Citation: Li Xiaobo, Zhao Juan, Liu Qian, Jiang Min, Liu Jintao. Addition of Perfluoroalkanesulfenic Acids to Alkynes and Allenes[J]. Chinese Journal of Organic Chemistry, ;2019, 39(1): 183-191. doi: 10.6023/cjoc201808036 shu

Addition of Perfluoroalkanesulfenic Acids to Alkynes and Allenes

  • Corresponding author: Liu Jintao, jtliu@sioc.ac.cn
  • Received Date: 28 August 2018
    Revised Date: 18 October 2018
    Available Online: 26 January 2018

    Fund Project: the National Natural Science Foundation of China 21572257Project supported by the National Natural Science Foundation of China (Nos. 21572257, 21502213)the National Natural Science Foundation of China 21502213

Figures(3)

  • The addition reaction of perfluoroalkanesulfenic acids, in-situ formed from imines, to alkynes and allenes were investigated. A series of perfluoroalkyl alkenyl sulfoxides were synthesized. Markovnikov adducts were obtained in good to excellent yields from the reactions of aryl or alkyl-substituted alkynes with perfluoroalkanesulfenic acids under mild conditions. However, the reaction of terminal alkynes containing an electron-withdrawing group afforded Michael-type adducts in good yields. The addition reaction of electron-rich allenes took place at the double bond with less steric hindrance, while the double bond connecting an electron-withdrawing group was the prior reaction site in the case of electron-deficient allenes.
  • 加载中
    1. [1]

      Van Den Broek, L. A. G. M.; Delbressine, L. P. C.; Ottenheijm, H. C. J. In The Chemistry of Sulphenic Acids and their Derivatives, Ed.: Patai, S., John Wiley & Sons, Chichester, 1990, p. 701.

    2. [2]

      (a) Aversa, M. C.; Bonaccorsi, P.; Madec, D.; Prestat, G.; Poli, G. In Innovative Catalysis in Organic Synthesis, Ed.: Andersson, P. G., Wiley-VCH Verlag, Weinheim, 2012, p. 47.
      (b) Gupta, V.; Carroll, K. S. Biochem. Biophys. Acta 2014, 1840, 847.
      (c) Paulsen, C. E.; Carroll, K. S. ACS Chem. Biol. 2010, 5, 47.
      (d) Poole, K. J. Curr. Opin. Chem. Biol. 2008, 12, 18.

    3. [3]

      Claiborne, A.; Yeh, J. I.; Mallett, T. C.; Luba, J.; Crane, E. J.; Charrier, V.; Personage, D. Biochemistry 1999, 38, 15407.  doi: 10.1021/bi992025k

    4. [4]

      (a) Block, E. Angew. Chem., Int. Ed. 1992, 31, 1135.
      (b) Imai, S.; Tsuge, N.; Tomotake, M.; Nagatome, Y.; Sawada, H.; Nagata, T.; Kumagai, H. Nature 2002, 419, 685.

    5. [5]

      (a) Dansette, P. M.; Thébault, S.; Bertho, G.; Mansuy, D. Chem. Res. Toxicol. 2010, 23, 1268.
      (b) Dansette, P. M.; Libraire, J.; Bertho, G.; Mansuy, D. Chem. Res. Toxicol. 2009, 22, 369.

    6. [6]

      Davis, F. A.; Billmers, R. L. J. Org. Chem. 1985, 50, 2593.  doi: 10.1021/jo00214a043

    7. [7]

      (a) Bachi, M. D.; Gross, A. J. Org. Chem. 1982, 47, 897.
      (b) Chou, T. S.; Burgtorf, J. R.; Ellis, A. L.; Lammert, S. R.; Kukolja, S. P. J. Am. Chem. Soc. 1974, 96, 1609.
      (c) Nakamura, N. J. Am. Chem. Soc. 1983, 105, 7172. (d) Goto, K.; Tokitoh, N.; Okazaki, R. Angew. Chem., Int. Ed. 1995, 34, 1124.
      (e) Ishihara, M.; Abe, N.; Sase, S.; Goto, K. Chem. Lett. 2015, 44, 615.

    8. [8]

      (a) Fries, K. Chem. Ber. 1912, 45, 2965.
      (b) Bruice, T. C.; Markiw, R. T. J. Am. Chem. Soc. 1957, 79, 3150.
      (c) Pal, B. C.; Uziel, M.; Doherty, D. G.; Cohn, W. E. J. Am. Chem. Soc. 1969, 91, 3634.
      (d) Walter, W.; Bode, K. D. Liebigs Ann. Chem. 1966, 698, 122.

    9. [9]

      Ishii, A.; Komiya, K.; Nakayama, J. J. Am. Chem. Soc. 1996, 118, 12836.  doi: 10.1021/ja962995k

    10. [10]

      (a) Davis, F. A.; Jenkins, R. H. J. Am. Chem. Soc. 1980, 102, 7967.
      (b) Redon, M.; Janousekt, Z.; Viehe, H. G. Tedrahedron 1997, 53, 15717.

    11. [11]

      Li, X.-B.; Xu, Z.-F.; Liu, L.-J.; Liu, J.-T. Eur. J. Org. Chem. 2014, 1182.

    12. [12]

      (a) Colonna, S.; Gaggero, N.; Carrea, G.; Pasta, P. Chem. Commun. 1997, 439.
      (b) Holland, H. L.; Brown, F. M.; Larsen, B. G. Bioorg. Med. Chem. 1994, 2, 647.
      (c) Wei, J.; Sun, Z. Org. Lett. 2015, 17, 5396.
      (d) Xu, F.; Chen, Y.; Fan, E.; Sun, Z. Org. Lett. 2016, 18, 2777.

