Citation: Gao Mengyuana, Liu Hongtaob, Lian Yufeib, Gao Xinfenga, Geng Yunhea, Li Wenyan. Research Progress in Prodrugs of Acyclic Nucleoside Phosphonates Antiviral Agents[J]. Chinese Journal of Organic Chemistry, ;2019, 39(4): 974-981. doi: 10.6023/cjoc201808018 shu

Research Progress in Prodrugs of Acyclic Nucleoside Phosphonates Antiviral Agents

  • Corresponding author: Li Wenyan, liyan8512@163.com
  • Received Date: 16 August 2018
    Revised Date: 15 October 2018
    Available Online: 30 April 2018

    Fund Project: the Technology Innovation Foundation of Hebei Normal University L2017K06the Natural Science Foundation of Hebei Province H2018307055Project supported by the Natural Science Foundation of Hebei Province (No. H2018307055) and the Technology Innovation Foundation of Hebei Normal University (No. L2017K06)

Figures(11)

  • More and more attention has been focused on acyclic nucleoside phosphonates (ANPs) antiviral agents which were wildly used in clinical therapy. However, poor oral bioavailability and high toxicity directly related to the phosphonate charge were serious and unnegligible especially for the treatment of chronic diseases such as hepatitis B virus (HBV) and human immunodeficiency virus (HIV). Preparing appropriate forms of prodrug could enhance the oral bioavailability and reduce the toxicity because of the smooth absorption of prodrugs and the release of active drug only at the target. This review summarizes some recent progress in prodrugs of ANPs antiviral agents based on the structures of tenofovir, adefovir and cidofovir.
  • 加载中
    1. [1]

    2. [2]

      (a) De Clercq, E. Expert. Rev. Anti-Infect. Ther. 2003, 1, 21.
      (b) De Clercq, E. Biochem. Pharmacol. 2011, 82, 99. (c) De Clercq, E. Med. Res. Rev. 2013, 33, 1278.

    3. [3]

      Peng, Y. M.; Yu, W. Q.; Li, E. T.; Kang, J. F.; Wang, Y. F.; Yang, Q. H.; Liu, B. J.; Zhang, J. M.; Li, L. Y.; Wu, J.; Jiang, J. H.; Wang, Q. D.; Chang, J. B. J. Med. Chem. 2016, 59, 3661.  doi: 10.1021/acs.jmedchem.5b01807

    4. [4]

      Pertusati, F.; Serpi, M.; McGuigan, C. Antivir. Chem. Chemother. 2012, 22, 181.  doi: 10.3851/IMP2012

    5. [5]

      De Clercq, E. Clin. Microbiol. Rev. 2003, 16, 569.  doi: 10.1128/CMR.16.4.569-596.2003

    6. [6]

      De Clercq, E. Antiviral Res. 2007, 75, 1.  doi: 10.1016/j.antiviral.2006.10.006

    7. [7]

      (a) Krecmerova, M. Mini-Rev. Med. Chem. 2017, 17, 818.
      (b) Hecker, S. J.; Erion, M. D. J. Med. Chem. 2008, 51, 2328.
      (c) Wiemer, A. J.; Wiemer, D. F. Top. Curr. Chem. 2015, 360, 115.
      (d) Xie, M. S.; Chen, Y. G.; Wu, X. X.; Qu, G. R.; Guo, H. M. Org. Lett. 2018, 20, 1212.

    8. [8]

    9. [9]

      Kearney, B. P.; Flaherty, J. F.; Shah, J. Clin. Pharmacokinet. 2004, 43, 595.  doi: 10.2165/00003088-200443090-00003

    10. [10]

      Nelson, M. R.; Katlama, C.; Montaner, J. S.; Cooper, D. A.; Gazzard, B.; Clotet, B.; Lazzari, A.; Schewe, K.; Lange, J.; Wyatt, C. AIDS 2007, 21, 1273.  doi: 10.1097/QAD.0b013e3280b07b33

    11. [11]

