Citation: Cai Liangzhen, Huang Zhen, Yang Liqun, Xie Xiaomin, Tao Xiaochun. Selective Aerobic Oxidation of Benzylic Alcohols Catalyzed by CuBr/1, 8-Diazabicyclo[5.4.0]undec-7-ene[J]. Chinese Journal of Organic Chemistry, ;2018, 38(12): 3326-3331. doi: 10.6023/cjoc201806044 shu

Selective Aerobic Oxidation of Benzylic Alcohols Catalyzed by CuBr/1, 8-Diazabicyclo[5.4.0]undec-7-ene

Figures(2)

  • A novel and practical cuprous bromide-catalyzed aerobic oxidation of benzylic alcohols with 1, 8-diazabicyclo-[5.4.0]undec-7-ene (DBU) as the additive under air atmosphere has been developed. Various primary and secondary benzylic alcohols and allylic alcohols were smoothly transformed into the corresponding aldehydes and ketones with high yields and selectivity. The process is 2, 2, 6, 6-tetramethylpiperidin-1-oxyl (TEMPO) free and solvent-free.
  • 加载中
    1. [1]

      Tojo, G; Fernández, M. Oxidation of Alcohols to Aldehydes and Ketones. Basic Reactions in Organic Synthesis, Springer, New York, 2006.
      (b) Mallat, T.; Baiker, A. Chem. Rev. 2004, 104, 3037.
      (c) Awad, O. I.; Mamat, R.; Ali, O. M.; Sidik, N. A. C.; Yusaf, T.; Kadirgama, K.; Kettner, M. Renewable Sustainable Energy Rev. 2018, 82, 2586.
      (d) Allen, Scott E.; Walvoord, R. R.; Padilla-Salinas, R.; Kozlowski, M. C. Chem. Rev. 2013, 113, 6234.

    2. [2]

      Constable, D. J. C.; Dunn, P. J.; Hayler, J. D.; Humphrey, G. R.; Leazer, J. L.; Linderman, R.; Lorenz, K.; Manley, J.; Pearlman, B. A.; Wells, A.; Zaks, A.; Zhang, T. Green Chem. 2007, 9, 411.  doi: 10.1039/B703488C

    3. [3]

      (a) Sigman, M. S.; Jensen, D. R. Acc. Chem. Res. 2006, 39, 221.
      (b) Zhang, G.; Wang, Y.; Wen, X.; Ding, C.; Li, Y. Chem. Commun. 2012, 2979.
      (c) Gligorich, K. M.; Sigman, M. S. Chem. Commun. 2009, 3854.
      (d) Gao, M.; Chen, M.; Li, Y.; Tang, H.; Ding, H.; Wang, K.; Yang, L.; Li, C.; Lei, A. Asian J. Org. Chem. 2017, 6, 1566.

    4. [4]

      (a) Guan, B.; Xing, D.; Cai, G.; Wan, X.; Yu, N.; Fang, Z.; Yang, L.; Shi, Z. J. Am. Chem. Soc. 2005, 127, 18004.
      (b) Miyamura, H.; Matsubara, R.; Miyazaki, Y.; Kobayashi, S. Angew. Chem., Int. Ed. 2007, 46, 4151.

    5. [5]

      (a) Mizuno, N.; Yamaguchi, K. Catal. Today 2008, 132, 18.
      (b) Hasan, M.; Musawir, M.; Kozhevnikov, I. J. Mol. Catal. A 2002, 180, 77.

    6. [6]

      (a) Crabtree, R. H. Chem. Rev. 2017, 117, 9228.
      (b) Parmeggiani, C.; Cardona, F. Green Chem. 2012, 14, 547.
      (c) Schultz, M. J.; Sigman, M. S. Tetrahedron 2006, 62, 8227.

