

Citation: Zhang Xiaoming, Lei Peng, Li Xinlu, Yang Xinling, Zhang Xuebo, Sun Tengda, Ling Yun. Synthesis and Anti-fungual Activity of Novel Aspernigerin Derivatives Containing Thiocarbonyl Moiety[J]. Chinese Journal of Organic Chemistry, 2018, 38(12): 3197-3203. doi: 10.6023/cjoc201807004

新型含硫羰基结构的Aspernigerin衍生物的合成及抑菌活性研究
-
关键词:
- 天然产物
- / Aspernigerin
- / 四氢喹啉
- / 合成
- / 抗真菌活性
English
Synthesis and Anti-fungual Activity of Novel Aspernigerin Derivatives Containing Thiocarbonyl Moiety
-
Key words:
- natural product
- / aspernigerin
- / tetrahydroquinoline
- / synthesis
- / anti-fungal activity
-
天然产物在农药领域扮演着重要的角色, 但鉴于一些天然产物含量低、稳定性差、活性有限等问题, 限制了其在农业上的广泛应用.以天然产物为先导进行结构修饰与改造是创制新农药的重要途径之一[1], 如氨基甲酸酯类、拟除虫菊酯类、新烟碱类、沙蚕毒素类杀虫剂[2, 3]以及甲氧基丙烯酸类杀菌剂[4, 5]等均是由天然产物出发, 经修饰改造而最终成为农药.以天然产物为模型进行新农药创制, 具有目标性强、高效、低毒等优点[6].
据报道, 天然产物Aspernigerin对人的口腔表皮样癌细胞KB、宫颈癌细胞Hela、结肠癌细胞SW1116表现出较强的生物活性[7], 本课题组前期开展了Aspernigerin在农业领域的应用研究, 经过对其进行农用生物活性测试, 发现其具有一定的杀菌、杀虫和除草活性[8], 可以作为先导化合物进行优化研究.对Asper- nigerin的结构分析发现, 其主要结构单元有1, 2, 3, 4-四氢喹啉和哌嗪环, 且可能是起生物活性作用的主要片段.根据文献调研, 1, 2, 3, 4-四氢喹啉的确存在于许多天然产物结构中, 并表现出良好的抗癌[9]、抗艾滋[10]、抗炎症[11]、抗疟疾[12]、杀虫[13]、抗真菌[14, 15]、抗细菌[16]等生物活性, 但其活性研究多集中在医药领域, 农用领域的研究较少.哌嗪是Aspernigerin的另一结构单元, 由于哌嗪环具有更好的氮平衡对称结构, 引入哌嗪环作为药物的增效基团, 可以提高药物的生物活性[17].哌嗪类化合物由此显示出了广泛的生物活性, 如抗病毒[18]、抗菌[19]、抗肿瘤[20]、抗疟疾[21]、抗艾滋[22]等.近年来, 有关哌嗪类化合物的报道逐渐增多, 并以较快的速度递增, 特别是与此有关的氮杂环药物在农药和医药上的应用.一些代表性的含喹啉或哌嗪结构的药物见图 1.
图 1
为了开发具有更好杀菌活性的化合物, 我们保留了Aspernigerin的四氢喹啉和哌嗪活性结构片段, 根据生物电子等排原理, 用硫羰基替换羰基, 并与天然产物肉桂酸进行活性亚结构拼接, 设计合成了一系列含有硫羰基结构的Aspernigerin衍生物(Scheme 1).并选取油菜菌核(Sclerotinia sclerotiorum)、黄瓜灰霉(Botrytis cinereal)、苹果腐烂(Valsa mali)、小麦赤霉(Fusahum graminearum)、稻瘟(Magnaporthe grisea)、小麦全蚀(Gaeumam-momyces graminis var. tritici)、水稻纹枯(Rhizoctonia solani)和瓜果腐霉(Pythium aphanidermatum) 8种病原真菌为测试对象, 对目标化合物进行了离体抑菌活性测定, 结果表明目标化合物均具有一定的抑菌活性.
图式 1
1. 结果与讨论
1.1 目标化合物的合成
目标化合物的合成路线如Scheme 2所示.以N, N-硫羰基二咪唑和1, 2, 3, 4-四氢喹啉为起始原料, 经胺化、碘甲烷活化、再次胺化制得关键中间体(3, 4-二氢喹啉- 1-(2H-基)(哌嗪-1-基)甲硫酮(4), 之后与取代肉桂酰氯反应得到目标化合物5a~5n.
图式 2
1.2 谱图解析
所合成的目标化合物均通过1H NMR、13C NMR和HRMS确定结构.以化合物5c为例进行解析.从5c的核磁共振氢谱可以看出, 四氢喹啉环上3-位的2个质子由于受到2-位和4-位质子的影响, 裂分为多重峰, 化学位移在δ 1.88~2.00处; 化学位移在δ 2.75处的信号峰是四氢喹啉环4-位质子的信号, 因受3-位质子的影响裂分为三重峰, 偶合常数为6.7 Hz; 四氢喹啉环2-位的2个质子, 受邻位N原子的影响, 化学位移向低场移动, 并与哌嗪环上的8个质子信号峰重叠, 在化学位移δ 3.54~4.04出现信号; δ 7.80和7.26的两个信号为C=C双键的信号峰, 受邻位C原子影响, 分裂为双峰, 偶合常数15.4 Hz; 其余分别为苯环上氢的质子信号峰.在核磁共振碳谱中, 目标物羰基的C原子位移值为δ 164.25;硫羰基的C原子, 由于受N原子的影响, 化学位移为188.72, 向低场移动; δ 119.2~141.67为苯环和C=C双键上C原子的信号峰; 四氢喹啉环上2-位的C, 由于相邻N原子的诱导作用向低场移动, 位移值为δ 50.47;四氢喹啉环上4-位的C与苯环相连, 移向低场, 位移值为26.38;四氢喹啉环上3-位的C位移值为δ 23.10;哌嗪环上4个C的位移值分别为δ 50.18, 49.52, 44.13和41.22.
