Citation: Liang Long, Liu Li-Na, Chen Xue-Qiang, Xiang Xuan, Ling Jun, Lu Zheng-Quan, Li Jing-Jing, Li Wei-Shi. Benzodithiophene/Benzothiadiazole-Based ADA-Type Optoelectronic Molecules: Influence of Fluorine Substitution[J]. Chinese Journal of Organic Chemistry, ;2019, 39(1): 157-169. doi: 10.6023/cjoc201808034 shu

Benzodithiophene/Benzothiadiazole-Based ADA-Type Optoelectronic Molecules: Influence of Fluorine Substitution

  • Corresponding author: Li Wei-Shi, liws@mail.sioc.ac.cn
  • These authors contributed equally to this work
    Dedicated to Professor Qingyun Chen on the occasion of his 90th birthday
  • Received Date: 28 August 2018
    Revised Date: 25 October 2018
    Available Online: 11 January 2018

    Fund Project: the Strategic Priority Research Program of Chinese Academy of Sciences XDB20020000the Science and Technology Open Cooperation Projects of Henan Province 162106000018Project supported by the National Natural Science Foundation of China (Nos. 21474129, 21674125, 51761145043), the Strategic Priority Research Program of Chinese Academy of Sciences (No. XDB20020000), the Science and Technology Open Cooperation Projects of Henan Province (Nos. 162106000018, 172106000067) and the Zhengzhou Institute of Technologythe National Natural Science Foundation of China 21674125the Science and Technology Open Cooperation Projects of Henan Province 172106000067the National Natural Science Foundation of China 21474129the National Natural Science Foundation of China 51761145043

Figures(11)

  • Fluorination on conjugated components is one of popular strategies to modify organic optoelectronic materials. Following the research of a benzodithiophene/benzothiadiazole ADA-type optoelectronic molecule, two benzothiadiazole (BT) units were fluorinated with different numbers and positions, and the change in basic properties and performances for field-effect transistors and organic solar cells was investigated. It was found that when the F-substitution number increases, the molecule enhances thermal stability, decreases solubility, lowers HOMO and LUMO energy levels, but almost does not alter light absorption range. Furthermore, investigations on organic field-effect transistors found the molecular hole mobility reduces with only one F-substituent at outer position of BT units, while increases up to 0.27 cm2·V-1·s-1 with two F substituents on BT units. However, when these materials are applied in organic solar cells, the fluorinated ones enhance open-circuit voltage, but deteriorate active layer morphology, finally leading to decrease in short-circuit current and device efficiency.
  • 加载中
    1. [1]

      (a) Brabec, C. J.; Gowrisanker, S.; Halls, J. J. M.; Laird, D.; Jia, S.; Williams, S. P. Adv. Mater. 2010, 22, 3839.
      (b) Facchetti, A. Chem. Mater. 2011, 23, 733.
      (c) Ilmi, R.; Haque, A.; Khan, M. S. Org. Electr. 2018, 58, 53.
      (d) Guo, H.; Li, W.; Chang, C.; Guo, X.; Zhang, M. Chin. J. Chem. 2018, 36, 502.
      (e) Liang, X.; Wang, Z.; Wang, L.; Hanif, M.; Hu, D.; Su, S.; Xie, Z.; Gao, Y.; Yang, B.; Ma, Y. Chin. J. Chem. 2017, 35, 1559.

    2. [2]

      (a) Zhao, X.; Zhan, X. Chem. Soc. Rev. 2011, 40, 3728.
      (b) Di, C.; Yu, G.; Liu, Y.; Zhu, D. J. Phys. Chem. B 2007, 111, 14083.
      (c) Zaumseil, J.; Sirringhaus, H. Chem. Rev. 2007, 107, 1296.

    3. [3]

      (a) Reineke, S.; Lindner, F.; Schwartz, G.; Seidler, N.; Walzer, K.; Lüssem, B.; Leo, K. Nature 2009, 459, 234.
      (b) Yang, X.; Zhou, G.; Wong, W. Y. Chem. Soc. Rev. 2015, 44, 8484.
      (c) Jou, J. H.; Kumar, S.; Agrawal, A.; Li, T. H.; Sahoo, S. J. Mater. Chem. C 2015, 3, 2974.

