Citation: Wu Wensheng, Yuan Hang, Huang Gaokui, Jiang Chunhui, Lu Hongfei. Fluorination of β-Ketoesters and β-Ketoamides Based on PhI(OAc)2[J]. Chinese Journal of Organic Chemistry, ;2019, 39(1): 137-143. doi: 10.6023/cjoc201808047 shu

Fluorination of β-Ketoesters and β-Ketoamides Based on PhI(OAc)2

  • Corresponding author: Jiang Chunhui, chemjiang@just.edu.cn Lu Hongfei, zjluhf1979@just.edu.cn
  • These authors contributed equally to this work
    Dedicated to Professor Qingyun Chen on the occasion of his 90th birthday
  • Received Date: 31 August 2018
    Revised Date: 25 October 2018
    Available Online: 5 January 2018

    Fund Project: the Natural Science Fund for Colleges and Universities in Jiangsu Province 17KJB150013Project supported by the National Natural Science Foundation of China (No. 21402067), the Natural Science Foundation of Jiangsu Province (No. BK20170569) and the Natural Science Fund for Colleges and Universities in Jiangsu Province (No. 17KJB150013)the National Natural Science Foundation of China 21402067the Natural Science Foundation of Jiangsu Province BK20170569

Figures(2)

  • Herein, a nucleophilic fluorination reaction to construct fluorine-containing β-ketoesters and β-ketoamides is reported. The reaction uses PhI(OAc)2 as oxidant and 3HF·Et3N as fluorinating reagent. It can effectively build a series of fluorochemical compounds containing quaternary carbon center under room temperature reaction conditions for 30 min. Compared with the traditional electrophilic fluorination reaction, this method has the advantages of no metal participation, short reaction time, simple reaction conditions and high reaction yield.
  • 加载中
    1. [1]

      (a) Isanbor, C.; Hagan, D. O. J. Fluorine Chem. 2006, 127, 303.
      (b) Kirk, K. L. J. Fluorine Chem. 2006, 127, 1013.
      (c) Purser, S.; Moore, P. R.; Swallow, S.; Gouvemeur, V. Chem. Soc. Rev. 2008, 37, 320.
      (d) Jiang, W.; Sanchez-Rosello, M.; Acena, J. L.; Pozo, C.; Sorochinsky, A. E.; Fustero, S.; Soloshonok, V. A.; Hong, L. Chem. Rev. 2014, 114, 2432.
      (e) Xu, J. X.; Hu, Y. L.; Huang, D. F.; Wang, K. H.; Xu, C. M.; Niu, T. Adv. Synth. Catal. 2012, 354, 515.
      (f) Koike, T.; Akita, M. J. Fluorine Chem. 2014, 167, 30.
      (g) Wang, X.; Liu, G. K.; Xu, X. H.; Naoyuki, S.; Etsuko, T.; Norio, S. Angew. Chem., Int. Ed. 2014, 53, 1827.
      (h) Sugiishi, K.; Matsugi, M.; Hamamoto, H.; Amii, H. RSC. Adv. 2015, 5, 17269.
      (i) Köckinger, M.; Ciaglia, T.; Bersier, M.; Hanselmann, P.; Gutmann, B.; Kappe, C. O. Green Chem. 2018, 20, 108.

    2. [2]