      Barditch-Crovo, P.; Deeks, S. G.; Collier, A.; Safrin, S.; Coakley, D. F.; Miller, M.; Kearney, B. P.; Coleman, R. L.; Lamy, P. D.; Kahn, J. O. Antimicrob. Agents Chemother. 2001, 45, 2733.  doi: 10.1128/AAC.45.10.2733-2739.2001

    12. [12]

      Ray, A. S.; Fordyce, M. W.; Hitchcock, M. J. M. Antiviral Res. 2016, 125, 63.  doi: 10.1016/j.antiviral.2015.11.009

    13. [13]

      Ruane, P. J.; DeJesus, E.; Berger, D.; Markowitz, M.; Bredeek, U. F.; Callebaut, C.; Zhong, L.; Ramanathan, S.; Rhee, M. S.; Fordyce, M. W. J. Acquired Immune Defic. Syndr. 2013, 63, 449.  doi: 10.1097/QAI.0b013e3182965d45

    14. [14]

    15. [15]

      Painter, G. R.; Almond, M. R.; Trost, L. C.; Lampert, B. M.; Neyts, J.; De Clercq, E.; Korba, B. E.; Aldern, K. A.; Beadle, J. R.; Hostetler, K. Y. Antimicrob. Agents Chemother. 2007, 51, 3505.  doi: 10.1128/AAC.00460-07

    16. [16]

      Lanier, E. R.; Lampert, B.; Trost, L.; Painter, G.; Almond, M. Antiviral Ther. 2008, 13, A6.
       

    17. [17]

      Tanwandee, T.; Chatsiricharoenkul, S.; Thongsawat, S.; Sukeepaisarnjaroen, W.; Tangkijvanich, P.; Komolmit, P.; Avihingsanon, A.; Piratvisuth, T.; Sunthi, P.; Mahasanprasert, T. J. Hepatol. 2017, 66, S24.
       

    18. [18]

      Chatsiricharoekul, S.; Jutasompakorn, P.; Niyomnaitham, S.; Matkovits, T.; Conover, M.; Cobb, J.; Greytok, J.; Sullivan-Bolyai, J. Clin. Pharmacol. Ther. 2017, 101, S48.
       

    19. [19]

      Giesler, K. E.; Marengo, J.; Liotta, D. C. J. Med. Chem. 2016, 59, 7097.  doi: 10.1021/acs.jmedchem.6b00428

    20. [20]

      Giesler, K. E.; Liotta, D. C. J. Med. Chem. 2016, 59, 10244.  doi: 10.1021/acs.jmedchem.6b01292

    21. [21]

      Marcellin, P.; Chang, T.-T.; Lim, S. G.; Tong, M. J.; Sievert, W.; Shiffman, M. L.; Jeffers, L.; Goodman, Z.; Wulfsohn, M. S.; Xiong, S. N. Engl. J. Med. 2003, 348, 808.  doi: 10.1056/NEJMoa020681

    22. [22]

      Marcellin, P.; Chang, T.-T.; Lim, S. G. L.; Sievert, W.; Tong, M.; Arterburn, S.; Borroto-Esoda, K.; Frederick, D.; Rousseau, F. Hepatology 2008, 48, 750.  doi: 10.1002/hep.v48:3

    23. [23]

      Ingiliz, P.; Valantin, M.-A.; Thibault, V.; Duvivier, C.; Dominguez, S.; Katlama, C.; Poynard, T.; Benhamou, Y. Antivir. Ther. 2008, 13, 895.

    24. [24]

      Reddy, K. R.; Matelich, M. C.; Ugarkar, B. G.; Gomez-Galeno, J. E.; DaRe, J.; Ollis, K.; Sun, Z.; Craigo, W.; Colby, T. J.; Fujitaki, J. M. J. Med. Chem. 2008, 51, 666.  doi: 10.1021/jm7012216

    25. [25]

      Lin, C. C.; Fang, C.; Benetton, S.; Xu, G. F.; Yeh, U. T. Antimicrob. Agents Chemother. 2006, 50, 2926.  doi: 10.1128/AAC.01566-05

    26. [26]

      Ding, Y.; Zhang, H.; Li, X.; Li, C.; Chen, G.; Chen, H.; Wu, M.; Niu, J. Hepatol. Int. 2017, 11, 390.  doi: 10.1007/s12072-017-9797-y

    27. [27]

      Fu, X.; Jiang, S.; Li, C.; Xin, J.; Yang, Y.; Ji, R. Bioorg. Med. Chem. Lett. 2007, 17, 465.  doi: 10.1016/j.bmcl.2006.10.021

    28. [28]

      Fu, X. Z.; Wang, Y. L.; Lan, Y. Y.; Wang, A. M.; Ou, Y.; Luo, C.; Li, Y. Acta Pharm. Sin. 2010, 45, 1017 (in Chinese).
       