    7. [7]

      (a) Evano, G.; Blanchard, N.; Toumi, M. Chem. Rev. 2008, 108, 3054.
      (b) Ryland, B. L.; Stahl, S. S. Angew. Chem., Int. Ed. 2014, 53, 8824.
      (c) Wendlandt, A. E.; Suess, A. M.; Stahl, S. S. Angew. Chem., Int. Ed. 2011, 50, 11062.
      (d) Faisca Phillips, A. M.; Pombeiro, A. J. L.; Kopylovich, M. N. ChemCatChem 2017, 9, 217.

    8. [8]

      (a) Das, O.; Paine, T. K. Dalton Trans. 2012, 41, 11476.
      (b) Munakata, M.; Nishibayashi, S.; Sakamoto, H. J. Chem. Soc., Chem. Commun. 1980, 219.
      (c) Liu, X.; Qiu, A.; Sawyer, D. T. J. Am. Chem. Soc. 1993, 115, 3239.
      (d) Skibida, I.; Sakharov, A. Catal. Today 1996, 27, 187.
      (e) Korpi, H.; Figiel, P. J.; Lankinen, E.; Ryan, P.; Leskelä, M.; Repo, T. Eur. J. Inorg. Chem. 2007, 2465.

    9. [9]

      (a) Jallabert, C.; Riviere, H. Tetrahedron Lett. 1977, 14, 1215.
      (b) Jallabert, C.; Riviere, H. Tetrahedron 1980, 36, 1191.

    10. [10]

      (a) Semmelhack, M. F.; Schmid, C. R.; Cortes, D. A.; Chou, C. S. J. Am. Chem. Soc. 1984, 106, 3374.
      (b) Hoover, J. M.; Stahl, S. S. J. Am. Chem. Soc. 2011, 133, 16901.
      (c) Hoover, J. M.; Ryland, B. L.; Stahl, S. S. J. Am. Chem. Soc. 2013, 135, 2357.
      (d) Wang, L.; Bie, Z.; Shang, S.; Lv, Y.; Li, G.; Niu, J. Y.; Gao, S. RSC Adv. 2016, 6, 35008.
      (e) Marais, L.; Burés, J.; Jordaan, J. H. L.; Mapolie, S.; Swarts, A. J. Org. Biomol. Chem. 2017, 15, 6926.
      (f) Zhang, G.; Han, X.; Luan, Y.; Wang, Y.; Wen, X.; Ding, C. Chem. Commun. 2013, 49, 7908.
      (g) Betzemeier, B.; Cavazzini, M.; Quici, S.; Knochel, P. Tetrahedron Lett. 2000, 41, 4343.
      (h) Sun, N.; Zhang, X.; Jin, L.; Hu, B.; Shen, Z.; Hu, X. Catal. Commun. 2017, 101, 5.

    11. [11]

      (a) Markó, I.; Gautier, A.; Giles, P. R.; Tsukazaki, M.; Brown, S. M. Science 1996, 20, 2044.
      (b) Markó, I.; Gautier, I.; Dumeunier, R.; Doda, K.; Philippart, F.; Brown, S. M.; Urch, C. J. Angew. Chem., Int. Ed. 2004, 43, 1588.

    12. [12]

      (a) Chaudhuri, P.; Hess, M.; Mueller, J.; Hildenbrand, K.; Bill, E.; Weyhermueller, T.; Wieghardt, K. J. Am. Chem. Soc. 1999, 121, 9599.
      (b) Itoh, S.; Taki, M.; Takayama, S.; Nagatomo, S.; Kitagawa, T.; Sakurada, N.; Arakawa, R.; Fukuzumi, S. Angew. Chem., Int. Ed. 1999, 38, 2774.
      (c) Wang, Y.; DuBois, J. L.; Hedman, B.; Hodgson, K. O.; Stack, T. D. P. Science 1998, 279, 537.
      (d) Thomas, F.; Gellon, G.; Gautier-Luneau, I.; Saint-Aman, E.; Pierre, J. L. Angew. Chem., Int. Ed. 2002, 41, 3047.

