENG . Synthesis and application of a fluorescent probe for the detection of reduced glutathione. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1331-1337. doi: 10.11862/CJIC.20240461

    18. [18]

      Kexin Feng Jie Zhang Yujia Sun Qiong Ai Longchun Li . 乙酰二茂铁和二茂铁甲酰丙酮的合成、纯化及表征. University Chemistry, 2025, 40(8): 307-314. doi: 10.12461/PKU.DXHX202409045

    19. [19]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    20. [20]

      Liwei Wang Guangran Ma Li Wang Fugang Xu . A Comprehensive Analytical Chemistry Experiment: Colorimetric Detection of Vitamin C Using Nanozyme and Smartphone. University Chemistry, 2024, 39(8): 255-262. doi: 10.3866/PKU.DXHX202312094

Metrics
  • PDF Downloads(8)
  • Abstract views(971)
  • HTML views(118)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return