Citation: Wang Na, Gu Qiang-Shuai, Cheng Yong-Feng, Li Lei, Li Zhong-Liang, Guo Zhen, Liu Xin-Yuan. Visible-Light Promoted Preparation of Trifluoromethylated Tetrahydrofuran and Tetrahydropyran[J]. Chinese Journal of Organic Chemistry, ;2019, 39(1): 200-206. doi: 10.6023/cjoc201808048 shu

Visible-Light Promoted Preparation of Trifluoromethylated Tetrahydrofuran and Tetrahydropyran

  • Corresponding author: Gu Qiang-Shuai, guqs@sustc.edu.cn Guo Zhen, guozhen@tyut.edu.cn Liu Xin-Yuan, liuxy3@sustc.edu.cn
  • Received Date: 31 August 2018
    Revised Date: 26 September 2018
    Available Online: 19 January 2018

    Fund Project: the National Natural Science Foundation of China 21831002the Shenzhen Nobel Prize Scientists Laboratory Project C17213101Project supported by the National Natural Science Foundation of China (Nos. 21722203, 21831002, 21801116, and 21572096), the Shenzhen Special Funds for the Development of Biomedicine, Internet, New Energy, and New Material Industries (Nos. JCYJ20170412152435366, JCYJ20170307105638498), the Natural Science Foundation of Guangdong Province (No. 2018A030310083) and the Shenzhen Nobel Prize Scientists Laboratory Project (No. C17213101)the Shenzhen Special Funds for the Development of Biomedicine, Internet, New Energy, and New Material Industries JCYJ20170412152435366the National Natural Science Foundation of China 21801116the Shenzhen Special Funds for the Development of Biomedicine, Internet, New Energy, and New Material Industries JCYJ-20170307105638498the National Natural Science Foundation of China 21722203the Natural Science Foundation of Guangdong Province 2018A030310083the National Natural Science Foundation of China 21572096

Figures(2)

  • An efficient protocol for facile access to trifluoromethylated tetrahydrofuran and tetrahydropyran has been developed under visible light irradiation conditions via radical 1, 2-alkoxyl-trifluoromethylation of unactivated alkene. It features the use of readily commercially available and operatively simple trifluoromethanesulfonyl chloride as a trifluoro- methyl radical source, thus making the protocol potentially appealing for practical preparation.
  • 加载中
    1. [1]

    2. [2]

      (a) Boivin, T. L. B. Tetrahedron 1987, 43, 3309.
      (b) Nasir, N. M.; Ermanis, K.; Clarke, P. A. Org. Biomol. Chem. 2014, 12, 3323.
      (c) Tikad, A.; Delbrouck, J. A.; Vincent, S. P. Chem.-Eur. J. 2016, 22, 9456.

    3. [3]

      (a) Müller, K.; Faeh, C.; Diederich, F. Science 2007, 317, 1881.
      (b) Gillis, E. P.; Eastman, K. J.; Hill, M. D.; Donnelly, D. J.; Meanwell, N. A. J. Med. Chem. 2015, 58, 8315.
      (c) Zhou, Y.; Wang, J.; Gu, Z.; Wang, S.; Zhu, W.; Aceñ a, J. L.; Soloshonok, V. A.; Izawa, K.; Liu, H. Chem. Rev. 2016, 116, 422.
      (d) Meanwell, N. A. J. Med. Chem. 2018, 61, 5822.

    4. [4]

      (a) Jeschke, P. ChemBioChem 2004, 5, 570.
      (b) Jeschke, P. Pest Manage. Sci. 2010, 66, 10.
      (c) Fujiwara, T.; O'Hagan, D. J. Fluorine Chem. 2014, 167, 16.

    5. [5]

      Ojima, I. Fluorine in Medicinal Chemistry and Chemical Biology, Blackwell Publishing Ltd, West Sussex, 2009.

