Citation: Bai Bing, Wang Long, Yang Jing, Cai Lili, Liu Qianjin, Xi Gaolei, Zhao Zhiwei, Mao Duobin, Chen Zhifei. Asymmetric Conjugate Addition of 1, 3-Diketone to Nitroalkenes Catalyzed by Bifunctional Thiourea-Amide Organocatalysts[J]. Chinese Journal of Organic Chemistry, ;2019, 39(4): 1053-1063. doi: 10.6023/cjoc201809015 shu

Asymmetric Conjugate Addition of 1, 3-Diketone to Nitroalkenes Catalyzed by Bifunctional Thiourea-Amide Organocatalysts

  • Corresponding author: Mao Duobin, maoduobin@sohu.com Chen Zhifei, chenzhifei@126.com
  • Received Date: 10 September 2018
    Revised Date: 14 November 2018
    Available Online: 28 April 2018

    Fund Project: the Department of Science and Technology of Henan Province 172102210068Project supported by the Department of Science and Technology of Henan Province (No. 172102210068) and the Zhengzhou University of Light Industry (No. 2013BSJJ009)the Zhengzhou University of Light Industry 2013BSJJ009

Figures(5)

  • New bifunctional chiral thiourea-amide organocatalysts were developed. Their applications in asymmetric conjugate addition of 2, 4-pentandione to various nitroalkenes were investigated. The corresponding adducts were obtained in excellent yields with high enantioselectivities up to 94% ee in present of 1 mol% catalyst. The catalytic system could also suit for various nitroalkenes bearing electron-donating or electron-withdrawing groups. The preliminary structure-activity relationship study reveals that the acyl group in pyrrolidine N position plays an important role in catalyzing the reaction.
  • 加载中
    1. [1]

      (a) Okino, T.; Hoashi, Y.; Furukawa, T.; Xu, X.; Takemoto, Y. J. Am. Chem. Soc. 2005, 127, 119.
      (b) Bhattarai, B.; Nagorny, P. Org. Lett. 2018, 20, 154.
      (c) Hirama, T.; Umemura, T. Kogure, N.; Kitajima, M.; Takayama, H. Tetrahedron Lett. 2017, 58, 223.
      (d) Amara, Z.; Caron, J.; Joseph, D. Nat. Prod. Rep. 2013, 30, 1211.

    2. [2]

      (a) Terada, M.; Ube, H.; Yaguchi, Y. J. Am. Chem. Soc. 2006, 128, 1451.
      (b) Yu, Lu.; Li, P. F. Tetrahedron Lett. 2014, 55, 3697.
      (c) Siew, W. E.; Ates, C.; Merschaerta, A.; Livingston, A. Green Chem. 2013, 15, 663.
      (d) Azad, C. S.; Khan, I. A.; Narula, A. K. Org. Biomol. Chem. 2016, 14, 11454.

    3. [3]

      (a) Almaşi, D.; Alonso, D. A.; Gómez-Bengoa, E.; Nájera, C. J. Org. Chem. 2009, 74, 6163.
      (b) Servín, F. A.; Madrigal, D.; Romero, J. A.; Chávez, D.; Aguirre, G.; de Parrodi, C. A.; Somanathan, R. Tetrahedron Lett. 2015, 56, 2355.
      (c) Lu, Y. P.; Zou, G.; Zhao, G. Tetrahedron 2015, 71, 4137.

    4. [4]

      (a) Andrés, J. M.; Manzano, R.; Pedrosa, R. Chem. Eur. J. 2008, 14, 5116.
      (b) Andrés, J. M.; González, M.; Maestro, A.; Naharro, D.; Pedrosa, R. Eur. J. Org. Chem. 2017, 2683.
      (c) Wang, C. J.; Zhang, Z. H.; Dong, X. Q.; Wu, X. J. Chem. Commun. 2008, 39, 1431.

    5. [5]

      (a) Hirashima, S. I.; Nakashima, K.; Fujino, Y.; Arai, R.; Sakai, T.; Kawada, M.; Koseki, Y.; Murahashi, M.; Tada, N.; Itoh, A.; Miura T. Tetrahedron Lett. 2014, 55, 4619.
      (b) Li, H.; Zhang, X.; Shi, X.; Ji, N.; He, W.; Zhang, S. Y.; Zhang B. L. Adv. Synth. Catal. 2012, 354, 2264.

    6. [6]

      (a) Andrés, J. M.; Losada, J.; Maestro, A.; Rodríguez-ferrer, P.; Pedrosa, R. J. Org. Chem. 2017, 82, 8444.
      (b) Tukhvatshin, R. S.; Kucherenko, A. S.; Nelyubina, Y. V.; Zlotin, S. G. ACS Catal. 2017, 7, 2981.
      (c) Işık, M.; Unver, M. Y.; Tanyeli, C. J. Org. Chem. 2015, 80, 828.
      (d) Kasaplar, P.; Riente, P.; Hartmann, C.; Pericàs, M. A. Adv. Synth. Catal. 2012, 354, 2905.
      (e) Malerich, J. P.; Hagihara, K.; Rawal, V. H. J. Am. Chem. Soc. 2008, 130, 14416.