    29. [29]

      Fu, X.-Z.; Ou, Y.; Pei, J.-Y.; Liu, Y.; Li, J.; Zhou, W.; Lan, Y.-Y.; Wang, A.-M.; Wang, Y.-L. Eur. J. Med. Chem. 2012, 49, 211.  doi: 10.1016/j.ejmech.2012.01.013

    30. [30]

      Magee, W. C.; Evans, D. H. Antiviral Res. 2012, 96, 169.  doi: 10.1016/j.antiviral.2012.08.010

    31. [31]

      (a) De Clercq, E. Trends Pharmacol. Sci. 2002, 23, 456.
      (b) Andrei, G.; Topalis, D.; De Schutter, T.; Snoeck, R. Antiviral Res. 2015, 114, 21.

    32. [32]

      Cundy, K. C.; Bidgood, A. M.; Lynch, G.; Shaw, J. P.; Griffin, L.; Lee, W. A. Drug. Metab. Dispos. 1996, 24, 745.

    33. [33]

      (a) Beadle, J. R.; Hartline, C.; Aldern, K. A.; Rodriguez, N.; Harden, E.; Kern, E. R.; Hostetler, K. Y. Antimicrob. Agents Chemother. 2002, 46, 2381.
      (b) Hostetler, K. Y. Viruses 2010, 2, 2213.

    34. [34]

      Marty, F. M.; Winston, D. J.; Rowley, S. D.; Vance, E.; Papanicolaou, G. A.; Mullane, K. M.; Brundage, T. M.; Robertson, A. T.; Godkin, S.; Mommeja-Marin, H. N. Engl. J. Med. 2013, 369, 1227.  doi: 10.1056/NEJMoa1303688

    35. [35]

      Marty, F. M.; Winston, D. J.; Chemaly, R. F.; Boeckh, M. J.; Mullane, K. M.; Shore, T. B.; Papanicolaou, G. A.; Morrison, M. E.; Brundage, T. M.; Mommeja-Marin, H. Biol. Blood Marrow. Transplant. 2016, 22, S23.
       

    36. [36]

      (a) Florescu, D.; Grimley, M.; Papanicolaou, G.; Prasad, V.; Vainorius, E.; Chittick, G.; Brundage, T.; Nichols, G. Am. J. Transplant. 2018, 18, S360.
      (b) Chittick, G.; Morrison, M.; Brundage, T.; Nichols, W. G. Antivir. Res. 2017, 143, 269.

    37. [37]

      Dunning, J.; Kennedy, S. B.; Antierens, A.; Whitehead, J.; Ciglenecki, I.; Carson, G.; Kanapathipillai, R.; Castle, L.; Howell-Jones, R.; Pardinaz-Solis, R. PLoS One 2016, 11, e0162199.  doi: 10.1371/journal.pone.0162199

    38. [38]

      Lampertico, P. Gut 2014, 63, 869.  doi: 10.1136/gutjnl-2013-305859

    39. [39]

      Mak, L.-Y.; Seto, W.-K.; Lai, C.-L.; Yuen, M.-F. Expert Opin. Drug Metab. Toxicol. 2018, 14, 101.  doi: 10.1080/17425255.2018.1417983

    40. [40]

      Ahn, S. H.; Kim, W.; Jung, Y. K.; Yang, J. M.; Jang, J. Y.; Kweon, Y. O.; Cho, Y. K.; Kim, Y. J.; Hong, G. Y.; Kim, D. J. J. Hepatol. 2017, 66, S88.