      (a) Zhao, Y. M.; Cheung, M. S.; Lin, Z. Y.; Sun, J. W. Angew. Chem., Int. Ed. 2012, 51, 10359.
      (b) Suzuki, S.; Kitamura, Y.; Lectard, S.; Hamashima, Y.; Sodeoka, M. Angew. Chem., Int. Ed. 2012, 51, 4581.
      (c) Shibatomi, K.; Soga, Y.; Narayama, A.; Fujisawa, I.; Iwasa, S. J. Am. Chem. Soc. 2012, 134, 9836.
      (d) Ma, B. W.; Lin, X. B.; Lin, L. L.; Feng, X. M.; Liu, X. H. J. Org. Chem. 2017, 82, 701.
      (e) Salomon, P.; Zard, S. Z. Org. Lett. 2014, 16, 1482.
      (f) Qi, X. X.; Yu, F.; Chen, P. H.; Liu, G. S. Angew. Chem., Int. Ed. 2017, 56, 12692.
      (g) Molnár, I. G.; Gilmour, R. J. Am. Chem. Soc. 2016, 138, 5004.
      (h) Ma, X. H.; Diane, M.; Ralph, G.; Chen, C.; Biscoe, M. R. Angew. Chem., Int. Ed. 2017, 56, 12663.
      (i) Liang, T.; Neumann, C. N.; Ritter, T. Angew. Chem., Int. Ed. 2013, 52, 8214.

    3. [3]

      (a) Shibatomi, K.; Tsuzuki, Y.; Iwasa, S. Chem. Lett. 2008, 37, 1098.
      (b) Shibatomi, K.; Kitahara, K.; Sasaki, N.; Kawasaki, Y.; Fujisawa, I.; Iwasa, S. Nat. Commun. 2017, 8, 15600.
      (c) Prusov, E. V. Angew. Chem., Int. Ed. 2017, 56, 14356.
      (d) Kang, S. H.; Kim, D. Y. Adv. Synth. Catal. 2010, 352, 2783.
      (e) Kitamura, T.; Kuriki, S.; Morshed, M. H.; Hori, Y. Org. Lett. 2011, 13, 2392.
      (f) Kitamura, T.; Muta, K.; Muta, K. J. Org. Chem. 2014, 79, 5842.

    4. [4]

      (a) Li, C. K.; Breit, B. J. Am. Chem. Soc. 2014, 136, 862.
      (b) Turnbull, B. W. H.; Evans, P. A. J. Am. Chem. Soc. 2015, 137, 6156.
      (c) Roy, S. R.; Didier, D.; Kleiner, A.; Marek, I. Chem. Sci. 2016, 7, 5989.
      (d) Starkov, P.; Moore, J. T.; Duquette, D. C.; Stoltz, B. M.; Marek, I. J. Am. Chem. Soc. 2017, 139, 9615.
      (e) Liu, J. Y.; Zhao, J.; Zhang, J. L.; Xu, P. F. Org. Lett. 2017, 19, 1846.

    5. [5]

      (a) Gu, X.; Zhang, Y.; Xu, Z. J.; Che, C. M. Chem. Commun. 2014, 50, 7870.
      (b) Wang, Y. F.; Wang, H. J.; Jiang, Y. D.; Zhang, C.; Shao, J. J.; Xu, D. Q. Green. Chem. 2017, 19, 1674.
      (c) Zheng, L. S.; Wei, Y. L.; Jiang, K. Z.; Deng, Y.; Zheng, Z. J.; Xu, L. W. Adv. Synth. Catal. 2014, 356, 3769.
      (d) Kwon, S. J.; Kim, D. Y. J. Fluorine Chem. 2015, 180, 201.

    6. [6]

      Hintermann, L.; Togni, A. T. Angew. Chem., Int. Ed. 2000, 39, 4359.  doi: 10.1002/(ISSN)1521-3773

    7. [7]

      Wang, X. S.; Lan, Q.; Shirakawa, S.; Maruoka, K. Chem. Commun. 2010, 46, 321.  doi: 10.1039/B920099A

    8. [8]