1.3 目标化合物5j的晶体结构
为进一步确证目标化合物的晶体结构, 对目标化合物5j进行了X射线单晶衍射分析(CCDC号为1847462), 化合物5j的晶体结构见图 2, 将化合物5j溶于乙酸乙酯中, 配制成适当浓度的溶液, 避光, 室温静置挥发溶剂, 数日后形成无色通明晶体.挑选尺寸适中的晶体, 用于X射线衍射分析.
图 2
X射线单晶衍射分析结果表明, 化合物5j分子式为C23H24FN3OS, 分子量Mr=409.51, 晶型:单斜晶系, 空间群: P21/c, 晶胞参数: a=19.8075(18) , b=5.9150(4) , c=17.460(2) , α=90.00°, β=102.567(12)°, γ=90.00°, V=1996.6(3) 3; Dc=1.362 g/cm3; Z=4; F(000)=864; μ=0191 mm-1, 晶体结构修正后的一致性因子: R1=0.0385 [I>2σ(I)], wR2=0.0765, R1=0.0542, wR2=0.0799 (所有数据).
1.4 生物活性
表 1中实验数据表明, 在50 μg/mL浓度下, 目标化合物5a~5n对8种病原真菌均表现出不同程度的抑制活性, 尤其是化合物5b对苹果腐烂病菌的抑制活性(84.02%)与对照药剂氟酰胺(81.47%)相当.此外, 化合物5a和5m也同样对苹果腐烂病表现出了较好的抑制活性(抑制率分别为72.93%和75.74%), 化合物5c、5e、5g和5j的抑制活性呈中等水平(54.73%~66.17%).部分化合物对油菜菌核病菌表现出>50%的抑制活性, 如化合物5a (73.73%)、5b (75.72%)、5f (69.75%)和5n (62.18%), 但低于对照药剂氟酰胺.化合物对于所测试的其它病原真菌则无明显的抑制活性.进一步分析构效关系发现:取代基的种类和位置对其抑菌活性有一定的影响.如对于苹果腐烂病菌, 给电子取代基优于吸电子取代基, 取代基位置对活性也有一定影响, 2-位>4-位>3-位.
表 1
表 1 目标化合物5a~5n的离体抑菌活性(抑制率/%)aTable 1. In vitro antifungal activity of target compounds 5a~5n (inhibitory rate/%)Compd. R 油菜菌核 黄瓜灰霉 苹果腐烂 小麦赤霉 稻瘟 小麦全蚀 水稻纹枯 瓜果腐霉 5a H 73.73 32.63 72.93 37.05 16.06 36.35 48.77 27.33 5b 2-Me 75.72 27.54 84.02 22.77 33.94 24.17 27.27 18.98 5c 2-Cl 35.51 17.37 60.06 19.64 37.61 19.74 42.94 16.45 5d 3-CF3 40.38 17.37 35.21 17.41 10.55 14.76 24.85 18.39 5e 3-OMe 28.74 15.87 66.17 26.93 16.06 28.73 0.72 15.84 5f 3-Cl 69.75 17.80 22.78 21.43 34.40 19.19 37.73 15.67 5g 4-Me 30.33 33.05 57.84 39.73 15.14 26.94 56.75 24.61 5h 4-CF3 34.62 42.37 16.57 45.98 42.66 26.38 36.20 21.89 5i 4-NO2 31.93 24.58 39.64 28.57 29.82 13.10 38.34 18.39 5j 4-F 50.66 26.27 54.73 35.71 15.60 34.13 42.64 24.61 5k 4-Cl 42.85 25.42 25.00 20.98 17.43 18.08 33.44 22.28 5l 4-Br 49.84 15.68 11.24 17.86 11.93 23.62 44.79 25.00 5m 4-OMe 38.73 31.35 75.74 32.09 9.00 38.51 26.81 20.20 5n 2, 6-Cl2 62.18 11.44 24.11 15.18 14.68 38.01 32.21 15.28 氟酰胺 95.03 79.79 81.47 35.52 45.62 98.31 98.44 17.18 a浓度为50 μg/mL. 化合物5b对苹果腐烂病菌的抑制中浓度值(EC50=3.04 μg/mL)低于对照药剂氟酰胺(EC50=9.16 μg/mL) (表 2), 表明化合物5b对苹果腐烂病菌的活性优于对照药剂氟酰胺, 值得进一步研究.