    41. [41]

      Lai, C.-L.; Ahn, S. H.; Lee, K. S.; Um, S. H.; Cho, M.; Yoon, S. K.; Lee, J.-W.; Park, N. H.; Kweon, Y.-O.; Sohn, J. H. Gut 2014, 63, 996.  doi: 10.1136/gutjnl-2013-305138

    42. [42]

      Yuen, M.-F.; Ahn, S. H.; Lee, K. S.; Um, S. H.; Cho, M.; Yoon, S. K.; Lee, J.-W.; Park, N. H.; Kweon, Y. O.; Sohn, J. H. Hepatology 2013, 58, 693A.

    43. [43]

      Yuen, M.-F.; Ahn, S. H.; Lee, K. S.; Um, S. H.; Cho, M.; Yoon, S. K.; Lee, J.-W.; Park, N. H.; Kweon, Y.-O.; Sohn, J. H. J. Hepatol. 2015, 62, 526.  doi: 10.1016/j.jhep.2014.10.026

    44. [44]

      Baszczynski, O. Janeba, Z. Med. Res. Rev. 2013, 33, 1304.
       

    45. [45]

      Luo, M.; Groaz, E.; Andrei, G.; Snoeck, R.; Kalkeri, R.; Ptak, R. G.; Hartman, T.; Buckheit, R. W., Jr.; Schols, D.; De Jonghe, S. J. Med. Chem. 2017, 60, 6220.  doi: 10.1021/acs.jmedchem.7b00416

    46. [46]

      Holy, A.; Gunter, J.; Dvorakova, H.; Masojidkova, M.; Andrei, G.; Snoeck, R.; Balzarini, J.; De Clercq, E. J. Med. Chem. 1999, 42, 2064.  doi: 10.1021/jm9811256

    47. [47]

      Jansa, P.; Baszczyňski, O.; Dračínský, M.; Votruba, I.; Zídek, Z.; Bahador, G.; Stepan, G.; Cihlar, T.; Mackman, R.; Holý, A; Jansa, Z. Eur. J. Med. Chem. 2011, 46, 3748.  doi: 10.1016/j.ejmech.2011.05.040

  • 加载中
    1. [1]

      Zheqi Wang Yawen Lin Shunliu Deng Huijun Zhang Jinmei Zhou . Antiviral Strategies: A Brief Review of the Development History of Small Molecule Antiviral Drugs. University Chemistry, 2024, 39(9): 85-93. doi: 10.12461/PKU.DXHX202403108

    2. [2]

      Zhongyan Cao Shengnan Jin Yuxia Wang Yiyi Chen Xianqiang Kong Yuanqing Xu . Advances in Highly Selective Reactions Involving Phenol Derivatives as Aryl Radical Precursors. University Chemistry, 2025, 40(4): 245-252. doi: 10.12461/PKU.DXHX202405186

    3. [3]

      Wenjun Yang Qiaoling Tan Wenjiao Xie Xiaoyu Pan Youyong Yuan . Construction and Characterization of Calcium Alginate Microparticle Drug Delivery System: A Novel Design and Teaching Practice in Polymer Experiments. University Chemistry, 2025, 40(3): 371-380. doi: 10.12461/PKU.DXHX202405150

    4. [4]

      Hongling Liu Yue Xia Guang Xu Yafei Yang Chunhua Qu . Bitter Cold Medicine, Good for Healing. University Chemistry, 2025, 40(3): 328-332. doi: 10.12461/PKU.DXHX202405039

    5. [5]

      Meijin Li Xirong Fu Xue Zheng Yuhan Liu Bao Li . The Marvel of NAD+: Nicotinamide Adenine Dinucleotide. University Chemistry, 2024, 39(9): 35-39. doi: 10.12461/PKU.DXHX202401027

    6. [6]

      Jiangjuan Shao Xuan Li Jingdan Weng Xiaolei Chen Fei Xu Yulu Ma Nianguang Li Shizhong Zheng . Improvement in the Experimental Teaching Design of Physical and Chemical Identification and Quantification of Mineral Drugs. University Chemistry, 2024, 39(10): 137-142. doi: 10.3866/PKU.DXHX202312079