      (a) Nash, T. J.; Pattison, G. Eur. J. Org. Chem. 2015, 3779.
      (b) Suzuki, S.; Kamo, T.; Fukushi, K.; Hiramatsu, T.; Tokunaga, E.; Dohi, T.; Kita, Y.; Shibata, N. Chem. Sci. 2014, 5, 2754.
      (c) Pluta, R.; Krach, P. E.; Cavallo, L.; Falvienne, L.; Rueping, M. ACS Catal. 2018, 8, 2582.
      (d) Wang, Y.; Yuan, H.; Lu, H. F.; Zheng, W. H. Org. Lett. 2018, 20, 2555.
      (e) Goldbberg, N. W.; Shen, X.; Li, J. K.; Ritter, T. Org. Lett. 2016, 18, 6102.
      (f) Woerly, E. M.; Banik, S. M.; Jacobsen, E. N. J. Am. Chem. Soc. 2016, 138, 13858.
      (g) Satoshi, M.; Hiroki, O.; Ayako, K.; Kanami, K.; Yuki, M.; Jun, I.; Kodai, N.; Ryo, H.; Toshiya, U.; Kenya, C. Org. Lett. 2017, 19, 2572.

    9. [9]

      Gondo, K; Kitamura, T. Molecules 2012, 17, 6625.  doi: 10.3390/molecules17066625

    10. [10]

      (a) Kitamura, T.; Muta, K.; Muta, K. J. Org. Chem. 2014, 79, 5842.
      (b) Wirth, T. Angew. Chem., Int. Ed. 2005, 44, 3656.
      (c)Yoshimura, A.; Zhdankin, V. V. Chem. Rev. 2016, 116, 3328.
      (d) Zhang, B. B.; Zhang, X.; Hu, B.; Sun, D. S.; Wang, S. L.; Zhang-Negrerie, D.; Du, Y. F. Org. Lett. 2017, 19, 902.

    11. [11]

      Uyanik, M.; Yasui, T.; Ishihara, K. J. Org. Chem. 2017, 82, 11946.  doi: 10.1021/acs.joc.7b01941

    12. [12]

      Banik, S. M.; Medley, J. W.; Jacobsen, E. N. J. Am. Chem. Soc. 2018, 138, 5000.

    13. [13]

      Kitamura, T.; Muta, K.; Oyamada, J. J. Org. Chem. 2015, 80, 10431.  doi: 10.1021/acs.joc.5b01929

  • 加载中
    1. [1]

      Yue Zhao Yanfei Li Tao Xiong . Copper Hydride-Catalyzed Nucleophilic Additions of Unsaturated Hydrocarbons to Aldehydes and Ketones. University Chemistry, 2024, 39(4): 280-285. doi: 10.3866/PKU.DXHX202309001

    2. [2]

      Ruitong Zhang Zhiqiang Zeng Xiaoguang Zhang . Improvement of Ethyl Acetate Saponification Reaction and Iodine Clock Reaction Experiments. University Chemistry, 2024, 39(8): 197-203. doi: 10.3866/PKU.DXHX202312004

    3. [3]

      Guojie Xu Fang Yu Yunxia Wang Meng Sun . Introduction to Metal-Catalyzed β-Carbon Elimination Reaction of Cyclopropenones. University Chemistry, 2024, 39(8): 169-173. doi: 10.3866/PKU.DXHX202401060

    4. [4]

      Wentao Lin Wenfeng Wang Yaofeng Yuan Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095

    5. [5]

      Lihui Jiang Wanrong Dong Hua Yang Yongqing Xia Hongjian Peng Jun Yuan Xiaoqian Hu Zihan Zeng Yingping Zou Yiming Luo . Study on Extraction of p-Hydroxyacetophenone. University Chemistry, 2024, 39(11): 259-268. doi: 10.12461/PKU.DXHX202402056

    6. [6]

      Liangzhen Hu Li Ni Ziyi Liu Xiaohui Zhang Bo Qin Yan Xiong . A Green Chemistry Experiment on Electrochemical Synthesis of Benzophenone. University Chemistry, 2024, 39(6): 350-356. doi: 10.3866/PKU.DXHX202312001

    7. [7]

      Yongqing Kuang Jie Liu Jianjun Feng Wen Yang Shuanglian Cai Ling Shi . Experimental Design for the Two-Step Synthesis of Paracetamol from 4-Hydroxyacetophenone. University Chemistry, 2024, 39(8): 331-337. doi: 10.12461/PKU.DXHX202403012

    8. [8]

