Citation: Huang Jin, Fu Ronghui, Jing Linhai, Qin Dabin, Huang Kun, Wang Wei. A Convenient Access to 3-Substituted Benzofuran Derivatives via Palladium Nanoparticles-Catalyzed Intramolecular Heck Reaction[J]. Chinese Journal of Organic Chemistry, ;2019, 39(2): 456-462. doi: 10.6023/cjoc201807040 shu

A Convenient Access to 3-Substituted Benzofuran Derivatives via Palladium Nanoparticles-Catalyzed Intramolecular Heck Reaction

  • Corresponding author: Wang Wei, wangwei1987@cwnu.edu.cn
  • Received Date: 23 July 2018
    Revised Date: 29 August 2018
    Available Online: 17 February 2018

    Fund Project: the Science and Technology Program of Sichuan Province 2018JY0485the National Natural Science Foundation of China 21602144Project supported by the National Natural Science Foundation of China (No. 21602144), and the Science and Technology Program of Sichuan Province (No. 2018JY0485)

Figures(2)

  • A concise and efficiently route for the synthesis of 3-substituted benzofurans via the intramolecular Heck reaction of bromoaryl 3-phenylallyl ethers has been developed. This simple and highly efficient palladium nanoparticles-catalyzed system showed good catalytic activity. The desired products were affored in good to high yields (45%~96%).
  • 加载中
    1. [1]

      (a) Lin, Y.-L.; Tsai, Y.-L.; Kuo, Y.-H.; Liu, Y.-H.; Shiao, M.-S. J. Nat. Prod. 1999, 62, 1500.
      (b) Boto, A.; Alvarez, L. Heterocycles in Natural Product Synthesis, Wiley-VCH, Weinheim, Germany, 2011, pp. 97~152.
      (c) La Clair, J. J.; Rheingold, A. L.; Burkart, M. D. J. Nat. Prod. 2011, 74, 2045.
      (d) Simonetti, S. O.; Larghi, E. L.; Bracca, A. B. J.; Kaufman, T. S. Nat. Prod. Rep. 2013, 30, 941./

    2. [2]

      (a) Flynn, B. L.; Hamel, E.; Jung, M. K. J. Med. Chem. 2002, 45, 2670.
      (b) Carlsson, B.; Singh, B. N.; Temciuc, M.; Nilsson, S.; Li, Y. L.; Mellin, C.; Malm, J. J. Med. Chem. 2002, 45, 623.
      (c) Cacchi, S.; Fabrizi, G.; Goggiamani, A. Curr. Org. Chem. 2006, 10, 1423.
      (d) Kirilmis, C.; Ahmedzade, M.; Servi, S.; Koca, M.; Kizirgil, A.; Kazaz, C. Eur. J. Med. Chem. 2008, 43, 300.

    3. [3]

       

    4. [4]

      (a) Ziegert, R. E.; Toräng, J.; Knepper, K.; Bräse, S. J. Comb. Chem. 2005, 7, 147.
      (b) Tsuji, H.; Mitsui, C.; Ilies, L.; Sato, Y.; Nakamura, E. J. Am. Chem. Soc. 2007, 129, 11902.
      (c) Walker, B.; Tamayo, A. B.; Dang, X. D.; Seo, J. H.; Garcia, A.; Tantiwiwat, M.; Nguyen, T. Q. Adv. Funct. Mater. 2009, 19, 3063.
      (d) Zhang, P.; Yang, Y.-W.; Zheng, X.-L.; Huang, W. H.; Ma, Z.; Shen, Z. R. Chem. Pharm. Bull. 2012, 60, 270.
      (e) Aiken, S.; Allsopp, B.; Booth, K.; Gabbutt, C. D.; Heron, B. M.; Rice, C. R. Tetrahedron 2014, 70, 9352.

    5. [5]

      Radadiya, A.; Shah, A. Eur. J. Med. Chem. 2015, 97, 356.  doi: 10.1016/j.ejmech.2015.01.021

    6. [6]

      (a) Itokawa, H.; Ibraheim, Z. Z.; Qiao, Y. F.; Takeya K. Chem. Pharm. Bull. 1993, 41, 1869.
      (b) Lee, K.-H.; Huang, B.-R. Eur. J. Med. Chem. 2002, 37, 333.
      (c) Lumb, J.-P.; Trauner, D. J. Am. Chem. Soc. 2005, 127, 2870.
      (d) Srivastava, V.; Negi, A. S.; Kumar, J. K.; Faridi, U.; Darokar, M. P.; Luqman, S.; Khanuja, S. P. S. Bioorg. Med. Chem. Lett. 2006, 16, 911.