    6. [6]

    7. [7]

      (a) Magueur, G.; Crousse, B.; Charneau, S.; Grellier, P.; Bégué, J.-P.; Bonnet-Delpon, D. J. Med. Chem. 2004, 47, 2694.
      (b) Frezza, M.; Balestrino, D.; Soulère, L.; Reverchon, S.; Queneau, Y.; Forestier, C.; Doutheau, A. Eur. J. Org. Chem. 2006, 2006, 4731.
      (c) Chen, J.-L.; You, Z.-W.; Qing, F.-L. J. Fluorine Chem. 2013, 155, 143.
      (d) Kim, S.; Kim, E.; Lee, W.; Hong, J. H. Nucleosides Nucleotides Nucleic Acids 2014, 33, 747.
      (e) Kollatos, N.; Manta, S.; Dimopoulou, A.; Parmenopoulou, V.; Triantakonstanti, V. V.; Kellici, T.; Mavromoustakos, T.; Schols, D.; Komiotis, D. Carbohydr. Res. 2015, 407, 170.
      (f) Shibata, H.; Tsuchikawa, H.; Hayashi, T.; Matsumori, N.; Murata, M.; Usui, T. Chem.-Asian J. 2015, 10, 915.
      (g) Achmatowicz, M. M.; Allen, J. G.; Bio, M. M.; Bartberger, M. D.; Borths, C. J.; Colyer, J. T.; Crockett, R. D.; Hwang, T.-L.; Koek, J. N.; Osgood, S. A.; Roberts, S. W.; Swietlow, A.; Thiel, O. R.; Caille, S. J. Org. Chem. 2016, 81, 4736.

    8. [8]

      (a) Yang, B.; Xu, X.-H.; Qing, F.-L. Chin. J. Chem. 2016, 34, 465.
      (b) Li, T.; Yu, P.; Lin, J.-S.; Zhi, Y.; Liu, X.-Y. Chin. J. Chem. 2016, 34, 490.

    9. [9]

      (a) Zhu, R.; Buchwald, S. L. J. Am. Chem. Soc. 2012, 134, 12462.
      (b) Beniazza, R.; Molton, F.; Duboc, C.; Tron, A.; McClenaghan, N. D.; Lastécouères, D.; Vincent, J.-M. Chem. Commun. 2015, 51, 9571.
      (c) Wang, Y.; Jiang, M.; Liu, J.-T. Adv. Synth. Catal. 2016, 358, 1322.
      (d) Cheng, Y.-F.; Dong, X.-Y.; Gu, Q.-S.; Yu, Z.-L.; Liu, X.-Y. Angew. Chem., Int. Ed. 2017, 56, 8883.

    10. [10]

      Noto, N.; Koike, T.; Akita, M. J. Org. Chem. 2016, 81, 7064.  doi: 10.1021/acs.joc.6b00953

    11. [11]

      (a) Foulard, G.; Brigaud, T.; Portella, C. J. Fluorine Chem. 1998, 91, 179.
      (b) Lin, R.; Sun, H.; Yang, C.; Shen, W.; Xia, W. Chem. Commun. 2015, 51, 399.
      (c) Ryzhakov, D.; Jarret, M.; Guillot, R.; Kouklovsky, C.; Vincent, G. Org. Lett. 2017, 19, 6336.

    12. [12]

      (a) Heaton, C. A.; Powell, R. L. J. Fluorine Chem. 1989, 45, 86.
      (b) Kamigata, N.; Fukushima, T.; Yoshida, M. J. Chem. Soc., Chem. Commun. 1989, 1559.
      (c) Nagib, D. A.; MacMillan, D. W. C. Nature 2011, 480, 224.
      (d) Ni, C.; Hu, M.; Hu, J. Chem. Rev. 2015, 115, 765.
      (e) Chachignon, H.; Guyon, H.; Cahard, D. Beilstein J. Org. Chem. 2017, 13, 2800.