    4. [4]

      Chem, H.; Chen, Y.; Li, Z.; Yang, Q.; Xin, L. Chin. J. Org. Chem. 2012, 32, 46(in Chinese).
       

    5. [5]

      (a) Zhang, G.; Zhang, K.; Yin, Q.; Jiang, X. F.; Wang, Z.; Xin, J.; Ma, W.; Yan, H.; Huang, F.; Cao, Y. J. Am. Chem. Soc. 2017, 139, 2387.
      (b) Li, M.; Gao, K.; Wan, X.; Zhang, Q.; Kan, B.; Xia, R.; Liu, F.; Yang, X.; Feng, H.; Ni, W.; Wang, Y.; Peng, J.; Zhang, H.; Liang, Z.; Yip, H.-L.; Peng, X.; Cao, Y.; Chen, Y. Nat. Photonics 2017, 11, 85.
      (c) Zhao, J.; Li, Y.; Yang, G.; Jiang, K.; Lin, H.; Ade, H.; Ma, W.; Yan, H. Nat. Energy 2016, 1, 15027.
      (d) Deng, D.; Zhang, Y. J.; Zhang, J. Q.; Wang, Z. Y.; Zhu, L. Y.; Fang, J.; Xia, B. Z.; Wang, Z.; Lu, K.; Ma, W.; Wei, Z. X. Nat. Commun. 2016, 7, 13740.
      (e) Li, Y. F. Acc. Chem. Res. 2012, 45, 723.
      (f) Yang, F.; Li, C.; Lai, W.; Zhang, A.; Huang, H.; Li, W. Mater. Chem. Front. 2017, 1, 1389.
      (g) Liu, W.; Zhou, Z.; Vergote, T.; Xu, S.; Zhu, X. Mater. Chem. Front. 2017, 1, 2349.

    6. [6]

      (a) Zhang, J.; Zhang, Y.; Fang, J.; Lu, K.; Wang, Z.; Ma, W.; Wei, Z. J. Am. Chem. Soc. 2015, 137, 8176.
      (b) Li, G.; Chu, C. W.; Shrotriya, V.; Huang, J.; Yang, Y. Appl. Phys. Lett. 2006, 88, 253503.
      (c) Kim, J. Y.; Lee, K.; Coates, N. E.; Moses, D.; Nguyen, T. Q.; Dante, M.; Heeger, A. J. Science 2007, 317, 222.
      (d) He, Z.; Zhong, C.; Huang, X.; Wong, W.-Y.; Wu, H.; Chen, L.; Su, S.; Cao, Y. Adv. Mater. 2011, 23, 4636.

    7. [7]

      (a) Li, G.; Shrotriya, V.; Huang, J. S.; Yao, Y.; Moriarty, T.; Emery, K.; Yang, Y. Nat. Mater. 2005, 4, 864.
      (b) Peet, J.; Kim, J. Y.; Coates, N. E.; Ma, W. L.; Moses, D.; Heeger, A. J.; Bazan, G. C. Nat. Mater. 2007, 6, 497.
      (c) Zimmerman, J. D.; Xiao, X.; Renshaw, C. K.; Wang, S.; Diev, V. V.; Thompson, M. E.; Forrest, S. R. Nano Lett. 2012, 12, 4366.
      (d) Wang, J. L.; Xiao, F.; Yan, J.; Wu, Z.; Liu, K. K.; Chang, Z. F.; Zhang, R. B.; Chen, H.; Wu, H. B.; Cao, Y. Adv. Funct. Mater. 2016, 26, 1803.
      (e) Liu, X.; Ye, L.; Zhao, W.; Zhang, S.; Li, S.; Su, G. M.; Wang, C.; Ade, H.; Hou, J. Mater. Chem. Front. 2017, 1, 2057.