    7. [7]

      Stipanovic, R. D.; Bell, A. A.; Howell, C. R. Phytochemistry 1975, 14, 1809.  doi: 10.1016/0031-9422(75)85299-X

    8. [8]

      (a) Doe, M.; Shibue, T.; Haraguchi, H.; Morimoto, Y. Org. Lett. 2005, 7, 1765.
      (b) Kapche, G. D. W. F.; Fozing, C. D.; Donfack, J. H.; Fotso, G. W.; Amadou, D.; Tchana, A. N.; Bezabih, M.; Moundipa, P. F.; Ngadjui, B. T.; Abegaz, B. M. Phytochemistry 2009, 70, 216.
      (c) Buckingham, J.; Ranjit, V.; Munasinghe, N. Dictionary of Flavonoids, Taylor and Francis Group, Boca Raton, 2015.

    9. [9]

      Chen, Y.; Wei, X.; Xie, H.; Deng, H. J. Nat. Prod. 2008, 71, 929.  doi: 10.1021/np800016e

    10. [10]

      (a) Wang, L.-Q.; Zhao, Y.-X.; Hu, J. M.; Jia, A.-Q.; Zhou, J. Helv. Chim. Acta 2008, 91, 159.
      (b) Liu, W.; Jiang, X.; Zhang, W.; Jiang, F.; Fu, L. Org. Chem. Curr. Res. 2016, 5, 1000164.

    11. [11]

      Findlay, J. A.; Buthelezi, S.; Li, G.; Seveck, M.; Miller, J. D. J. Nat. Prod. 1997, 60, 1214.  doi: 10.1021/np970222j

    12. [12]

      (a) Guo, X.; Yu, R.; Li, H.; Li, Z. J. Am. Chem. Soc. 2009, 131, 17387.
      (b) Kundu, D.; Samim, M.; Majee A.; Hajra, A. Chem.-Asian J. 2011, 6, 406.
      (c) Ackermann, L.; Kaspar, L. T. J. Org. Chem. 2007, 72, 6149.

    13. [13]

      (a) Willis, M. C.; Taylor D.; Gillmore, A. T. Org. Lett. 2004, 6, 4755.
      (b) Anderson, K. W.; Ikawa, T.; Tundel, R. E.; Buchwald, S. L. J. Am. Chem. Soc. 2006, 128, 10694.
      (c) Markina, N. A.; Chen Y.; Larock, R. C. Tetrahedron 2013, 69, 2701.

    14. [14]

      (a) Ichake, S. S.; Konala, A.; Kavala, V.; Kuo, C.-W.; Yao, C.-F. Org. Lett. 2017, 19, 54.
      (b) Lee, J. H.; Kim, M.; Kim, I. J. Org. Chem. 2014, 79, 6153.
      (c) Agasti, S.; Dey, A.; Maiti, D. Chem. Commun. 2017, 53, 6544.

    15. [15]

      Pei, T.; Chen, C.-Y.; DiMichele, L.; Davies, I. W. Org. Lett. 2010, 12, 4972.  doi: 10.1021/ol102123u

    16. [16]

      (a) Sharma, U.; Naveen, T.; Maji, A.; Manna, S.; Maiti, D. Angew. Chem., Int. Ed. 2013, 52, 12669.
      (b) Agasti, S.; Sharma, U.; Naveen, T.; Maiti, D. Chem. Commun. 2015, 51, 5375.

    17. [17]

      Wang, S.-H.; Li, P.-H.; Yu, L.; Wang, L. Org. Lett. 2011, 13, 5968.  doi: 10.1021/ol202383z

    18. [18]

      Liu, L.; Ji, X.; Dong, J.; Zhou, Y.; Yin, S.-F. Org. Lett. 2016, 18, 3138.  doi: 10.1021/acs.orglett.6b01352

    19. [19]

      Deight, T. A.; Rue, N. R.; Charyk, D.; Josselyn, R.; DeBoef, B. Org. Lett. 2007, 9, 3137.  doi: 10.1021/ol071308z

    20. [20]

      Theunissen, C.; Wang, J.-J.; Evano, G. Chem. Sci. 2017, 8, 3465.  doi: 10.1039/C6SC05622A

    21. [21]

      Xu, G.-Y.; Liu, K.; Sun, J.-T. Org. Lett. 2018, 20, 72.  doi: 10.1021/acs.orglett.7b03390

    22. [22]

      Gao, Y.; Xiong, W.-F.; Chen, H.-J.; Wu, W.-Q.; Peng, J.-W.; Gao, Y.-L.; Jiang, H.-F. J. Org. Chem. 2015, 80, 7456.  doi: 10.1021/acs.joc.5b01024