    13. [13]

      Li, X.-B.; Zhao, J.; Jiang, M.; Liu, J.-T. J. Fluorine Chem. 2016, 185, 24.  doi: 10.1016/j.jfluchem.2016.03.002

    14. [14]

      (a) Aversa, M. C.; Bonaccorsi, P.; Faggi, C.; Lammanna, G.; Menichetti, S. Tetrahedron 2005, 61, 11902.
      (b) Aversa, M. C.; Barattucci, A.; Bonaccorsi, P.; Giannetto, P. Curr. Org. Chem. 2007, 11, 1034.

    15. [15]

      (a) Davis, F. A.; Friedman, A. J.; Nadir, U. K. J. Am. Chem. Soc. 1978, 100, 2844.
      (b) Davis, F. A.; Rizvi, S. Q. A.; Ardecky, R.; Gosciniak, D. J.; Friedman, A. J.; Yocklovich, S. G. J. Org. Chem. 1981, 45, 1650.

    16. [16]

      Armarego, W. L. F.; Perrin, D. D. Purification of Laboratory Chemicals, Pergamon, Oxford, 1980.

  • 加载中
    1. [1]

      Yue Zhao Yanfei Li Tao Xiong . Copper Hydride-Catalyzed Nucleophilic Additions of Unsaturated Hydrocarbons to Aldehydes and Ketones. University Chemistry, 2024, 39(4): 280-285. doi: 10.3866/PKU.DXHX202309001

    2. [2]

      Shiyan Cheng Yonghong Ruan Lei Gong Yumei Lin . Research Advances in Friedel-Crafts Alkylation Reaction. University Chemistry, 2024, 39(10): 408-415. doi: 10.12461/PKU.DXHX202403024

    3. [3]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    4. [4]

      Baitong Wei Jinxin Guo Xigong Liu Rongxiu Zhu Lei Liu . Theoretical Study on the Structure, Stability of Hydrocarbon Free Radicals and Selectivity of Alkane Chlorination Reaction. University Chemistry, 2025, 40(3): 402-407. doi: 10.12461/PKU.DXHX202406003

    5. [5]

      Tingbo Wang Yao Luo Bingyan Hu Ruiyuan Liu Jing Miao Huizhe Lu . Quantitative Computational Study on the Claisen Rearrangement Reaction of Allyl Phenyl Ethers: An Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(11): 278-285. doi: 10.12461/PKU.DXHX202403082

    6. [6]

      Xiao SANGQi LIUJianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158

    7. [7]

      Yunting Shang Yue Dai Jianxin Zhang Nan Zhu Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050

    8. [8]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    9. [9]

      Daojuan Cheng Fang Fang . Exploration and Implementation of Science-Education Integration in Organic Chemistry Teaching for Pharmacy Majors: A Case Study on Nucleophilic Substitution Reactions of Alkyl Halides. University Chemistry, 2024, 39(11): 72-78. doi: 10.12461/PKU.DXHX202403105

    10. [10]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    11. [11]

      Zhenlin Zhou Siyuan Chen Yi Liu Chengguo Hu Faqiong Zhao . A New Program of Voltammetry Experiment Teaching Based on Laser-Scribed Graphene Electrode. University Chemistry, 2024, 39(2): 358-370. doi: 10.3866/PKU.DXHX202308049

    12. [12]

      Rui Gao Ying Zhou Yifan Hu Siyuan Chen Shouhong Xu Qianfu Luo Wenqing Zhang . Design, Synthesis and Performance Experiment of Novel Photoswitchable Hybrid Tetraarylethenes. University Chemistry, 2024, 39(5): 125-133. doi: 10.3866/PKU.DXHX202310050

    13. [13]

      Tianqi Bai Kun Huang Fachen Liu Ruochen Shi Wencai Ren Songfeng Pei Peng Gao Zhongfan Liu . 石墨烯厚膜热扩散系数与微观结构的关系. Acta Physico-Chimica Sinica, 2025, 41(3): 2404024-. doi: 10.3866/PKU.WHXB202404024

    14. [14]

      Jiahao Lu Xin Ming Yingjun Liu Yuanyuan Hao Peijuan Zhang Songhan Shi Yi Mao Yue Yu Shengying Cai Zhen Xu Chao Gao . 基于稳态电热法的石墨烯膜导热系数的精确可靠测量. Acta Physico-Chimica Sinica, 2025, 41(5): 100045-. doi: 10.1016/j.actphy.2025.100045

    15. [15]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    16. [16]

      Hao BAIWeizhi JIJinyan CHENHongji LIMingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001

    17. [17]

      Jiamin Li Wenyue Zhong Kin Shing Chan . “烯”君入瓮又入学——据元素周期表与酸碱理论谈烯烃教学. University Chemistry, 2025, 40(6): 177-182. doi: 10.12461/PKU.DXHX202408040

    18. [18]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    19. [19]

      Zhuoming Liang Ming Chen Zhiwen Zheng Kai Chen . Multidimensional Studies on Ketone-Enol Tautomerism of 1,3-Diketones By 1H NMR. University Chemistry, 2024, 39(7): 361-367. doi: 10.3866/PKU.DXHX202311029

    20. [20]

      Lisha LEIWei YONGYiting CHENGYibo WANGWenchao HUANGJunhuan ZHAOZhongjie ZHAIYangbin DING . Application of regenerated cellulose and reduced graphene oxide film in synergistic power generation from moisture electricity generation and Mg-air batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1151-1161. doi: 10.11862/CJIC.20240202

Metrics
  • PDF Downloads(10)
  • Abstract views(1112)
  • HTML views(132)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return