      Meijin Li Xirong Fu Xue Zheng Yuhan Liu Bao Li . The Marvel of NAD+: Nicotinamide Adenine Dinucleotide. University Chemistry, 2024, 39(9): 35-39. doi: 10.12461/PKU.DXHX202401027

    9. [9]

      Hongting Yan Aili Feng Rongxiu Zhu Lei Liu Dongju Zhang . Reexamination of the Iodine-Catalyzed Chlorination Reaction of Chlorobenzene Using Computational Chemistry Methods. University Chemistry, 2025, 40(3): 16-22. doi: 10.12461/PKU.DXHX202403010

    10. [10]

      Daojuan Cheng Fang Fang . Exploration and Implementation of Science-Education Integration in Organic Chemistry Teaching for Pharmacy Majors: A Case Study on Nucleophilic Substitution Reactions of Alkyl Halides. University Chemistry, 2024, 39(11): 72-78. doi: 10.12461/PKU.DXHX202403105

    11. [11]

      Yurong Tang Yunren Shi Yi Xu Bo Qin Yanqin Xu Yunfei Cai . Innovative Experiment and Course Transformation Practice of Visible-Light-Mediated Photocatalytic Synthesis of Isoquinolinone. University Chemistry, 2024, 39(5): 296-306. doi: 10.3866/PKU.DXHX202311087

    12. [12]

      Zhuoming Liang Ming Chen Zhiwen Zheng Kai Chen . Multidimensional Studies on Ketone-Enol Tautomerism of 1,3-Diketones By 1H NMR. University Chemistry, 2024, 39(7): 361-367. doi: 10.3866/PKU.DXHX202311029

    13. [13]

      Lei Shi . Nucleophilicity and Electrophilicity of Radicals. University Chemistry, 2024, 39(11): 131-135. doi: 10.3866/PKU.DXHX202402018

    14. [14]

      Zhongyan Cao Youzhi Xu Menghua Li Xiao Xiao Xianqiang Kong Deyun Qian . Electrochemically Driven Denitrative Borylation and Fluorosulfonylation of Nitroarenes. University Chemistry, 2025, 40(4): 277-281. doi: 10.12461/PKU.DXHX202407017

    15. [15]

      Ping Song Nan Zhang Jie Wang Rui Yan Zhiqiang Wang Yingxue Jin . Experimental Teaching Design on Synthesis and Antitumor Activity Study of Cu-Pyropheophorbide-a Methyl Ester. University Chemistry, 2024, 39(6): 278-286. doi: 10.3866/PKU.DXHX202310087

    16. [16]

      Shuying Zhu Shuting Wu Ou Zheng . Improvement and Expansion of the Experiment for Determining the Rate Constant of the Saponification Reaction of Ethyl Acetate. University Chemistry, 2024, 39(4): 107-113. doi: 10.3866/PKU.DXHX202310117

    17. [17]

      Lirui Shen Kun Liu Ying Yang Dongwan Li Wengui Chang . Synthesis and Application of Decanedioic Acid-N-Hydroxysuccinimide Ester: Exploration of Teaching Reform in Comprehensive Applied Chemistry Experiment. University Chemistry, 2024, 39(8): 212-220. doi: 10.3866/PKU.DXHX202312035

    18. [18]

      Jinghua Wang Yanxin Yu Yanbiao Ren Yesheng Wang . Integration of Science and Education: Investigation of Tributyl Citrate Synthesis under the Promotion of Hydrate Molten Salts for Research and Innovation Training. University Chemistry, 2024, 39(11): 232-240. doi: 10.3866/PKU.DXHX202402057

    19. [19]

      Lin Ding Jinpeng Zhang Junfeng Li Daying Liu . Color Catcher: A Marvelous Encounter of Starch and Iodine. University Chemistry, 2024, 39(6): 334-341. doi: 10.3866/PKU.DXHX202311064

    20. [20]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

Metrics
  • PDF Downloads(14)
  • Abstract views(2130)
  • HTML views(635)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return