表 2
Compd. y=ax+b EC50/(μg•mL-1) r 5b 1.0699x-0.5173 3.04 0.9779 氟酰胺 0.8550x-0.8225 9.16 0.9589 2. 结论
利用活性亚结构拼接原理, 设计并合成了14个未见文献报道的新型含有硫羰基结构的Aspernigerin衍生物.目标化合物结构均经过1H NMR、13C NMR和HRMS确证.对8种病原真菌离体活性测试结果显示, 所有化合物均表现出一定的抑制活性, 尤其是化合物5b对苹果腐烂病菌的活性(EC50=3.04 μg/mL)优于对照药剂氟酰胺(EC50=9.16 μg/mL), 可以作为二级先导进行进一步的优化.
3. 实验部分
3.1 仪器与试剂
Bruker DPX 300 MHz核磁共振仪(以TMS为内标, DMSO为溶剂); Bruker APEX Ⅳ傅立叶变换高分辨质谱; Gemini E单晶衍射仪.本实验所用柱层析硅胶(200~300目)和薄层板均为青岛海洋化工有限公司生产, 取代肉桂酸均购自北京偶合科技有限公司或希恩斯科技有限公司.所用试剂均为市售分析纯或化学纯试剂, 除特别注明外, 所用溶剂未经无水处理.
3.2 实验方法
中间体1和2参考文献[23]方法合成.
3.2.1 中间体3的合成
参考文献[23]的方法, 向250 mL圆底烧瓶中, 加入14.9 g (0.08 mol) 1-叔丁氧羰基哌嗪, 8.10 g (0.08 mol)三乙胺和30 mL二氯甲烷, 搅拌溶解, 将中间体2溶于100 mL二氯甲烷中, 加入反应体系, 40 ℃回流反应24 h, 薄层色谱(TLC)监测反应终点.待反应完全后, 过滤, 100 mL水洗三次, 合并有机相, 减压蒸出溶剂, 经柱层析分离纯化, [V(石油醚):V(乙酸乙酯)=8:1], 得淡黄色固体11.57 g(收率80%), 即为中间体3. m.p. 142~143 ℃; 1H NMR (300 MHz, CDCl3) δ: 7.18~7.07 (m, 2H), 7.01~6.93 (m, 1H), 6.81 (d, J=8.2 Hz, 1H), 3.96 (t, J=6.5 Hz, 2H), 3.60 (s, 4H), 3.45~3.38 (m, 4H), 2.78 (t, J=6.7 Hz, 2H), 2.08~1.97 (m, 2H), 1.44 (s, 9H).
3.2.2 中间体4的合成
50 mL圆底烧瓶中加入1.5 mL三氟乙酸, 3 mL二氯甲烷, 搅拌混匀, 加入1.08 g (3 mmol)中间体3, 室温下反应1.5 h, 减压蒸出溶剂, 适量二氯甲烷溶解后, 用碳酸氢钠调至碱性, 即得中间体4.不用经过进一步的纯化, 直接投入下一步反应.
3.2.3 目标化合物5a~5n的合成
向50 mL圆底烧瓶中, 加入3.3 mmol取代肉桂酸和10 mL氯仿, 搅拌溶解, 缓慢滴加1.18 g氯化亚砜, 并滴入1~2滴N, N-二甲基甲酰胺(DMF), 滴毕加热回流2 h, 减压蒸出氯仿和多余的氯化亚砜制得取代肉桂酰氯, 溶于2 mL无水二氯甲烷备用.
向50 mL圆底烧瓶中, 加入0.78 g (3 mmol)中间体4、3 mL二氯甲烷和0.91 g (9 mmol)三乙胺, 冰浴下缓慢滴加上述取代肉桂酰氯的二氯甲烷溶液, 滴毕, 撤去冰浴, 常温下反应2 h.过滤、水洗、干燥, 乙酸乙酯和石油醚重结晶, 得到目标化合物5a~5n.
(E)-3-苯基-1-(4-(1, 2, 3, 4-四氢喹啉-1-羰基)哌嗪-1-基)丙-2-烯-1-酮(5a):白色固体, 收率72%. m.p. 136~138 ℃; 1H NMR (300 MHz, DMSO-d6) δ: 7.70 (dd, J=7.4, 1.9 Hz, 2H, ArH), 7.51 (d, J=15.4 Hz, 1H, CH=CH), 7.46~7.31 (m, 3H, ArH), 7.23 (d, J=15.4 Hz, 1H, CH=CH), 7.19~7.06 (m, 2H, ArH), 6.94 (t, J=7.0 Hz, 1H, ArH), 6.79 (d, J=8.0 Hz, 1H, ArH), 4.07~3.43 (m, 10H, ArNCH2), 2.77 (t, J=6.7 Hz, 2H, ArCH2), 2.06~1.81 (m, 2H, ArCH2CH2); 13C NMR (75 MHz, DMSO-d6) δ: 188.70, 164.71, 141.89, 141.68, 135.19, 129.72, 129.38, 128.86, 128.16, 126.68, 122.49, 119.24, 118.14, 50.46, 50.22, 49.60, 44.12, 41.15, 26.39, 23.10; HRMS calcd for C23H26N3OS [M+H]+ 392.1791, found 392.1788.