    7. [7]

      Xu, K.; Zhang, S.; Hu, Y. B.; Zha, Z. G.; Wang, Z. Y. Chem.-Eur. J. 2013, 19, 3573.  doi: 10.1002/chem.v19.11

    8. [8]

      Cao, C. L.; Ye, M. C.; Sun, X. L.; Tang, Y. Org. Lett. 2006, 8, 2901.  doi: 10.1021/ol060481c

    9. [9]

      (a) Wang, Z. Y.; Ban, S. R.; Yang, M. C.; Li, Q. S. Chirality 2016, 28, 721.
      (b) Cao, Y. J.; Lai, Y. Y.; Wang, X.; Lia, Y. J.; Xiao, W. J. Tetrahedron Lett. 2007, 48, 21.
      (c) Shen, Z. X.; Zhang, Y. Q.; Jiao, C. J.; Li, B.; Ding, J.; Zhang, Y. W. Chirality 2007, 19, 307.
      (d) Ban, S. R.; Zhu. X. X.; Zhang, Z. P.; Xie, H. Y.; Li, Q. S. Eur. J. Org. Chem. 2013, 2977.

    10. [10]

      Vinayagam, P.; Vishwanath, M.; Kesavan, V. Tetrahedron: Asymmetry. 2014, 25, 568.  doi: 10.1016/j.tetasy.2014.02.011

    11. [11]

      Wommack, A. J.; Kingsbury, J. S. J. Org. Chem. 2013, 78, 10573.  doi: 10.1021/jo401377a

    12. [12]

      (a) Fu, J. Y.; Huang, Q. C.; Wang, Q. W.; Wang, L. X.; Xu, X Y. Tetrahedron Lett. 2010, 51, 4870.
      (b) Mei, K.; Zhang, S. L; He, S. T; Li, P.; Jin, M.; Xue, F.; Luo, G. S; Zhang, H. Y; Song. L. R; Duan, W. H; Wang, W. Tetrahedron Lett. 2008, 49, 2681.
      (c) Bai, J. F.; Xu, X. Y.; Huang, Q. C.; Peng, L.; Wang, L. X. Tetrahedron Lett. 2010, 51, 2803.

    13. [13]

      (a) Wang, J.; Li, Hao.; Duan, W. H.; Zu, L. S.; Wang, W. Org. Lett. 2005, 7, 4713.
      (b) Weiner, B.; Szymanski, W.; Janssen, D. B.; Minnaard, A. J.; Feringa, B. L. Chem. Soc. Rev. 2010, 39, 1656.
      (c) Peddie, V.; Pietsch, M.; Bromfield, K. M.; Pike, R. N.; Duggan, P. J.; Abell, A. D. Synthesis 2010, 1845.
      (d) Bae, H. Y.; Song, C. E. ACS Catal. 2015, 5, 3613.
      (e) Liu, B.; Han, X.; Dong, Z.; Lv, H.; Zhou, H. B.; Dong, C. Tetrahedron: Asymmetry. 2013, 24, 1276.

    14. [14]

      (a) Puglisi, A.; Benaglia, M.; Annunziata, R.; Rossi, D. Tetrahedron: Asymmetry. 2008, 19, 2258.
      (b) Peng, F. Z.; Shao, Z. H.; Fan, B. M.; Song, H.; Li G. P.; Zhang, H. B. J. Org. Chem. 2008, 73, 5202.
      (c) Lai, Q.; Li, Y.; Gong, Z. Y.; Liu, Q. W.; Wei, C. Y.; Song, Z. G. Chirality 2015, 27, 979.

    15. [15]

      Dudziński, K.; Pakulska, A. M.; Kwiatkowski, P. Org. Lett. 2012, 14, 4222.  doi: 10.1021/ol3019055

    16. [16]

      Thai, K.; Wang, L.; Dudding, T.; Bilodeau, F.; Gravel, M. Org. Lett. 2010, 12, 5708.  doi: 10.1021/ol102536s

    17. [17]

      Minato, D.; Arimoto, H.; Nagasue, Y.; Demizu, Y.; Onomura, O. Tetrahedron 2008, 64, 6675.  doi: 10.1016/j.tet.2008.05.015

    18. [18]

      Flock, A. M.; Krebs, A.; Bolm, C. Synlett 2010, 1219.

    19. [19]

      Ričko, S.; Svete, J.; Štefane, B.; Perdih, A.; Golobič, A.; Meden, A.; Grošelj, U. Adv. Synth. Catal. 2016, 358, 3786.  doi: 10.1002/adsc.201600498

    20. [20]

      Vural, U.; Durmaz, M.; Sirit, A. Org. Chem. Front. 2016, 3, 730.  doi: 10.1039/C6QO00135A

    21. [21]

      Gao, P.; Wang, C.; Wu, Y.; Zhou, Z.; Tang, C. Eur. J. Org. Chem. 2008, 4563.

