Citation: Liu Lantao, Chen Yingyinga, Zhang An'an, Liu Xue, Zhang Li, Bai Jingru, Li Heng, Mao Guoliang. Palladium Catalyzed Allylic Amination of Cinnamyl Carbonates with Acyl Hydrazones[J]. Chinese Journal of Organic Chemistry, ;2019, 39(2): 475-481. doi: 10.6023/cjoc201808013 shu

Palladium Catalyzed Allylic Amination of Cinnamyl Carbonates with Acyl Hydrazones

  • Corresponding author: Liu Lantao, liult05@iccas.ac.cn Mao Guoliang, maoguoliang@nepu.edu.cn
  • Received Date: 13 August 2018
    Revised Date: 3 September 2018
    Available Online: 10 February 2018

    Fund Project: the National Natural Science Foundation of China 21572126the Program for Science & Technology Innovation Talents in Universities of Henan Province 14HASTIT016the Program of Science and Technology Innovation Talents of Henan Province 2018JQ0011Project supported by the National Natural Science Foundation of China (No. 21572126), the Program for Science & Technology Innovation Talents in Universities of Henan Province (No. 14HASTIT016) and the Program of Science and Technology Innovation Talents of Henan Province (No. 2018JQ0011)

Figures(2)

  • Allylic amines moiety exists extensively in natural products, medicines and functional materials. In addition, they are also a kind of versatile building blocks for organic synthesis. Using CH3CN as solvent, the palladium catalyzed allyl amination of cinnamyl carbonate and acylhydrazone compounds was realized under argon. The linear product was formed selectively and the up to 99% yield was obtained. The reaction has features of base free, mild reaction condition, simple operation and broad substrate scope.
  • 加载中
    1. [1]

    2. [2]

    3. [3]

      (a) Monk, J. P.; Brogden, R. N. Drugs 1991, 42, 659.
      (b) Birnbaum, J. E. J. Am. Acad. Dermatol. 1990, 23, 782.
      (c) Xu, Z.; Wang, D. S.; Yu, X.; Yang Y.; Wang, D. Adv. Synth. Catal. 2017, 359, 3332.

    4. [4]

      (a) Stuetz, A.; Petranyi, G. J. Med. Chem. 1984, 27, 1539.
      (b) Rudisill, D. E.; Castonguay, L. A.; Me, J. K. Tetrahedron Lett. 1988, 29, 1509.
      (c) Balfour, J. A.; Fauids, D. Drugs 1992, 43, 259.
      (d) Ge, C.; Sang, X.; Yao, W.; Zhang L.; Wang, D. Green Chem. 2018, 20, 1805.

    5. [5]

      (a) Andersson, P. G.; Backvall, J. E. In Handbook of Organopalladium Chemistry for Organic Synthesis, Ed.: Negishi, E., Wiley-Interscience, New York, 2002, p. 1859.
      (b) Davies, H. M. L.; Long, M. S. Angew. Chem., Int. Ed. 2005, 44, 3518.
      (c) Jiang, L.; Buchwald, S. L. In Metal-Catalyzed Cross-Coupling Reactions, 2nd ed., Wiley-VCH, Weinheim, 2004, Vol. 2, p. 699.
      (d) Hartwig, J. F. In Handbook of Organopalladium Chemistry for Organic Synthesis, Ed.: Negishi, E., Wiley-Interscience, New York, 2002, p. 1051.

    6. [6]

      (a) Ranerand, K. D.; Ward, A. D. Aust. J. Chem. 1991, 44, 1749.
      (b) Cooper, M. A.; Lucas, M. A.; Taylor, J. M.; Ward, A. D.; Williamson, N. M. Synthesis 2001, 621.
      (c) Vicente, R. Org. Biomol. Chem. 2011, 9, 6469.

    7. [7]

      (a) Schultz, D. M.; Wolfe, J. P. Org. Lett. 2010, 12, 1028.
      (b) Caddick, S.; Koe, W. Tetrahedron Lett. 2002, 43, 9347.
      (c) Sharma, V.; Kumar, P.; Pathak, D. J. Heterocycl. Chem. 2010, 47, 491.
      (d) Lu, T.; Lu, Z.; Ma, Z. X.; Zhang, Y.; Hsung, R. P. Chem. Rev. 2013, 113, 4862.

    8. [8]

      Cho, C. S.; Kim, J. S.; Oh, B. H. Tetrahedron 2000, 56, 7747.  doi: 10.1016/S0040-4020(00)00694-3

    9. [9]

      Cui, X. M. Chlor-Alkali Ind. 2000, 5, 172192(in Chinese).