    13. [13]

      (a) Yu, P.; Lin, J.-S.; Li, L.; Zheng, S.-C.; Xiong, Y.-P.; Zhao, L.-J.; Tan, B.; Liu, X.-Y. Angew. Chem., Int. Ed. 2014, 53, 11890.
      (b) Yu, P.; Zheng, S.-C.; Yang, N.-Y.; Tan, B.; Liu, X.-Y. Angew. Chem., Int. Ed. 2015, 54, 4041.
      (c) Lin, J.-S.; Dong, X.-Y.; Li, T.-T.; Jiang, N.-C.; Tan, B.; Liu, X.-Y. J. Am. Chem. Soc. 2016, 138, 9357.
      (d) Li, L.; Li, Z.-L.; Wang, F.-L.; Guo, Z.; Cheng, Y.-F.; Wang, N.; Dong, X.-W.; Fang, C.; Liu, J.; Hou, C.; Tan, B.; Liu, X.-Y. Nat. Commun. 2016, 7, 13852.
      (e) Li, L.; Li, Z.-L.; Gu, Q.-S.; Wang, N.; Liu, X.-Y. Sci. Adv. 2017, 3, e1701487.
      (f) Lin, J.-S.; Wang, F.-L.; Dong, X.-Y.; He, W.-W.; Yuan, Y.; Chen, S.; Liu, X.-Y. Nat. Commun. 2017, 8, 14841.
      (g) Li, X.-T.; Gu, Q.-S.; Dong, X.-Y.; Meng, X.; Liu, X.-Y. Angew. Chem., Int. Ed. 2018, 57, 7668.

    14. [14]

      (a) Yoon, T. P.; Ischay, M. A.; Du, J. Nat. Chem. 2010, 2, 527.
      (b) Narayanam, J. M. R.; Stephenson, C. R. J. Chem. Soc. Rev. 2011, 40, 102.
      (c) Teplý, F. Collect. Czech. Chem. Commun. 2011, 76, 859.
      (d) Xuan, J.; Xiao, W.-J. Angew. Chem., Int. Ed. 2012, 51, 6828.
      (e) Prier, C. K.; Rankic, D. A.; MacMillan, D. W. C. Chem. Rev. 2013, 113, 5322.
      (f) Hopkinson, M. N.; Sahoo, B.; Li, J.-L.; Glorius, F. Chem.-Eur. J. 2014, 20, 3874.
      (g) Koike, T.; Akita, M. Inorg. Chem. Front. 2014, 1, 562.
      (h) Nicewicz, D. A.; Nguyen, T. M. ACS Catal. 2014, 4, 355.
      (i) Ravelli, D.; Protti, S.; Fagnoni, M. Chem. Rev. 2016, 116, 9850.
      (j) Romero, N. A.; Nicewicz, D. A. Chem. Rev. 2016, 116, 10075.
      (k) Shaw, M. H.; Twilton, J.; MacMillan, D. W. C. J. Org. Chem. 2016, 81, 6898.
      (l) Skubi, K. L.; Blum, T. R.; Yoon, T. P. Chem. Rev. 2016, 116, 10035.
      (m) Staveness, D.; Bosque, I.; Stephenson, C. R. J. Acc. Chem. Res. 2016, 49, 2295.
      (n) Twilton, J.; Le, C.; Zhang, P.; Shaw, M. H.; Evans, R. W.; MacMillan, D. W. C. Nat. Rev. Chem. 2017, 1, 52.
      (o) Cao, M.-Y.; Ren, X.; Lu, Z. Tetrahedron Lett. 2015, 56, 3732.