    22. [22]

      Jiang, X. X.; Zhang, Y. F.; Liu, X.; Zhang, G.; Lai, L. H.; Wu, L. P.; Zhang, J. N.; Wang, R. J. Org. Chem. 2009, 74, 5562.  doi: 10.1021/jo9009276

    23. [23]

      Ashokkumar, V.; Siva, A. Org. Biomol. Chem. 2015, 13, 10216.  doi: 10.1039/C5OB01351H

  • 加载中
    1. [1]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    2. [2]

      Dan Liu . 可见光-有机小分子协同催化的不对称自由基反应研究进展. University Chemistry, 2025, 40(6): 118-128. doi: 10.12461/PKU.DXHX202408101

    3. [3]

      Hong Lu Yidie Zhai Xingxing Cheng Yujia Gao Qing Wei Hao Wei . Advancements and Expansions in the Proline-Catalyzed Asymmetric Aldol Reaction. University Chemistry, 2024, 39(5): 154-162. doi: 10.3866/PKU.DXHX202310074

    4. [4]

      Ke QIAOYanlin LIShengli HUANGGuoyu YANG . Advancements in asymmetric catalysis employing chiral iridium (ruthenium) complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2091-2104. doi: 10.11862/CJIC.20240265

    5. [5]

      Qianwen HanTenglong ZhuQiuqiu LüMahong YuQin Zhong . Performance and Electrochemical Asymmetry Optimization of Hydrogen Electrode Supported Reversible Solid Oxide Cell. Acta Physico-Chimica Sinica, 2025, 41(1): 100005-0. doi: 10.3866/PKU.WHXB202309037

    6. [6]

      Xuejie WangGuoqing CuiCongkai WangYang YangGuiyuan JiangChunming Xu . Research Progress on Carbon-based Catalysts for Catalytic Dehydrogenation of Liquid Organic Hydrogen Carriers. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-0. doi: 10.1016/j.actphy.2024.100044

    7. [7]

      Lewang YuanYaoyao PengZong-Jie GuanYu Fang . Insights into the development of 2D covalent organic frameworks as photocatalysts in organic synthesis. Acta Physico-Chimica Sinica, 2025, 41(8): 100086-0. doi: 10.1016/j.actphy.2025.100086

    8. [8]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    9. [9]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    10. [10]

      Jingping LiSuding YanJiaxi WuQiang ChengKai Wang . Improving hydrogen peroxide photosynthesis over inorganic/organic S-scheme photocatalyst with LiFePO4. Acta Physico-Chimica Sinica, 2025, 41(9): 100104-0. doi: 10.1016/j.actphy.2025.100104

    11. [11]

      Yue Zhao Yanfei Li Tao Xiong . Copper Hydride-Catalyzed Nucleophilic Additions of Unsaturated Hydrocarbons to Aldehydes and Ketones. University Chemistry, 2024, 39(4): 280-285. doi: 10.3866/PKU.DXHX202309001

    12. [12]

      Xudong Liu Huili Fan Junping Xiao Min Yang Yan Li . Teaching Approaches to the AE + AN Mechanism of Electrophilic Addition Reactions between Olefins and Inorganic Acids in Organic Chemistry. University Chemistry, 2025, 40(7): 367-372. doi: 10.12461/PKU.DXHX202409041

    13. [13]

      Chi Li Jichao Wan Qiyu Long Hui Lv Ying XiongN-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016

    14. [14]

      Ruolin CHENGYue WANGXiyao NIUHuagen LIANGLing LIUShijian LU . Efficient photothermal catalytic CO2 cycloaddition over W18O49/rGO composites. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1276-1284. doi: 10.11862/CJIC.20240424

    15. [15]

      Shicheng Yan . Experimental Teaching Design for the Integration of Scientific Research and Teaching: A Case Study on Organic Electrooxidation. University Chemistry, 2024, 39(11): 350-358. doi: 10.12461/PKU.DXHX202408036

    16. [16]

      Jiashuang Lu Xiaoyang Xu Youqing He Mingyue Wu Ruixin Shi Wenfang Yu Hang Lu Ji Liu Qingzeng Zhu . 生命健康中的有机硅高分子. University Chemistry, 2025, 40(8): 169-180. doi: 10.12461/PKU.DXHX202409143

    17. [17]

      Junyuan Zhang Zhiwei Miao . 有机磷杀虫剂的前世今生. University Chemistry, 2025, 40(6): 129-138. doi: 10.12461/PKU.DXHX202408118

    18. [18]

      Jiajie Li Xiaocong Ma Jufang Zheng Qiang Wan Xiaoshun Zhou Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117

    19. [19]

      Wenxiu YangJinfeng ZhangQuanlong XuYun YangLijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-0. doi: 10.3866/PKU.WHXB202312014

    20. [20]

      Zhifang SUZongjie GUANYu FANG . Process of electrocatalytic synthesis of small molecule substances by porous framework materials. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2373-2395. doi: 10.11862/CJIC.20240290

Metrics
  • PDF Downloads(3)
  • Abstract views(852)
  • HTML views(76)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return