    8. [8]

      (a) Neugebauer, H.; Brabec, C.; Hummelen, J. C.; Sariciftci, N. S. Sol. Energy Mater. Sol. Cells 2000, 61, 35.
      (b) Lu, L.; Kelly, M. A.; You, W.; Yu, L. Nat. Photonics 2015, 9, 491.
      (c) Min, J.; Luponosov, Y. N.; Gasparini, N.; Richter, M.; Bakirov, A. V.; Shcherbina, M. A.; Chvalun, S. N.; Grodd, L.; Grigorian, S.; Ameri, T.; Ponomarenko, S. A.; Brabec, C. J. Adv. Energy Mater. 2015, 5, 1500386.

    9. [9]

      Meng, L.; Zhang, Y.; Wan, X.; Li, C.; Zhang, X.; Wang, Y.; Ke, X.; Xiao, Z.; Ding, L.; Xia, R.; Yip, H.-L.; Cao, Y.; Chen, Y. Science 2018, 361, 1094.  doi: 10.1126/science.aat2612

    10. [10]

      (a) Lei, Y.; Deng, P.; Zhang, Q.; Xiong, Z.; Li, Q.; Mai, J.; Lu, X.; Zhu, X.; Ong, B. S. Adv. Funct. Mater. 2018, 28, 1706372.
      (b) Kang, I.; Yun, H. J.; Chung, D. S.; Kwon, S. K.; Kim, Y. H. J. Am. Chem. Soc. 2013, 135, 14896.

    11. [11]

      (a) Xiao, S.; Zhang, Q.; You, W. Adv. Mater. 2017, 29, 1601391.
      (b) Zhang, Z.; Li, Y. Sci. China: Chem. 2015, 58, 192.
      (c) Chen, H.; Hou, J.; Zhang, S.; Liang, Y.; Yang, G. W.; Yang, Y.; Yu, L.; Wu, Y.; Li, G. Nat. Photonics 2009, 3, 649.

    12. [12]

      (a) Tang, M. L.; Bao, Z. A. Chem. Mater. 2011, 23, 446.
      (b) Oh, J.; Kranthiraja, K.; Lee, C.; Gunasekar, K.; Kim, S.; Ma, B.; Kim, B. J.; Jin, S.-H. Adv. Mater. 2016, 28, 10016.
      (c) Stuart, A. C.; Tumbleston, J. R.; Zhou, H.; Li, W.; Liu, S.; Ade, H.; You, W. J. Am. Chem. Soc. 2013, 135, 1806.

    13. [13]

      (a) Zhang, M.; Guo, X.; Zhang, S.; Hou, J. Adv. Mater. 2014, 26, 1118.
      (b) Kawashima, K.; Fukuhara, T.; Suda, Y.; Suzuki, Y.; Koganezawa, T.; Yoshida, H.; Ohkita, H.; Osaka, I.; Takimiya, K. J. Am. Chem. Soc. 2016, 138, 10265.

    14. [14]

      Reichenbacher, K.; Suss, H. I.; Hulliger, J. Chem. Soc. Rev. 2005, 34, 22.  doi: 10.1039/B406892K

    15. [15]

      Lu, L.; Yu, L. Adv. Mater. 2014, 26, 4413.  doi: 10.1002/adma.v26.26

    16. [16]

      (a) Yoon, M.-H.; DiBenedetto, S. A.; Facchetti, A.; Marks, T. J. J. Am. Chem. Soc. 2005, 127, 1348.
      (b) Heidenhain, S. B.; Sakamoto, Y.; Suzuki, T.; Miura, A.; Fujikawa, H.; Mori, T.; Tokito, S.; Taga, Y. J. Am. Chem. Soc. 2000, 122, 10240.

    17. [17]

      Liang, Y.; Feng, D.; Wu, Y.; Tsai, S.-T.; Li, G.; Ray, C.; Yu, L. J. Am. Chem. Soc. 2009, 131, 7792.  doi: 10.1021/ja901545q

    18. [18]

      Son, H. J.; Wang, W.; Xu, T.; Liang, Y.; Wu, Y.; Li, G.; Yu, L. J. Am. Chem. Soc. 2011, 133, 1885.  doi: 10.1021/ja108601g

    19. [19]

      (a) Zhang, Y.; Chien, S.-C.; Chen, K.-S.; Yip, H.-L.; Sun, Y.; Davies, J. A.; Chen, F.-C.; Jen, A. K.-Y. Chem. Commun. 2011, 47, 11026.
      (b) Schroeder, B. C.; Huang, Z.; Ashraf, R. S.; Smith, J.; D¢ Angelo, P.; Watkins, S. E.; Anthopoulos, T. D.; Durrant, J. R.; McCulloch, I. Adv. Funct. Mater. 2012, 22, 1663.