(E)-1-(4-(1, 2, 3, 4-四氢喹啉-1-羰基)哌嗪-1-基)-3-(邻甲苯基)丙-2-烯-1-酮(5b):白色固体, 收率59%. m.p. 73~75 ℃; 1H NMR (300 MHz, DMSO-d6) δ: 7.80~7.66 (m, 2H, ArH), 7.28~7.18 (m, 3H, ArH, CH=CH), 7.15~7.03 (m, 3H, ArH, CH=CH), 6.91 (t, J=7.0 Hz, 1H, ArH), 6.76 (d, J=8.0 Hz, 1H, ArH), 3.97~3.44 (m, 10H, ArNCH2), 2.74 (t, J=6.7 Hz, 2H, ArCH2), 2.35 (s, 3H, CH3), 1.99~1.87 (m, 2H, ArCH2CH2); 13C NMR (75 MHz, DMSO-d6) δ: 188.72, 164.74, 141.68, 139.13, 136.90, 133.92, 130.67, 129.47, 129.38, 128.16, 126.67, 126.60, 126.31, 122.47, 119.21, 119.16, 50.46, 50.19, 49.58, 44.11, 41.13, 26.39, 23.11, 19.44; HRMS calcd for C24H28N3OS [M+H]+ 406.1948, found 406.1944
(E)-3-(2-氯苯基)-1-(4-(1, 2, 3, 4-四氢喹啉-1-羰基)哌嗪-1-基)丙-2-烯-1-酮(5c):白色固体, 收率68%. m.p. 86~88 ℃; 1H NMR (300 MHz, DMSO-d6) δ 7.95 (dt, J=6.2, 2.8 Hz, 1H, ArH), 7.80 (d, J=15.4 Hz, 1H, CH=CH), 7.52~7.46 (m, 1H, ArH), 7.41~7.33 (m, 2H, ArH), 7.26 (d, J=15.4 Hz, 1H, CH=CH), 7.16~7.04 (m, 2H, ArH), 6.91 (td, J=7.4, 1.0 Hz, 1H, ArH), 6.76 (d, J=7.5 Hz, 1H, ArH), 4.04~3.54 (m, 10H, ArNCH2), 2.75 (t, J=6.7 Hz, 2H, ArCH2), 2.00~1.88 (m, 2H, ArCH2CH2); 13C NMR (75 MHz, DMSO-d6) δ: 188.72, 164.25, 141.67, 136.81, 133.54, 132.88, 131.18, 129.95, 129.37, 128.32, 128.20, 127.63, 126.68, 122.51, 121.24, 119.25, 50.47, 50.18, 49.52, 44.13, 41.22, 26.38, 23.10; HRMS calcd for C23H25ClN3OS [M+H]+ 426.1401, found 426.1393.
(E)-1-(4-(1, 2, 3, 4-四氢喹啉-1-羰基)哌嗪-1-基)-3- (3-(三氟甲基)苯基)丙-2-烯-1-酮(5d):淡黄色固体, 收率77%. m.p. 167~169 ℃; 1H NMR (300 MHz, DMSO-d6) δ: 8.13 (s, 1H, ArH), 7.96 (d, J=7.7 Hz, 1H, ArH), 7.71~7.60 (m, 2H, ArH), 7.56 (d, J=15.5 Hz, 1H, CH=CH), 7.38 (d, J=15.5 Hz, 1H, CH=CH), 7.17~7.04 (m, 2H, ArH), 6.92 (td, J=7.4, 1.0 Hz, 1H, ArH), 6.77 (d, J=7.5 Hz, 1H, ArH), 3.86 (ddd, J=37.1, 22.8, 16.1 Hz, 10H, ArNCH2), 2.75 (t, J=6.7 Hz, 2H, ArCH2), 1.98~1.88 (m, 2H, ArCH2CH2); 13C NMR (75 MHz, DMSO-d6) δ: 188.71, 164.38, 141.69, 140.15, 136.36, 132.35, 130.04, 129.89, 129.62, 129.38, 128.24, 126.68, 125.86, 124.25, 122.53, 120.35, 119.24, 50.46, 50.29, 49.56, 44.12, 41.21, 26.37, 23.12; HRMS calcd for C24H25F3N3OS [M+H]+460.1665, found 460.1660.
(E)-3-(3-甲氧基苯基)-1-(4-(1, 2, 3, 4-四氢喹啉-1-羰基)哌嗪-1-基)丙-2-烯-1-酮(5e):淡黄色固体, 收率70%. m.p. 60~62 ℃; 1H NMR (300 MHz, DMSO-d6) δ: 7.51 (d, J=15.3 Hz, 1H, CH=CH), 7.31~7.17 (m, 4H, ArH, CH=CH), 7.10 (dd, J=15.8, 7.6 Hz, 2H, ArH), 6.91 (t, J=7.4 Hz, 2H, ArH), 6.77 (d, J=8.0 Hz, 1H, ArH), 4.05~3.58 (m, 13H, ArNCH2, OCH3), 2.74 (t, J=6.7 Hz, 2H, ArCH2), 1.98~1.88 (m, 2H, ArCH2CH2); 13C NMR (75 MHz, DMSO-d6) δ: 188.72, 164.71, 159.72, 141.92, 141.69, 136.60, 129.85, 129.38, 128.19, 126.67, 122.49, 120.91, 119.21, 118.35, 115.64, 112.93, 55.34, 50.48, 50.26, 49.62, 44.13, 41.16, 26.41, 23.15; HRMS calcd for C24H28N3O2S [M+H]+ 422.1897, found 422.1890.