    13. [13]

      Xu, B.; Lumb, J. P.; Arndtsen; B. A. Angew. Chem., Int. Ed. 2015, 54, 4208.  doi: 10.1002/anie.201411483

    14. [14]

      Konev, M. O.; Jarvo. E. R. ACS Cent. Sci. 2017, 3, 272.  doi: 10.1021/acscentsci.7b00138

    15. [15]

      Liang, L.; Rao, G.; Sun, H.-L.; Zhang, J.-L. Adv. Synth. Catal. 2010, 352, 2371.  doi: 10.1002/adsc.v352:14/15

    16. [16]

      Xu, Q.; Xie, H.; Chen, P, ; Yu, L.; Chen, J.; Hu, X. Green Chem. 2015, 17, 2774.  doi: 10.1039/C5GC00284B

    17. [17]

      Lahtinen, P.; Lankinen, E.; Leskelä, M.; Repo, T. Appl. Catal., A 2005, 295, 177.  doi: 10.1016/j.apcata.2005.08.013

    18. [18]

      (a) Zhang, L.; Zhang, Y.; Wang, X.; Shen, J. Molecules 2013, 18, 654.
      (b) Thakur, K. G.; Sekar, G. Synthesis. 2009, 2785.
      (c) Wei, W.-T.; Zhou, M.-B.; Fan, J.-H.; Liu, W.; Song, R.-J.; Liu, Y.; Hu, M.; Xie, P.; Li, J.-H. Angew. Chem., Int. Ed. 2013, 52, 3638.
      (d) Williams, B. N.; Benitez, D.; Miller, K. L.; Tkatchouk, E.; Goddard, W. A.; Diaconescu P. L. J. Am. Chem. Soc. 2011, 133, 4680.

    19. [19]

      Porcheddu, A.; Giacomelli, G.; Piredda, I. J. Comb. Chem. 2009, 11, 126.  doi: 10.1021/cc8001124

    20. [20]

      Zhang, Z.; Huang, B.; Qiao, G.; Zhu, L.; Xiao, F.; Chen. F.: Fu, B.; Zhang, Z. Angew. Chem., Int. Ed. 2017, 56, 4320.  doi: 10.1002/anie.201700539

    21. [21]

      Miao, C.-X.; He, L.-N.; Wang, J.-L.; Wu, F. J. Org. Chem. 2010, 75, 257.  doi: 10.1021/jo902292t

    22. [22]

      Jiang, N.; Ragauskas, A. J. Org. Lett. 2005, 7, 3689.  doi: 10.1021/ol051293+

    23. [23]

      Lee, K.; Maleczka, R. E. Org. Lett. 2006, 8, 1887.  doi: 10.1021/ol060463v

    24. [24]

      Furuya, T.; Strom, A. E.; Ritter, T. J. Am. Chem. Soc. 2009, 131, 1662.  doi: 10.1021/ja8086664

    25. [25]

      Kashparova, V. P.; Klushin, V. A.; Kashparova, V. P.; Klushin, V. A.; Zhukova, I. Y.; Kashparov, I. S.; Chernysheva, D. V.; Il'chibaeva, I. B.; Smirnova, N. V.; Kagan, E. Sh.; Chernyshev, V. M. Tetrahedron Lett. 2017, 58, 3517.  doi: 10.1016/j.tetlet.2017.07.088

    26. [26]

      Chittimalla, S. K.; Chang, T.-C.; Liu, T.-C.; Hsieh, H.-P.; Liao, C.-C. Tetrahedron 2008, 64, 2586.  doi: 10.1016/j.tet.2008.01.024

    27. [27]

      Li, X.; Zhao, J.; Zhang, L.; Hu, M.; Wang, L.; Hu, J. Org. Lett. 2015, 17, 298.  doi: 10.1021/ol5034018

    28. [28]

      Kim, B.-R.; Lee, H.-G.; Kim, E.-J.; Lee, S.-G.; Yoon, Y.-J. J. Org. Chem. 2010, 75, 484.  doi: 10.1021/jo902356e