    20. [20]

      (a) Zhou, H.; Yang, L.; Stuart, A. C.; Price, S. C.; Liu, S.; You, W. Angew. Chem., Int. Ed. 2011, 50, 2995.
      (b) Peng, Q.; Liu, X.; Su, D.; Fu, G.; Xu, J.; Dai, L. Adv. Mater. 2011, 23, 4554.

    21. [21]

      Hu, J.; Wang, X.; Chen, F.; Xiao, B.; Tang, A.; Zhou, E. Polymers 2017, 9, 516.  doi: 10.3390/polym9100516

    22. [22]

      (a) Roncali, J. Acc. Chem. Res. 2009, 42, 1719.
      (b) Li, Y.; Guo, Q.; Li, Z.; Pei, J.; Tian, W. Energy Environ. Sci. 2010, 3, 1427.
      (c) Walker, B.; Kim, C.; Nguyen, T.-Q. Chem. Mater. 2011, 23, 470.
      (d) Mishra, A.; Bauerle, P. Angew. Chem., Int. Ed. 2012, 51, 2020.

    23. [23]

      Liang, L.; Wang, J.-T.; Xiang, X.; Ling, J.; Zhao, F.-G.; Li, W.-S. J. Mater. Chem. A 2014, 2, 15396.  doi: 10.1039/C4TA03125C

    24. [24]

      van der Poll, T. S.; Love, J. A.; Nguyen, T.-Q.; Bazan, G. C. Adv. Mater. 2012, 24, 3646.  doi: 10.1002/adma.v24.27

    25. [25]

      He, C.-Y.; Wu, C.-Z.; Zhu, Y.-L.; Zhang, X. Chem. Sci. 2014, 5, 1317.  doi: 10.1039/C3SC53119H

    26. [26]

      Mei, C.-Y.; Liang, L.; Zhao, F.-G.; Wang, J.-T.; Yu, L.-F.; Li, Y.-X.; Li, W.-S. Macromolecules 2013, 46, 7920.  doi: 10.1021/ma401298g

    27. [27]

      (a) Hohenberg, P.; Kohn, W. Phys. Rev. 1964, 136, B864.
      (b) Kohn, W.; Sham, L. J. Phys. Rev. 1965, 140, A1133.
      (c) Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. 1988, B37, 785.
      (d) Becke, A. D. J. Chem. Phys. 1993, 98, 5648.

    28. [28]

      (a) Hohenberg. P.; Kohn, W.; Phys. Rev. 1964, 136, B864(b) Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B: Condens. Matter Mater. Phys. 1988, 37, 785.

    29. [29]

      Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A. J.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian 03, Gaussian, Inc., Wallingford CT, 2004.

    30. [30]

      Wang, J.-L.; Chang, Z.-F.; Song, X.-X.; Liu, K.-K.; Jing, L.-M. J. Mater. Chem. 2015, 3, 9849.

  • 加载中
    1. [1]

      Yikai Wang Xiaolin Jiang Haoming Song Nan Wei Yifan Wang Xinjun Xu Cuihong Li Hao Lu Yahui Liu Zhishan Bo . 氰基修饰的苝二酰亚胺衍生物作为膜厚不敏感型阴极界面材料用于高效有机太阳能电池. Acta Physico-Chimica Sinica, 2025, 41(3): 2406007-. doi: 10.3866/PKU.WHXB202406007

    2. [2]

      Mengfei He Chao Chen Yue Tang Si Meng Zunfa Wang Liyu Wang Jiabao Xing Xinyu Zhang Jiahui Huang Jiangbo Lu Hongmei Jing Xiangyu Liu Hua Xu . Epitaxial Growth of Nonlayered 2D MnTe Nanosheets with Thickness-Tunable Conduction for p-Type Field Effect Transistor and Superior Contact Electrode. Acta Physico-Chimica Sinica, 2025, 41(2): 100016-. doi: 10.3866/PKU.WHXB202310029