(E)-3-(3-氯苯基)-1-(4-(1, 2, 3, 4-四氢喹啉-1-羰基)哌嗪-1-基)丙-2-烯-1-酮(5f):白色固体, 收率76%. m.p. 72~74 ℃; 1H NMR (300 MHz, DMSO-d6) δ: 8.00~7.92 (m, 1H, ArH), 7.80 (d, J=15.4 Hz, 1H, CH=CH), 7.53~7.46 (m, 1H, ArH), 7.42~7.34 (m, 2H, ArH), 7.26 (d, J=15.4 Hz, 1H, CH=CH), 7.17~7.03 (m, 2H, ArH), 6.95~6.88 (m, 1H, ArH), 6.76 (d, J=8.1 Hz, 1H, ArH), 3.96~3.49 (m, 10H, ArNCH2), 2.75 (t, J=6.7 Hz, 2H, ArCH2), 1.98~1.90 (m, 2H, ArCH2CH2); 13C NMR (75 MHz, DMSO-d6) δ: 188.72, 164.25, 141.67, 136.81, 133.53, 132.88, 131.18, 129.95, 129.38, 128.32, 128.20, 127.63, 126.68, 122.51, 121.25, 119.25, 50.47, 50.18, 49.52, 44.14, 41.21, 26.38, 23.10; HRMS calcd for C23H25ClN3OS [M+H]+ 426.1401, found 426.1400.
(E)-1-(4-(1, 2, 3, 4-四氢喹啉-1-羰基)哌嗪-1-基)-3-(对甲苯基)丙-2-烯-1-酮(5g):白色固体, 收率69%. m.p. 122~124 ℃; 1H NMR (300 MHz, DMSO-d6) δ: 7.59 (d, J=8.1 Hz, 2H, ArH), 7.48 (d, J=15.3 Hz, 1H, CH=CH), 7.24~7.17 (m, 3H, ArH), 7.16~7.07 (m, 2H, ArH, CH=CH), 6.97~6.90 (m, 1H, ArH), 6.78 (d, J=7.6 Hz, 1H, ArH), 3.87~3.51 (m, 10H, ArNCH2), 2.77 (t, J=6.7 Hz, 2H, ArCH2), 2.32 (s, 3H, CH3), 2.01~1.91 (m, 2H, ArCH2CH2); 13C NMR (75 MHz, DMSO-d6) δ: 188.72, 164.84, 141.92, 141.69, 139.52, 132.45, 129.47, 129.38, 128.15, 126.67, 122.48, 119.23, 116.97, 50.46, 50.23, 49.63, 44.13, 41.12, 26.38, 23.10, 21.08; HRMS calcd for C24H28N3OS [M+H]+ 406.1948, found 406.1947.
(E)-1-(4-(1, 2, 3, 4-四氢喹啉-1-羰基)哌嗪-1-基)-3- (4-(三氟甲基)苯基)丙-2-烯-1-酮(5h):淡黄色固体, 收率85%. m.p. 178~180 ℃; 1H NMR (300 MHz, DMSO-d6) δ: 7.93 (d, J=8.2 Hz, 2H, ArH), 7.75 (d, J=8.3 Hz, 2H, ArH), 7.57 (d, J=15.5 Hz, 1H, CH=CH), 7.39 (d, J=15.5 Hz, 1H, CH=CH), 7.22~7.05 (m, 2H, ArH), 6.94 (t, J=7.4 Hz, 1H, ArH), 6.80 (d, J=8.1 Hz, 1H, ArH), 4.22~3.56 (m, 10H, ArNCH2), 2.78 (t, J=6.7 Hz, 2H, ArCH2), 2.04~1.87 (m, 2H, ArCH2CH2). 13C NMR (75 MHz, DMSO-d6) δ: 188.75, 164.31, 141.69, 140.01, 139.25, 129.65, 129.37, 129.23, 128.91, 128.74, 128.23, 126.67, 126.03, 125.69, 122.52, 121.18, 119.26, 50.46, 50.22, 49.53, 44.16, 41.20, 26.37, 23.11; HRMS calcd for C24H25F3N3OS [M+H]+ 460.1665, found 460.1664.
(E)-3-(4-硝基苯基)-1-(4-(1, 2, 3, 4-四氢喹啉-1-羰基)哌嗪-1-基)丙-2-烯-1-酮(5i):淡黄色固体, 收率67%. m.p. 212~214 ℃; 1H NMR (300 MHz, DMSO-d6) δ: 8.23 (d, J=8.8 Hz, 2H, ArH), 7.98 (d, J=8.9 Hz, 2H, ArH), 7.59 (d, J=15.5 Hz, 1H, CH=CH), 7.45 (d, J=15.5 Hz, 1H, CH=CH), 7.19~7.07 (m, 2H, ArH), 6.99~6.90 (m, 1H, ArH), 6.80 (d, J=7.5 Hz, 1H, ArH), 4.07~3.50 (m, 10H, ArNCH2), 2.78 (t, J=6.7 Hz, 2H, ArCH2), 2.01~1.91 (m, 2H, ArCH2CH2); 13C NMR (75 MHz, DMSO-d6) δ: 188.73, 164.09, 147.68, 141.78, 141.67, 139.27, 129.37, 129.18, 128.25, 126.68, 123.96, 122.74, 122.54, 119.28, 50.47, 50.22, 49.51, 44.18, 41.25, 26.37, 23.12; HRMS calcd for C23H25N4O3S [M+H]+ 437.1642, found 437.1640.