    15. [15]

      (a) Huang, L.; Ye, L.; Li, X.-H.; Li, Z.-L.; Lin, J.-S.; Liu, X.-Y. Org. Lett. 2016, 18, 5284.
      (b) Li, Z.-L.; Li, X.-H.; Wang, N.; Yang, N.-Y.; Liu, X.-Y. Angew. Chem., Int. Ed. 2016, 55, 15100.
      (c) Wang, N.; Li, L.; Li, Z.-L.; Yang, N.-Y.; Guo, Z.; Zhang, H.-X.; Liu, X.-Y. Org. Lett. 2016, 18, 6026.
      (d) Wang, N.; Wang, J.; Guo, Y.-L.; Li, L.; Sun, Y.; Li, Z.; Zhang, H.-X.; Guo, Z.; Li, Z.-L.; Liu, X.-Y. Chem. Commun. 2018, 54, 8885.

    16. [16]

      Kim, E.; Choi, S.; Kim, H.; Cho, E. J. Chem.-Eur. J. 2013, 19, 6209.  doi: 10.1002/chem.201300564

    17. [17]

      (a) Jiang, H.; Huang, C.; Guo, J.; Zeng, C.; Zhang, Y.; Yu, S. Chem.-Eur. J. 2012, 18, 15158.
      (b) Jiang, H.; Cheng, Y.; Zhang, Y.; Yu, S. Eur. J. Org. Chem. 2013, 2013, 5485.

  • 加载中
    1. [1]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    2. [2]

      Xuhui FanFan WangMengjiao LiFaiza MeharbanYaying LiYuanyuan CuiXiaopeng LiJingsan XuQi XiaoWei Luo . Visible light excitation on CuPd/TiN with enhanced chemisorption for catalyzing Heck reaction. Chinese Chemical Letters, 2025, 36(1): 110299-. doi: 10.1016/j.cclet.2024.110299

    3. [3]

      Jia PengGuo-Ping LuoChao WuCongyang Wang . Visible light-induced deuteration of arenes via thianthrenation. Chinese Chemical Letters, 2025, 36(8): 111255-. doi: 10.1016/j.cclet.2025.111255

    4. [4]

      Xia MiChaoyang WangJingyu ZhangRemi ChauvinXiuling Cui . Recent progress in the visible-light-promoted synthesis of phenanthridines. Chinese Chemical Letters, 2025, 36(11): 111485-. doi: 10.1016/j.cclet.2025.111485

    5. [5]

      Hui-Xian JiangZhi-Tao LiuPei XuXu Zhu . Synthetic application of oxalate salts for visible-light-induced radical transformations. Chinese Chemical Letters, 2025, 36(12): 111224-. doi: 10.1016/j.cclet.2025.111224

    6. [6]

      Tingting LiuPengfei SunWei ZhaoYingshuang LiLujun ChengJiahai FanXiaohui BiXiaoping Dong . Magnesium doping to improve the light to heat conversion of OMS-2 for formaldehyde oxidation under visible light irradiation. Chinese Chemical Letters, 2024, 35(4): 108813-. doi: 10.1016/j.cclet.2023.108813

    7. [7]

      Ziruo Zhou Wenyu Guo Tingyu Yang Dandan Zheng Yuanxing Fang Xiahui Lin Yidong Hou Guigang Zhang Sibo Wang . Defect and nanostructure engineering of polymeric carbon nitride for visible-light-driven CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100245-100245. doi: 10.1016/j.cjsc.2024.100245

    8. [8]

      Tian-Yu GaoXiao-Yan MoShu-Rong ZhangYuan-Xu JiangShu-Ping LuoJian-Heng YeDa-Gang Yu . Visible-light photoredox-catalyzed carboxylation of aryl epoxides with CO2. Chinese Chemical Letters, 2024, 35(7): 109364-. doi: 10.1016/j.cclet.2023.109364

    9. [9]

      Lang GaoCen ZhouRui WangFeng LanBohang AnXiaozhou HuangXiao Zhang . Unveiling inverse vulcanized polymers as metal-free, visible-light-driven photocatalysts for cross-coupling reactions. Chinese Chemical Letters, 2024, 35(4): 108832-. doi: 10.1016/j.cclet.2023.108832

    10. [10]