    3. [3]

      Xiaofang DONGYue YANGShen WANGXiaofang HAOYuxia WANGPeng CHENG . Research progress of conductive metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 14-34. doi: 10.11862/CJIC.20240388

    4. [4]

      Lina Feng Guoyu Jiang Xiaoxia Jian Jianguo Wang . Application of Organic Radical Materials in Biomedicine. University Chemistry, 2025, 40(4): 253-260. doi: 10.12461/PKU.DXHX202405171

    5. [5]

      Qianlang Wang Jijun Sun Qian Chen Quanqin Zhao Baojuan Xi . The Appeal of Organophosphorus Compounds: Clearing Their Name. University Chemistry, 2025, 40(4): 299-306. doi: 10.12461/PKU.DXHX202405205

    6. [6]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    7. [7]

      Fugui XIDu LIZhourui YANHui WANGJunyu XIANGZhiyun DONG . Functionalized zirconium metal-organic frameworks for the removal of tetracycline from water. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 683-694. doi: 10.11862/CJIC.20240291

    8. [8]

      Yi DINGPeiyu LIAOJianhua JIAMingliang TONG . Structure and photoluminescence modulation of silver(Ⅰ)-tetra(pyridin-4-yl)ethene metal-organic frameworks by substituted benzoates. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 141-148. doi: 10.11862/CJIC.20240393

    9. [9]

      Mengzhen JIANGQian WANGJunfeng BAI . Research progress on low-cost ligand-based metal-organic frameworks for carbon dioxide capture from industrial flue gas. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 1-13. doi: 10.11862/CJIC.20240355

    10. [10]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    11. [11]

      Aiai WANGLu ZHAOYunfeng BAIFeng FENG . Research progress of bimetallic organic framework in tumor diagnosis and treatment. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1825-1839. doi: 10.11862/CJIC.20240225

    12. [12]

      Feng Sha Xinyan Wu Ping Hu Wenqing Zhang Xiaoyang Luan Yunfei Ma . Design of Course Ideology and Politics for the Comprehensive Organic Synthesis Experiment of Benzocaine. University Chemistry, 2024, 39(2): 110-115. doi: 10.3866/PKU.DXHX202307082

    13. [13]

      Xinyu Zhu Meili Pang . Application of Functional Group Addition Strategy in Organic Synthesis. University Chemistry, 2024, 39(3): 218-230. doi: 10.3866/PKU.DXHX202308106

    14. [14]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    15. [15]

      Shicheng Yan . Experimental Teaching Design for the Integration of Scientific Research and Teaching: A Case Study on Organic Electrooxidation. University Chemistry, 2024, 39(11): 350-358. doi: 10.12461/PKU.DXHX202408036

    16. [16]

      Yong Wang Yingying Zhao Boshun Wan . Analysis of Organic Questions in the 37th Chinese Chemistry Olympiad (Preliminary). University Chemistry, 2024, 39(11): 406-416. doi: 10.12461/PKU.DXHX202403009

    17. [17]

      Ran HUOZhaohui ZHANGXi SULong CHEN . Research progress on multivariate two dimensional conjugated metal organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2063-2074. doi: 10.11862/CJIC.20240195

    18. [18]

      Bin HEHao ZHANGLin XUYanghe LIUFeifan LANGJiandong PANG . Recent progress in multicomponent zirconium?based metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2041-2062. doi: 10.11862/CJIC.20240161

    19. [19]

      Xuejie Wang Guoqing Cui Congkai Wang Yang Yang Guiyuan Jiang Chunming Xu . 碳基催化剂催化有机液体氢载体脱氢研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-. doi: 10.1016/j.actphy.2024.100044

    20. [20]

      Jiajie Li Xiaocong Ma Jufang Zheng Qiang Wan Xiaoshun Zhou Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117

Metrics
  • PDF Downloads(9)
  • Abstract views(1902)
  • HTML views(291)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return