(E)-3-(4-氟苯基)-1-(4-(1, 2, 3, 4-四氢喹啉-1-羰基)哌嗪-1-基)丙-2-烯-1-酮(5j):淡黄色固体, 收率83%. m.p. 149~150 ℃; 1H NMR (300 MHz, DMSO-d6) δ: 7.86~7.73 (m, 2H, ArH), 7.52 (d, J=15.4 Hz, 1H, CH=CH), 7.29~7.07 (m, 5H, ArH, CH=CH), 6.99~6.91 (m, 1H, ArH), 6.80 (d, J=8.1 Hz, 1H, ArH), 4.17~3.47 (m, 10H, ArNCH2), 2.78 (t, J=6.7 Hz, 2H, ArCH2), 2.04~.89 (m, 2H, ArCH2CH2); 13C NMR (75 MHz, DMSO-d6) δ: 188.72, 164.64, 161.29, 141.68, 140.66, 131.83, 130.42, 130.31, 129.38, 128.19, 126.67, 122.50, 119.25, 118.04, 115.95, 115.66, 50.46, 50.24, 49.61, 44.11, 41.16, 26.38, 23.11; HRMS calcd for C23H25FN3OS [M+H]+ 410.1697, found 410.1694.
(E)-3-(4-氯苯基)-1-(4-(1, 2, 3, 4-四氢喹啉-1-羰基)哌嗪-1-基)丙-2-烯-1-酮(5k):白色固体, 收率84%. m.p. 182~184 ℃; 1H NMR (300 MHz, DMSO-d6) δ: 7.74 (d, J=8.5 Hz, 2H, ArH), 7.53~7.35 (m, 3H, ArH, CH=CH), 7.24 (d, J=15.5 Hz, 1H, CH=CH), 7.18~7.05 (m, 1H, ArH), 6.93 (t, J=7.0 Hz, 1H, ArH), 6.78 (d, J=8.0 Hz, 1H, ArH), 4.08~3.45 (m, 10H, ArNCH2), 2.77 (t, J=6.7 Hz, 2H, ArCH2), 2.00~1.92 (m, 2H, ArCH2CH2); 13C NMR (75 MHz, DMSO-d6) δ: 188.73, 164.09, 147.68, 141.78, 141.67, 139.27, 129.37, 129.18, 128.25, 126.68, 123.96, 122.74, 122.54, 119.28, 50.47, 50.22, 49.51, 44.18, 41.25, 26.37, 23.12; HRMS calcd for C23H25ClN3OS [M+H]+426.1401, found 426.1402.
(E)-3-(4-溴苯基)-1-(4-(1, 2, 3, 4-四氢喹啉-1-羰基)哌嗪-1-基)丙-2-烯-1-酮(5l):淡黄色固体, 收率81%. m.p. 208~210 ℃; 1H NMR (300 MHz, DMSO-d6) δ: 7.65 (d, J=8.6 Hz, 1H, ArH), 7.57 (d, J=8.6 Hz, 1H, ArH), 7.45 (d, J=15.4 Hz, 1H, CH=CH), 7.24 (d, J=15.4 Hz, 1H), 7.17~7.04 (m, 2H, ArH), 6.96~6.88 (m, 1H, ArH), 6.76 (d, J=8.1 Hz, 1H, ArH), 3.94~3.45 (m, 10H, ArNCH2), 2.74 (t, J=6.7 Hz, 2H, ArCH2), 2.02~1.86 (m, 2H, ArCH2CH2); 13C NMR (75 MHz, DMSO-d6) δ: 188.73, 164.53, 141.68, 140.54, 134.50, 131.80, 130.12, 129.37, 128.21, 126.67, 122.95, 122.51, 119.25, 119.09, 50.46, 50.23, 49.59, 44.15, 41.19, 26.38, 23.11; HRMS calcd for C23H25BrN3OS [M+H]+ 470.0896, found 470.0891.
(E)-3-(4-甲氧基苯基)-1-(4-(1, 2, 3, 4-四氢喹啉-1-羰基)哌嗪-1-基)丙-2-烯-1-酮(5m):淡黄色固体, 收率71%. m.p. 59~61 ℃; 1H NMR (300 MHz, DMSO-d6) δ: 7.61 (t, J=7.2 Hz, 2H, ArH), 7.46 (d, J=15.3 Hz, 1H, CH=CH), 7.16~7.01 (m, 3H, ArH, CH=CH), 6.98~6.88 (m, 3H, ArH), 6.76 (d, J=8.0 Hz, 1H, ArH), 4.05~3.59 (m, 13H, ArNCH2, OCH3), 2.74 (t, J=6.7 Hz, 2H, ArCH2), 1.97~1.87 (m, 2H, ArCH2CH2); 13C NMR (75 MHz, DMSO-d6) δ: 188.72, 164.99, 160.62, 141.77, 141.69, 130.02, 129.81, 129.38, 128.16, 127.82, 126.66, 122.47, 119.21, 115.40, 114.47, 114.31, 55.39, 50.46, 50.17, 49.57, 44.06, 41.08, 26.40, 23.11; HRMS calcd for C24H28N3O2S [M+H]+ 422.1897, found 422.1888.