    29. [29]

      Layek, K.; Maheswaran, H.; Arundhathi, R.; Kantam, M. L.; Bhargava, S. K. Adv. Synth. Catal. 2011, 353, 606.  doi: 10.1002/adsc.201000591

    30. [30]

      Mamane, V.; Aubert, E.; Fort, Y. J. Org. Chem. 2007, 72, 7294.  doi: 10.1021/jo071209z

  • 加载中
    1. [1]

      Meiling XuXinyang LiPengyuan LiuJunjun LiuXiao HanGuodong ChaiShuangling ZhongBai YangLiying Cui . A novel and visible ratiometric fluorescence determination of carbaryl based on red emissive carbon dots by a solvent-free method. Chinese Chemical Letters, 2025, 36(2): 109860-. doi: 10.1016/j.cclet.2024.109860

    2. [2]

      Yuxiang Zhang Jia Zhao Sen Lin . Nitrogen doping retrofits the coordination environment of copper single-atom catalysts for deep CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100415-100415. doi: 10.1016/j.cjsc.2024.100415

    3. [3]

      Shuai Liu Wen Wu Peili Zhang Yunxuan Ding Chang Liu Yu Shan Ke Fan Fusheng Li . Mechanistic insights into acidic water oxidation by Mn(2,2′-bipyridine-6,6′-dicarboxylate)-based hydrogen-bonded organic frameworks. Chinese Journal of Structural Chemistry, 2025, 44(3): 100535-100535. doi: 10.1016/j.cjsc.2025.100535

    4. [4]

      Jindong HaoYufen LvShuyue TianChao MaWenxiu CuiHuilan YueWei WeiDong Yi . Additive-free synthesis of β-keto phosphorodithioates via geminal hydro-phosphorodithiolation of sulfoxonium ylides with P4S10 and alcohols. Chinese Chemical Letters, 2024, 35(9): 109513-. doi: 10.1016/j.cclet.2024.109513

    5. [5]

      Peng ZhangYitao YangTian QinXueqiu WuYuechang WeiJing XiongXi LiuYu WangZhen ZhaoJinqing JiaoLiwei Chen . Interface engineering of Pt/CeO2-{100} catalysts for enhancing catalytic activity in auto-exhaust carbon particles oxidation. Chinese Chemical Letters, 2025, 36(2): 110396-. doi: 10.1016/j.cclet.2024.110396

    6. [6]

      Kexin YinJingren YangYanwei LiQian LiXing Xu . Metal-free diatomaceous carbon-based catalyst for ultrafast and anti-interference Fenton-like oxidation. Chinese Chemical Letters, 2024, 35(12): 109847-. doi: 10.1016/j.cclet.2024.109847

    7. [7]

      Zhikang WuGuoyong DaiQi LiZheyu WeiShi RuJianda LiHongli JiaDejin ZangMirjana ČolovićYongge Wei . POV-based molecular catalysts for highly efficient esterification of alcohols with aldehydes as acylating agents. Chinese Chemical Letters, 2024, 35(8): 109061-. doi: 10.1016/j.cclet.2023.109061

    8. [8]

      Jingyu ChenSha WuYuhao WangJiong Zhou . Near-perfect separation of alicyclic ketones and alicyclic alcohols by nonporous adaptive crystals of perethylated pillar[5]arene and pillar[6]arene. Chinese Chemical Letters, 2025, 36(4): 110102-. doi: 10.1016/j.cclet.2024.110102

    9. [9]

      Jinpeng DuJunlin ChenYulong ShanTongliang ZhangYu SunZhongqi LiuXiaoyan ShiWenpo ShanYunbo YuHong He . Insight into the effects of C3H6 on fresh and hydrothermally aged Cu-SSZ-39 catalysts. Chinese Chemical Letters, 2025, 36(3): 110019-. doi: 10.1016/j.cclet.2024.110019