    10. [10]

    11. [11]

      Lee, O. Y.; Law, K. L.; Yang, D. Org. Lett. 2009, 11, 3302.  doi: 10.1021/ol901111g

    12. [12]

      (a) Patel, S. J.; Jamison, T. F. Angew. Chem., Int. Ed. 2003, 42, 1364.
      (b) Patel, S. J.; Jamison, T. F. Angew. Chem., Int. Ed. 2004, 43, 3941.
      (c) Zhou, C. Y.; Zhu, S. F.; Wang, L. X., Zhou, Q. L. J. Am. Chem. Soc. 2010, 132, 10955.
      (d) Holmes, M.; Schwartz, L. A.; Krische, M. J. Chem. Rev. 2018, 118, 6026.

    13. [13]

      (a) Xie, Y. J.; Hu, J. H.; Wang, Y. Y.; Xia, C. G.; Huang, H. J. Am. Chem. Soc. 2012, 134, 20613.
      (b) Liu, Y.; Xie, Y.; Wang, H.; Huang, H. J. Am. Chem. Soc. 2016, 138, 4314.

    14. [14]

      (a) Bäckvall, J. E.; Nordberg, R. E.; Nyström, J. E.; Hoegberg, T.; Ulff, B. J. Org. Chem. 1981, 46, 3479.
      (b) You, S. L.; Zhu, X. Z.; Luo, Y. M.; Hou, X. L.; Dai, L. X. J. Am. Chem. Soc. 2001, 123, 7471.
      (c) Nagano, T.; Kobayashi, S. J. Am. Chem. Soc. 2009, 131, 4200.
      (d) Xie, Y. J.; Hu, J. H.; Wang, Y. Y.; Xia, C.; Huang, H. J. Am. Chem. Soc. 2012, 134, 20613.
      (e) Dubovyk, I.; Watson, I. D. G.; Yudin, A. K. J. Org. Chem. 2013, 78, 1559.
      (f) Cai, A. J.; Guo, W. S.; Martínez-Rodríguez, L.; Kleij, A. W. J. Am. Chem. Soc. 2016, 138, 14194.
      (g) Li, Y. G.; Li, L.; Yang, M. Y.; Kantchev, E. A. B. J. Org. Chem. 2017, 82, 4907.

    15. [15]

      (a) Trost, B. M.; Zhang, T.; Sieber, J. D. Chem. Sci. 2010, 1, 427.
      (b) Evans, P.; Grange, R.; Clizbe, E. Synthesis 2016, 48, 2911.
      (c) Guo, W.; Cai, A.; Xie, J.; Kleij, A. W. Angew. Chem., Int. Ed. 2017, 56, 11797.
      (d) Xia, C.; Shen, J.; Liu, D.; Zhang, W. Org. Lett. 2017, 19, 4251.
      (e) Wang, Y. N.; Wang, B. C.; Zhang, M. M.; Gao, X. W.; Li, T. R.; Lu, L. Q.; Xiao, W. J. Org. Lett. 2017, 19, 4094.

    16. [16]

      Yao, L.; Wang, C. J. Adv. Synth. Catal. 2015, 357, 384.  doi: 10.1002/adsc.201400790

    17. [17]

      Lu, B.; Feng, B.; Ye, H.; Chen, J. R.; Xiao, W. J. Org. Lett. 2018, 20, 3473.  doi: 10.1021/acs.orglett.8b01226

    18. [18]

      Ouyang, K.; Xi, Z. Acta Chim. Sinica 2013, 71, 13(in Chinese).

  • 加载中
    1. [1]

      Yajin LiHuimin LiuLan MaJiaxiong LiuDehua He . Photothermal Synthesis of Glycerol Carbonate via Glycerol Carbonylation with CO2 over Au/Co3O4-ZnO Catalyst. Acta Physico-Chimica Sinica, 2024, 40(9): 2308005-0. doi: 10.3866/PKU.WHXB202308005

    2. [2]

      Xuejie WangGuoqing CuiCongkai WangYang YangGuiyuan JiangChunming Xu . Research Progress on Carbon-based Catalysts for Catalytic Dehydrogenation of Liquid Organic Hydrogen Carriers. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-0. doi: 10.1016/j.actphy.2024.100044

    3. [3]

      Dan Li Hui Xin Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046

    4. [4]

      Huiwei DingBo PengZhihao WangQiaofeng Han . Advances in Metal or Nonmetal Modification of Bismuth-Based Photocatalysts. Acta Physico-Chimica Sinica, 2024, 40(4): 2305048-0. doi: 10.3866/PKU.WHXB202305048

    5. [5]