(E)-3-(2, 6-二氯苯基)-1-(4-(1, 2, 3, 4-四氢喹啉-1-羰基)哌嗪-1-基)丙-2-烯-1-酮(5n):淡黄色固体, 收率63%. m.p. 71~73 ℃; 1H NMR (300 MHz, DMSO-d6) δ: 7.50~7.40 (m, 3H, ArH), 7.36~7.26 (m, 1H, ArH), 7.15~6.98 (m, 3H, ArH), 6.93~6.82 (m, 1H, ArH), 6.74 (d, J=7.7 Hz, 1H, ArH), 4.33~3.59 (m, 10H, ArNCH2), 2.72 (t, J=6.7 Hz, 2H, ArCH2), 2.01~1.79 (m, 2H, ArCH2CH2); 13C NMR (75 MHz, DMSO-d6) δ: 188.73, 163.90, 141.61, 134.86, 133.90, 132.59, 130.60, 129.39, 129.07, 128.08, 127.00, 126.65, 122.43, 119.16, 50.48, 49.95, 49.38, 44.17, 41.13, 26.38, 23.04; HRMS calcd for C23H24Cl2N3OS [M+H]+ 460.1012, found 460.1010.
3.3 生物活性测定
3.3.1 目标化合物离体杀菌活性测定
采用菌丝生长速率法, 测定目标化合物对8种植物病原真菌的抑制活性.
试验菌种:油菜菌核(Sclerotinia sclerotiorum)、黄瓜灰霉(Botrytis cinereal)、苹果腐烂(Valsa mali)、小麦赤霉(Fusahum graminearum)、稻瘟(Magnaporthe grisea)、小麦全蚀(Gaeumammomyces graminis var. tritici)、水稻纹枯(Rhizoctonia solani)和瓜果腐霉(Pythium aphanider- matum).
试验药剂:化合物5a~5n及杀菌剂氟酰胺原药.
试验方法:采用菌丝生长速率法, 在无菌条件下, 用移液枪分别吸取上述制备好的10000 μg/mL的药液, 加入到准备好的已灭菌、冷却至50 ℃的马铃薯葡萄糖琼脂(PDA)培养基中, 充分混匀后, 制备成50 μg/mL带药培养基.然后将其倒入直径为9 cm的培养皿中, 每个药剂3次重复.待皿中带药培养基冷却固化后, 制备成带药PDA平板.以二甲基亚砜为溶剂对照, 同时以无菌水为空白对照.将准备好的病原菌平板, 沿菌落边缘制备直径5 mm的菌饼, 分别接种于带药和对照PDA平板中间.然后置于25 ℃培养箱中黑暗培养.
结果调查:待对照PDA平板中的菌落充分生长后, 以十字交叉法测量各PDA平板的菌落直径, 取其平均值.用校正后的空白对照与处理的菌落平均直径计算菌丝生长抑制率, 公式如下:
$ 抑制率\left( {\rm{\% }} \right){\rm{ = }}\frac{{对照菌落直径 - 处理菌落直径}}{{对照菌落直径 - 菌饼直径}} \times 100\% $
抑制中浓度(EC50)的测定:选取抑制率大于80%的化合物测定其抑制中浓度值.根据上述方法, 采用等倍稀释, 分别测试浓度为50, 25, 12.5, 6.25, 3.125与1.5625 μg/mL时的抑制率, 然后用软件SPSS计算抑制中浓度EC50.
辅助材料(Supporting Information) 化合物5j的晶体数据、中间体3的1H NMR, 5a~5n的1H NMR和13C NMR.这些材料可以免费从本刊网站(http://sioc-journal.cn/)上下载.
-
-
[1]
Crouse, D. CHEMTECH 1998, 28, 36.
-
[2]
刘长令, 钟滨, 李正名, 农药, 2003, 42, 1.Liu, C.-L.; Zhong, B.; Li, Z.-M. Pesticides 2003, 42, 1(in Chinese).
-
[3]
Maienfisch, P.; Huerlimann, H.; Rindlisbacher, A. Pest Manage. Sci. 2001, 57, 165. doi: 10.1002/(ISSN)1526-4998
-
[4]
Newman, D. J.; Cragg, G. M. Nat. Prod. Rep. 2007, 70, 461. doi: 10.1021/np068054v
-
[5]
Sauter, H.; Steglich; Anke, T. Angew. Chem., Int. Ed. 1999, 39, 1328.
-
[6]
刘长令, 柴宝山, 农药, 2013, 42, 13.Liu, C.-L.; Chai, B.-S. Pesticides 2013, 42, 13(in Chinese).