    23. [23]

      Torigoe, T.; Ohmura, T.; Suginome, M. Chem. Eur. J. 2016, 22, 10415.  doi: 10.1002/chem.201602152

    24. [24]

      Zhou, R.; Wang, W.; Jiang, Z.-J.; Wang, K.; Zheng, X.-L.; Fu, H.-Y.; Chen, H.; Li, R.-X. Chem. Commun. 2014, 50, 6023.  doi: 10.1039/C4CC00815D

    25. [25]

      (a) Wang, W.; Yang, Q.; Zhou, R.; Fu, H.-Y.; Chen, H.; Li, R.-X.; Li, X.-J. J. Organomet. Chem. 2012, 697, 1.
      (b) Wang, W.; Zhou, R.; Jiang, Z.-J.; Wang, K.; Fu, H.-Y.; Zheng, X.-L.; Chen, H.; Li, R.-X. Adv. Synth. Catal. 2014, 356, 616.
      (c) Wang, W.; Zhou, R.; Jiang, Z.-J.; Wang, X.; Fu, H.-Y.; Zheng, X.-L.; Chen, H.; Li, R.-X. Eur. J. Org. Chem. 2015, 2579.

    26. [26]

      (a) Larock, R. C.; Stinn, D. E. Tetrahedron Lett. 1988, 29, 4687.
      (b) Caddick, S.; Kofie, W. Tetrahedron Lett. 2002, 43, 9347.
      (c) Node, M.; Ozeki, M.; Planas, L.; Nakano, M.; Takita, H.; Mori, D.; Tamatani, S.; Kajimoto, T. J. Org. Chem. 2010, 75, 190.
      (d) Zhou, W.; An, G.-H.; Zhang, G.-Q.; Han, J.-L.; Pan, Y. Org. Biomol. Chem. 2011, 9, 5833.
      (e) Yang, H.-L.; Sun, P.; Zhu, Y.; Yan, H.; Lu, L.-H.; Liu, D.-F.; Rong, G.-W.; Mao, J.-Cheng. Catal. Commun. 2013, 38, 21.
      (f) Gu, Z.-Y.; Liu, C.-G.; Wang, S.-Y.; Ji, S.-J. Org. Lett. 2016, 18, 2379.
      (g) Adak, A. K.; Mandal, A.; Manna, S. K.; Mondal, S. K.; Ghosh, D.; Kundu, D.; Samanta, S.; Ray, J. K. Synth. Commun. 2016, 46, 452.

    27. [27]

      Cho, B. S.; Chung, Y. K. J. Org. Chem. 2017, 82, 2237.  doi: 10.1021/acs.joc.6b02864

    28. [28]

      Wang, W.; Huang, J.; Zhou, R.; Jiang, Z.-J.; Fu, H.-Y.; Zheng, X.-L.; Chen, H.; Li, R.-X. Adv. Synth. Catal. 2015, 357, 2442.  doi: 10.1002/adsc.v357.11

  • 加载中
    1. [1]

      Xiyuan Zhang Rui Dong Yang Yang Jiapeng Ding Zhiwei Miao . Palladium-Catalyzed Tandem Cyclization of 4-Vinylbenzoxazinone and Indene-2-carbaldehyde: A Comprehensive Organic Chemistry Experiment. University Chemistry, 2025, 40(9): 361-367. doi: 10.12461/PKU.DXHX202410062

    2. [2]

      Jichao XUMing HUXichang CHENChunhui WANGLeichen WANGLingyi ZHOUXing HEXiamin CHENGSu JING . Construction and hydrogen peroxide-activated chemodynamic activity of ferrocene?benzoselenadiazole conjugate. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1495-1504. doi: 10.11862/CJIC.20250144

    3. [3]

      Yongming Guo Jie Li Chaoyong Liu . Green Improvement and Educational Design in the Synthesis and Characterization of Silver Nanoparticles. University Chemistry, 2024, 39(3): 258-265. doi: 10.3866/PKU.DXHX202309057

    4. [4]

      Jie WEIQing ZHOUDandan DINGXiang JINGFei LI . Photothermal toxicity of Prussian blue nanoparticles to cervical cancer cells. Chinese Journal of Inorganic Chemistry, 2025, 41(11): 2345-2357. doi: 10.11862/CJIC.20240435

    5. [5]

      Gaopeng LiuLina LiBin WangNingjie ShanJintao DongMengxia JiWenshuai ZhuPaul K. ChuJiexiang XiaHuaming Li . Construction of Bi Nanoparticles Loaded BiOCl Nanosheets Ohmic Junction for Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(7): 2306041-0. doi: 10.3866/PKU.WHXB202306041