    10. [10]

      Chunhua MaMengjiao LiuSiyu OuyangZhenwei CuiJingjing BiYuqin JiangZhiguo Zhang . Metal-free construction of diverse 1,2,4-triazolo[1,5-a]pyridines on water. Chinese Chemical Letters, 2025, 36(1): 109755-. doi: 10.1016/j.cclet.2024.109755

    11. [11]

      Zeyu JiangYadi WangChangwei ChenChi He . Progress and challenge of functional single-atom catalysts for the catalytic oxidation of volatile organic compounds. Chinese Chemical Letters, 2024, 35(9): 109400-. doi: 10.1016/j.cclet.2023.109400

    12. [12]

      Hai-Yang SongJun JiangYu-Hang SongMin-Hang ZhouChao WuXiang ChenWei-Min He . Supporting-electrolyte-free electrochemical [2 + 2 + 1] annulation of benzo[d]isothiazole 1,1-dioxides, N-arylglycines and paraformaldehyde. Chinese Chemical Letters, 2024, 35(6): 109246-. doi: 10.1016/j.cclet.2023.109246

    13. [13]

      Ruixue LiuXiaobing DingQiwei LangGen-Qiang ChenXumu Zhang . Enantioselective and divergent construction of chiral amino alcohols and oxazolidin-2-ones via Ir-f-phamidol-catalyzed dynamic kinetic asymmetric hydrogenation. Chinese Chemical Letters, 2025, 36(3): 110037-. doi: 10.1016/j.cclet.2024.110037

    14. [14]

      Daheng WenWeiwei FangYongmei LiuTao Tu . Valorization of carbon dioxide with alcohols. Chinese Chemical Letters, 2024, 35(7): 109394-. doi: 10.1016/j.cclet.2023.109394

    15. [15]

      Mohamed Saber LassouedFaizan AhmadYanzhen Zheng . Film thickness effect on 2D lead-free hybrid double perovskite properties: Band gap, photocurrent and stability. Chinese Chemical Letters, 2025, 36(4): 110477-. doi: 10.1016/j.cclet.2024.110477

    16. [16]

      Fanxin Kong Hongzhi Wang Huimei Duan . Inhibition effect of sulfation on Pt/TiO2 catalysts in methane combustion. Chinese Journal of Structural Chemistry, 2024, 43(5): 100287-100287. doi: 10.1016/j.cjsc.2024.100287

    17. [17]

      Muhammad Humayun Mohamed Bououdina Abbas Khan Sajjad Ali Chundong Wang . Designing single atom catalysts for exceptional electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100193-100193. doi: 10.1016/j.cjsc.2023.100193

    18. [18]

      Zhiqiang WangYajie GaoTianjun WangWei ChenZefeng RenXueming YangChuanyao Zhou . Photocatalyzed oxidation of water on oxygen pretreated rutile TiO2(110). Chinese Chemical Letters, 2025, 36(4): 110602-. doi: 10.1016/j.cclet.2024.110602

    19. [19]

      Xiaodan WangYingnan LiuZhibin LiuZhongjian LiTao ZhangYi ChengLecheng LeiBin YangYang Hou . Highly efficient electrosynthesis of H2O2 in acidic electrolyte on metal-free heteroatoms co-doped carbon nanosheets and simultaneously promoting Fenton process. Chinese Chemical Letters, 2024, 35(7): 108926-. doi: 10.1016/j.cclet.2023.108926

    20. [20]

      Shengwen GuanZhaotong WeiNingxu HanYude WeiBin XuMing WangJunjuan Shi . Construction of metallo-complexes with 2,2′:6′,2″-terpyridine substituted triphenylamine in different modified positions and their photophysical properties. Chinese Chemical Letters, 2024, 35(7): 109348-. doi: 10.1016/j.cclet.2023.109348

Metrics
  • PDF Downloads(3)
  • Abstract views(707)
  • HTML views(61)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return