      Jing WangZenghui LiXiaoyang LiuBochao SuHonghong GongChao FengGuoping LiGang HeBin Rao . Fine-tuning redox ability of arylene-bridged bis(benzimidazolium) for electrochromism and visible-light photocatalysis. Chinese Chemical Letters, 2024, 35(9): 109473-. doi: 10.1016/j.cclet.2023.109473

    11. [11]

      Xin Wang Changzhao Chen Qishen Wang Kai Dai . Graphene quantum dot modified Bi2MoO6 nanoflower for efficient degradation of BPA under visible light. Chinese Journal of Structural Chemistry, 2024, 43(12): 100473-100473. doi: 10.1016/j.cjsc.2024.100473

    12. [12]

      Rong-Nan YiWei-Min He . Visible light/copper catalysis enabled radial type ring-opening of sulfonium salts. Chinese Chemical Letters, 2025, 36(4): 110787-. doi: 10.1016/j.cclet.2024.110787

    13. [13]

      Min YanZihao YePing Lu . Catalyst-free, visible-light-induced [2π + 2σ] cycloaddition towards azabicyclohexanes. Chinese Chemical Letters, 2025, 36(6): 110540-. doi: 10.1016/j.cclet.2024.110540

    14. [14]

      Liangbo ZhangJun ChengYahui ShiKunjie HouQi AnJingyi LiBaohui CuiFei Chen . Efficient removal of tetracycline hydrochloride by ZnO/HNTs composites under visible light: Kinetics, degradation pathways and mechanism. Chinese Chemical Letters, 2025, 36(7): 110400-. doi: 10.1016/j.cclet.2024.110400

    15. [15]

      Meixin WangYizhi ZhangShanshan LiuXiao Shen . Synthesis of rigidified cyclohexanes enabled by visible-light-induced trifluoroacetylsilane-mediated [2 + 2] cycloaddition of cyclopropenes. Chinese Chemical Letters, 2025, 36(8): 110758-. doi: 10.1016/j.cclet.2024.110758

    16. [16]

      Pei XuTian-Zi HaoZhi-Tao LiuYi-Qin LiuHui-Xian JiangDong GuoXu Zhu . Visible-light-induced dual catalysis for divergent reduction of nitro compounds with CO2 radical anion. Chinese Chemical Letters, 2025, 36(10): 110899-. doi: 10.1016/j.cclet.2025.110899

    17. [17]

      Ting ZhangBaojing HuangHong HuangAiling YanShiqiang LuXufang Qian . Visible light boosted Fenton-like reaction of carbon dot-Fe(Ⅲ) complex: Kinetics and mechanism insights. Chinese Chemical Letters, 2025, 36(11): 110885-. doi: 10.1016/j.cclet.2025.110885

    18. [18]

      Xiao LiuHangqi LiuQian WangDandan ZhengSibo WangMasakazu AnpoGuigang Zhang . Rational synthesis of poly(heptazine imides) nanorod in ternary LiCl/NaCl/KCl for visible light hydrogen production. Chinese Chemical Letters, 2025, 36(12): 111621-. doi: 10.1016/j.cclet.2025.111621

    19. [19]

      Youxin FuJunji Zhang . Formylation: A magic strategy for enhancing the performance of visible-light-driven, speed-tunable molecular motors. Chinese Chemical Letters, 2025, 36(12): 111635-. doi: 10.1016/j.cclet.2025.111635

    20. [20]

      Cui Luo Peng-Hui Li Wei-Ming Liao Qia-Chun Lin Xiao-Xiang Zhou Jun He . Strategic metal substitution for enhanced visible-light-driven oxygen evolution in heterometallic MOFs. Chinese Journal of Structural Chemistry, 2025, 44(7): 100621-100621. doi: 10.1016/j.cjsc.2025.100621

Metrics
  • PDF Downloads(9)
  • Abstract views(1214)
  • HTML views(133)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return