    6. [6]

      Zuoyong Li Haoxiang Tu Mingwei Ding Meijun Liu Ting Yang . Innovative Teaching Reform Study on the Synthesis of Silver Nanoparticles Based on Machine Learning and Microfluidic Technology. University Chemistry, 2026, 41(1): 64-75. doi: 10.12461/PKU.DXHX202505088

    7. [7]

      Yanglin JiangMingqing ChenMin LiangYige YaoYan ZhangPeng WangJianping Zhang . Experimental and Theoretical Investigations of Solvent Polarity Effect on ESIPT Mechanism in 4′-N,N-diethylamino-3-hydroxybenzoflavone. Acta Physico-Chimica Sinica, 2025, 41(2): 100012-0. doi: 10.3866/PKU.WHXB202309027

    8. [8]

      Lina Liu Xiaolan Wei Jianqiang Hu . Exploration of Subject-Oriented Undergraduate Comprehensive Chemistry Experimental Teaching Based on the “STS Concept”: Taking the Experiment of Gold Nanoparticles as an Example. University Chemistry, 2024, 39(10): 337-343. doi: 10.12461/PKU.DXHX202405112

    9. [9]

      Kezhen QiBei ChengKaiqiang Xu . Ultrafast interfacial charge transfer promoted by the LSPR of Au nanoparticles for photocatalytic H2 evolution. Acta Physico-Chimica Sinica, 2026, 42(3): 100205-0. doi: 10.1016/j.actphy.2025.100205

    10. [10]

      Zhenhuan WangWeifei WeiRuijie MaDou LuoZhanxiang ChenJun ZhangLiyang YuGang LiZhenghui Luo . 苯并[a]苯嗪受体的核心氰基化实现高效(19.04%)绿色溶剂加工的二元有机太阳能电池. Acta Physico-Chimica Sinica, 2026, 42(2): 100182-0. doi: 10.1016/j.actphy.2025.100182

    11. [11]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    12. [12]

      Yinuo Wang Ziyu Liu Hongxia Tan Jun Tong Dazhen Xu . Synthesis of Bromobenzoxazine: Introduce a Comprehensive Organic Chemistry Experiment Transformed from Undergraduate Research Innovation. University Chemistry, 2025, 40(10): 208-216. doi: 10.12461/PKU.DXHX202411077

    13. [13]

      Guanghui Wang Chen Qian Zhiyong Ma . Preparation and Characterization of 7H-Benzo[C]Carbazole Based Ultra-Long Organic Room Temperature Phosphorescence Material. University Chemistry, 2025, 40(11): 289-299. doi: 10.12461/PKU.DXHX202412062

    14. [14]

      Weihan ZhangMenglu WangAnkang JiaWei DengShuxing Bai . Surface Sulfur Species Influence Hydrogenation Performance of Palladium-Sulfur Nanosheets. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-0. doi: 10.3866/PKU.WHXB202309043

    15. [15]

      Wei Li Han Xu Chuancan Gu Ziyan Liu Yan'an Li Yan Geng . Digital Experiment on Nano-COF Materials Modulating Intracellular Ca²⁺ Concentration to Enhance Photodynamic Therapy. University Chemistry, 2026, 41(1): 354-362. doi: 10.12461/PKU.DXHX202506001

    16. [16]

      Haoyu SunDun LiYuanyuan MinYingying WangYanyun MaYiqun ZhengHongwen Huang . Hierarchical Palladium-Copper-Silver Porous Nanoflowers as Efficient Electrocatalysts for CO2 Reduction to C2+ Products. Acta Physico-Chimica Sinica, 2024, 40(6): 2307007-0. doi: 10.3866/PKU.WHXB202307007

    17. [17]

      Renxiao Liang Zhe Zhong Zhangling Jin Lijuan Shi Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024

    18. [18]

      Yongzhi LIHan ZHANGGangding WANGYanwei SUILei HOUYaoyu WANG . A two-dimensional metal-organic framework for the determination of nitrofurantoin and nitrofurazone in aqueous solution. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 245-253. doi: 10.11862/CJIC.20240307

    19. [19]

      Lili Jiang Shaoyu Zheng Xuejiao Liu Xiaomin Xie . Copper-Catalyzed Oxidative Coupling Reactions for the Synthesis of Aryl Sulfones: A Fundamental and Exploratory Experiment for Undergraduate Teaching. University Chemistry, 2025, 40(7): 267-276. doi: 10.12461/PKU.DXHX202408004

    20. [20]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

Metrics
  • PDF Downloads(9)
  • Abstract views(1221)
  • HTML views(175)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return