-
[7]
Shen, L.; Ye, Y.-H.; Wang, X.-T.; Tan, R.-X. Chem.-Eur. J. 2006, 12, 4393. doi: 10.1002/(ISSN)1521-3765
-
[8]
吴清来, 李永强, 杨新玲, 有机化学, 2012, 32, 1498. http://manu19.magtech.com.cn/Jwk_yjhx/CN/abstract/abstract341311.shtmlWu, Q.-L.; Li, Y.-Q.; Yang, X.-L. Chin. J. Org. Chem. 2012, 32, 1498(in Chinese). http://manu19.magtech.com.cn/Jwk_yjhx/CN/abstract/abstract341311.shtml
-
[9]
Jo, H.; Choi, M.; Kumar, A. S. ACS Med. Chem. Lett. 2016, 7, 385. doi: 10.1021/acsmedchemlett.6b00004
-
[10]
Chander, S.; Ashok, P.; Zheng Y. Bioorg. Chem. 2016, 64, 66. doi: 10.1016/j.bioorg.2015.12.005
-
[11]
Spadoni, G.; Bedini, A.; Lucarini, S. J. Med. Chem. 2015, 58, 7512. doi: 10.1021/acs.jmedchem.5b01066
-
[12]
Muñoz, G. D.; Dudley, G. B. Org. Prep. Proced. Int. 2015, 47, 179. doi: 10.1080/00304948.2015.1025012
-
[13]
Kitamura, S.; Harada, T.; Hiramatsu, H. Bioorg. Med. Chem. Lett. 2014, 24, 1715. doi: 10.1016/j.bmcl.2014.02.043
-
[14]
Sugiyama, R.; Nishimura, S.; Ozaki, T. Org. Lett. 2015, 17, 1918. doi: 10.1021/acs.orglett.5b00607
-
[15]
Chander, S.; Wang, P.; Ashok, P. Bioorg. Chem. 2016, 67, 75. doi: 10.1016/j.bioorg.2016.05.009
-
[16]
Duarte, Y.; Duenas, F.; Gutierrez, M. J. Chem. Pharm. Res. 2015, 7, 294.
-
[17]
Si, W.; Zhang, T.; Zhang, L. Bioorg. Med. Chem. Lett. 2016, 26, 2380. doi: 10.1016/j.bmcl.2015.07.052
-
[18]
Dou, D.; He, G.; Mandadapu, S. R.; Aravapalli, S.; Kim, Y.; Chang, K.-O.; Groutas, W. C. Bioorg. Med. Chem. Lett. 2012, 22, 377. doi: 10.1016/j.bmcl.2011.10.122
-
[19]
高慧, 郑喜, 朱萍, 有机化学, 2018, 38, 684. http://manu19.magtech.com.cn/Jwk_yjhx/CN/abstract/abstract346348.shtmlGao, H.; Zheng, X.; Zhu, P. Chin. J. Org. Chem. 2018, 38, 684(in Chinese). http://manu19.magtech.com.cn/Jwk_yjhx/CN/abstract/abstract346348.shtml
-
[20]
Lee, Y. B.; Gong, Y. D.; Yoon, H.; Ahn, C. H.; Jeon, M. K.; Kong, J. Y. Bioorg. Med. Chem. 2010, 18, 7966.
-
[21]
Khan, T.; Ahmad, R.; Azad, I. Comput. Biol. Chem. 2018, 75, 178.
-
[22]
Karacan, M. S.; Rodionova, M. V.; Tunç, T. Photosynth. Res. 2016, 130, 1. doi: 10.1007/s11120-015-0207-9
-
[23]
Grzyb, J. A. Tetrahedron 2005, 61, 7153. doi: 10.1016/j.tet.2005.05.056
-
[1]
-
表 1 目标化合物5a~5n的离体抑菌活性(抑制率/%)a
Table 1. In vitro antifungal activity of target compounds 5a~5n (inhibitory rate/%)
Compd. R 油菜菌核 黄瓜灰霉 苹果腐烂 小麦赤霉 稻瘟 小麦全蚀 水稻纹枯 瓜果腐霉 5a H 73.73 32.63 72.93 37.05 16.06 36.35 48.77 27.33 5b 2-Me 75.72 27.54 84.02 22.77 33.94 24.17 27.27 18.98 5c 2-Cl 35.51 17.37 60.06 19.64 37.61 19.74 42.94 16.45 5d 3-CF3 40.38 17.37 35.21 17.41 10.55 14.76 24.85 18.39 5e 3-OMe 28.74 15.87 66.17 26.93 16.06 28.73 0.72 15.84 5f 3-Cl 69.75 17.80 22.78 21.43 34.40 19.19 37.73 15.67 5g 4-Me 30.33 33.05 57.84 39.73 15.14 26.94 56.75 24.61 5h 4-CF3 34.62 42.37 16.57 45.98 42.66 26.38 36.20 21.89 5i 4-NO2 31.93 24.58 39.64 28.57 29.82 13.10 38.34 18.39 5j 4-F 50.66 26.27 54.73 35.71 15.60 34.13 42.64 24.61 5k 4-Cl 42.85 25.42 25.00 20.98 17.43 18.08 33.44 22.28 5l 4-Br 49.84 15.68 11.24 17.86 11.93 23.62 44.79 25.00 5m 4-OMe 38.73 31.35 75.74 32.09 9.00 38.51 26.81 20.20 5n 2, 6-Cl2 62.18 11.44 24.11 15.18 14.68 38.01 32.21 15.28 氟酰胺 95.03 79.79 81.47 35.52 45.62 98.31 98.44 17.18 a浓度为50 μg/mL. 表 2 化合物5b对苹果腐烂病菌的EC50值
Table 2. EC50 of compound 5b against Valsa mali
Compd. y=ax+b EC50/(μg•mL-1) r 5b 1.0699x-0.5173 3.04 0.9779 氟酰胺 0.8550x-0.8225 9.16 0.9589 -

计量
- PDF下载量: 6
- 文章访问数: 1132
- HTML全文浏览量: 176