    7. [7]

      Zhou Fang Zhihao Zhang Weihan Jiang Kin Shing Chan . Warfarin: From Poison to Cure, the Remarkable Journey of a Molecule. University Chemistry, 2025, 40(4): 326-330. doi: 10.12461/PKU.DXHX202406038

    8. [8]

      Zhijun Huang Jiawei Li Mojin Lu Fa Zhou Limiao Chen Jianhan Huang Younian Liu . Spying Operation of the Rabies Virus. University Chemistry, 2024, 39(9): 164-169. doi: 10.12461/PKU.DXHX202403026

    9. [9]

      Xiaoxuan Yu Wukun Liu . Practice of Ideological and Political Education in Medicinal Chemistry for Pharmacy Administration Major: A Case Study on the Discovery of Cisplatin’s Anticancer Function. University Chemistry, 2025, 40(4): 408-414. doi: 10.12461/PKU.DXHX202405200

    10. [10]

      Di Yang Jiayi Wei Hong Zhai Xin Wang Taiming Sun Haole Song Haiyan Wang . Rapid Detection of SARS-CoV-2 Using an Innovative “Magic Strip”. University Chemistry, 2024, 39(4): 373-381. doi: 10.3866/PKU.DXHX202312023

    11. [11]

      Yuanyi Lu Jun Zhao Hongshuang Li . Silver-Catalyzed Ring-Opening Minisci Reaction: Developing a Teaching Experiment Suitable for Undergraduates. University Chemistry, 2024, 39(11): 225-231. doi: 10.3866/PKU.DXHX202401088

    12. [12]

      Linjie ZHUXufeng LIU . Electrocatalytic hydrogen evolution performance of tetra-iron complexes with bridging diphosphine ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 321-328. doi: 10.11862/CJIC.20240207

    13. [13]

      Linjie ZHUXufeng LIU . Synthesis, characterization and electrocatalytic hydrogen evolution of two di-iron complexes containing a phosphine ligand with a pendant amine. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 939-947. doi: 10.11862/CJIC.20240416

    14. [14]

      Qingying Gao Tao Luo Jianyuan Su Chaofan Yu Jiazhu Li Bingfei Yan Wenzuo Li Zhen Zhang Yi Liu . Refinement and Expansion of the Classic Cinnamic Acid Synthesis Experiment. University Chemistry, 2024, 39(5): 243-250. doi: 10.3866/PKU.DXHX202311074

    15. [15]

      Bing Yuan Fengli Yu Congxia Xie . Teaching Cases Design of Catalysis Courses for Emerging Engineering Education. University Chemistry, 2024, 39(3): 191-198. doi: 10.3866/PKU.DXHX202309032

    16. [16]

      Qian Shao Jiajing Tan Yongmei Chen Jiyue Jing Zhuo Wang . Exploration and Practice on the Management of Extracurricular Innovation Laboratories in Chemistry. University Chemistry, 2024, 39(4): 19-25. doi: 10.3866/PKU.DXHX202310119

    17. [17]

      Zhibei Qu Changxin Wang Lei Li Jiaze Li Jun Zhang . Organoid-on-a-Chip for Drug Screening and the Inherent Biochemistry Principles. University Chemistry, 2024, 39(7): 278-286. doi: 10.3866/PKU.DXHX202311039

    18. [18]

      Guowen Xing Guangjian Liu Le Chang . Five Types of Reactions of Carbonyl Oxonium Intermediates in University Organic Chemistry Teaching. University Chemistry, 2025, 40(4): 282-290. doi: 10.12461/PKU.DXHX202407058

    19. [19]

      Yang Wang Yunpeng Fu Xiaoji Liu Guotao Zhang Guobin Li Wanqiang Liu Jinglun Wang . Structural Analysis of Nitrile Solutions Based on Infrared Spectroscopy Probes. University Chemistry, 2025, 40(4): 367-374. doi: 10.12461/PKU.DXHX202406113

    20. [20]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

Metrics
  • PDF Downloads(25)
  • Abstract views(1400)
  • HTML views(268)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return