      Yushan CaiFang-Xing Xiao . Revisiting MXenes-based Photocatalysis Landscape: Progress, Challenges, and Future Perspectives. Acta Physico-Chimica Sinica, 2024, 40(8): 2306048-0. doi: 10.3866/PKU.WHXB202306048

    6. [6]

      Yuanyin CuiJinfeng ZhangHailiang ChuLixian SunKai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-0. doi: 10.3866/PKU.WHXB202405016

    7. [7]

      Haodong JINQingqing LIUChaoyang SHIDanyang WEIJie YUXuhui XUMingli XU . NiCu/ZnO heterostructure photothermal electrocatalyst for efficient hydrogen evolution reaction. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1068-1082. doi: 10.11862/CJIC.20250048

    8. [8]

      Haoyu SunDun LiYuanyuan MinYingying WangYanyun MaYiqun ZhengHongwen Huang . Hierarchical Palladium-Copper-Silver Porous Nanoflowers as Efficient Electrocatalysts for CO2 Reduction to C2+ Products. Acta Physico-Chimica Sinica, 2024, 40(6): 2307007-0. doi: 10.3866/PKU.WHXB202307007

    9. [9]

      Dong XiangKunzhen LiKanghua MiaoRan LongYujie XiongXiongwu Kang . Amine-Functionalized Copper Catalysts: Hydrogen Bonding Mediated Electrochemical CO2 Reduction to C2 Products and Superior Rechargeable Zn-CO2 Battery Performance. Acta Physico-Chimica Sinica, 2024, 40(8): 2308027-0. doi: 10.3866/PKU.WHXB202308027

    10. [10]

      Xue LiuLipeng WangLuling LiKai WangWenju LiuBiao HuDaofan CaoFenghao JiangJunguo LiKe Liu . Research on Cu-Based and Pt-Based Catalysts for Hydrogen Production through Methanol Steam Reforming. Acta Physico-Chimica Sinica, 2025, 41(5): 100049-0. doi: 10.1016/j.actphy.2025.100049

    11. [11]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    12. [12]

      Zhiquan ZhangBaker RhimiZheyang LiuMin ZhouGuowei DengWei WeiLiang MaoHuaming LiZhifeng Jiang . Insights into the Development of Copper-Based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-0. doi: 10.3866/PKU.WHXB202406029

    13. [13]

      Lina GuoRuizhe LiChuang SunXiaoli LuoYiqiu ShiHong YuanShuxin OuyangTierui Zhang . Effect of Interlayer Anions in Layered Double Hydroxides on the Photothermocatalytic CO2 Methanation of Derived Ni-Al2O3 Catalysts. Acta Physico-Chimica Sinica, 2025, 41(1): 100002-0. doi: 10.3866/PKU.WHXB202309002

    14. [14]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

    15. [15]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    16. [16]

      Yanan Liu Yufei He Dianqing Li . Preparation of Highly Dispersed LDHs-based Catalysts and Testing of Nitro Compound Reduction Performance: A Comprehensive Chemical Experiment for Research Transformation. University Chemistry, 2024, 39(8): 306-313. doi: 10.3866/PKU.DXHX202401081

    17. [17]

      Tingbo Wang Yao Luo Bingyan Hu Ruiyuan Liu Jing Miao Huizhe Lu . Quantitative Computational Study on the Claisen Rearrangement Reaction of Allyl Phenyl Ethers: An Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(11): 278-285. doi: 10.12461/PKU.DXHX202403082

    18. [18]

      Wei SunYongjing WangKun XiangSaishuai BaiHaitao WangJing ZouArramelJizhou Jiang . CoP Decorated on Ti3C2Tx MXene Nanocomposites as Robust Electrocatalyst for Hydrogen Evolution Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2308015-0. doi: 10.3866/PKU.WHXB202308015

    19. [19]

      Yi YangXin ZhouMiaoli GuBei ChengZhen WuJianjun Zhang . Femtosecond transient absorption spectroscopy investigation on ultrafast electron transfer in S-scheme ZnO/CdIn2S4 photocatalyst for H2O2 production and benzylamine oxidation. Acta Physico-Chimica Sinica, 2025, 41(6): 100064-0. doi: 10.1016/j.actphy.2025.100064

    20. [20]

      Fangxuan LiuZiyan LiuGuowei ZhouTingting GaoWenyu LiuBin Sun . 中空结构光催化剂. Acta Physico-Chimica Sinica, 2025, 41(7): 100071-0. doi: 10.1016/j.actphy.2025.100071

Metrics
  • PDF Downloads(4)
  • Abstract views(749)
  • HTML views(63)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return