Citation: Li Yaqiong, Fan Yuhang, Jia Qianfa. Recent Advance in Ni-Catalyzed Reductive Cross-Coupling to Construct C(sp2)-C(sp2) and C(sp2)-C(sp3) Bonds[J]. Chinese Journal of Organic Chemistry, ;2019, 39(2): 350-362. doi: 10.6023/cjoc201806038 shu

Recent Advance in Ni-Catalyzed Reductive Cross-Coupling to Construct C(sp2)-C(sp2) and C(sp2)-C(sp3) Bonds

  • Corresponding author: Jia Qianfa, li_ychem@yznu.cn
  • Received Date: 24 June 2018
    Revised Date: 30 July 2018
    Available Online: 10 February 2018

    Fund Project: the Yangtze Normal University 2017KYQD24Project supported by the Yangtze Normal University (No. 2017KYQD24)

Figures(21)

  • The cross-coupling of two electrophiles has emerged as an important and attractive method for carbon-carbon bond formation. This synthetic protocol avoids preparation of organometallic nucleophilic reagents and exhibits excellent functional group tolerance. Recently, breakthrough progress has been developed to the cross-electrophile coupling of C(sp2)-X/C(sp3)-X. The recent progress in the research of Ni-catalyzed electrophilic coupling for the construction of C(sp2)-C(sp2) and C(sp2)-C(sp3) is reviewed.
  • 加载中
    1. [1]

      (a) Moragas, T.; Correa, A.; Martin, R. Chem.-Eur. J. 2014, 20, 8242.
      (b) Knappke, C. E. I.; Grupe, S.; Gä rtner, D.; Corpet, M.; Gosmini, C.; Jacobi von Wangelin, A. Chem.-Eur. J. 2014, 20, 6828.
      (c) Everson, D. A.; Weix, D. J. J. Org. Chem. 2014, 79, 4793.

    2. [2]

      Wurtz, A. Ann. Chem. Pharm. 1855, 96, 364.  doi: 10.1002/(ISSN)1099-0690

    3. [3]

      Ullmann, F.; Bielecki, J. Chem. Ber. 1901, 34, 2174.  doi: 10.1002/(ISSN)1099-0682

    4. [4]

      (a) Hanna, L. E.; Jarvo, E. R. Angew. Chem., Int. Ed. 2015, 54, 15618.
      (b) Gu, J.; Wang, X.; Xue, W.; Gong, H. Org. Chem. Front. 2015, 2, 1411.
      (c) Weix, D. J. Acc. Chem. Res. 2015, 48, 1767.

    5. [5]

      Amatore, M.; Gosmini, C. Angew. Chem., Int. Ed. 2008, 47, 2089.  doi: 10.1002/(ISSN)1521-3773

    6. [6]

      (a) Takashi, K.; Hayashi, T. Tetrahedron Lett. 1997, 38, 7087.
      (b) Littke, A. F.; Dai, C.; Fu, G. C. J. Am. Chem. Soc. 2000, 122, 4020.
      (c) Schoenebeck, F.; Houk, K. N. J. Am. Chem. Soc. 2010, 132, 2496.
      (d) Ackerman, L. K. G.; Lovell, M. M.; Weix, D. J. Nature 2015, 524, 454.

    7. [7]

      Olivares, A. M.; Weix, D. J. J. Am. Chem. Soc. 2018, 140, 2446.

    8. [8]

      (a) Fillon, H.; Gosmini, C.; Périchon, J. J. Am. Chem. Soc. 2003, 125, 3867.
      (b) Sibille, S.; Ratovelomanana, V.; Périchon, J. J. Chem. Soc., Chem. Commun. 1992, 283.

    9. [9]

      (a) Denmark, S. E.; Butler, C. R. Chem. Commun. 2009, 20.
      (b) Riviere, C.; Pawlus, A. D.; Merillon, J.-M. Nat. Prod. Rep. 2012, 29, 1317.
      (c) Zhang, Z.; Qin, Y. Macromolecules 2016, 49, 3318.

    10. [10]

      (a) Moncomble, A.; Le Floch, P.; Lledos, A.; Gosmini, C. J. Org. Chem. 2012, 77, 5056.
      (b) Amatore, M.; Gosmini, C.; Périchon, J. Eur. J. Org. Chem. 2005, 2005, 989.
      (c) Gomes, P.; Gosmini, C.; Périchon, J. Tetrahedron 2003, 59, 2999.

    11. [11]

      Liu, J.; Ren, Q.; Zhang, X.; Gong, H. Angew. Chem., Int. Ed. 2016, 55, 15544.  doi: 10.1002/anie.201607959

    12. [12]

      (a) Ariafard, A.; Lin, Z. Organometallics 2006, 25, 4030.
      (b) Cristian, M.; Maria, B.; Feliu, M.; Gregorio, A.; Mercedes, M. S. Chem.-Eur. J. 2010, 16, 13390.
      (c) Frisch, A. C.; Beller, M. Angew. Chem., Int. Ed. 2005, 44, 674.

    13. [13]

      (a) Jones, G. D.; McFarland, C.; Anderson, T. J.; Vicic, D. A. Chem. Commun. 2005, 4211.
      (b) González-Bobes, F.; Fu, G. C. J. Am. Chem. Soc. 2006, 128, 5360.

    14. [14]

      Everson, D. A.; Shrestha, R.; Weix, D. J. J. Am. Chem. Soc. 2010, 132, 920.  doi: 10.1021/ja9093956

    15. [15]

      Biswas, S.; Weix, D. J. J. Am. Chem. Soc. 2013, 135, 16192.  doi: 10.1021/ja407589e

    16. [16]

      (a) Everson, D. A.; Jones, B. A.; Weix, D. J. J. Am. Chem. Soc. 2012, 134, 6146.
      (b) Prinsell, M. R.; Everson, D. A.; Weix, D. J. Chem. Commun. 2010, 46, 5743.
      (c) Takahashi, H.; Inagaki, S.; Nishihara, Y.; Shibata, T.; Takagi, K. Org. Lett. 2006, 8, 3037.

    17. [17]

      McCann, L. C.; Organ, M. G. Angew. Chem., Int. Ed. 2014, 53, 4386.  doi: 10.1002/anie.201400459

    18. [18]

      Everson, D. A.; Buonomo, J. A.; Weix, D. J. Synlett 2014, 25, 233.

    19. [19]

      Hansen, E. C.; Pedro, D. J.; Wotal, A. C.; Gower, N. J.; Nelson, J. D.; Caron, S.; Weix, D. J. Nat. Chem. 2016, 8, 1126.  doi: 10.1038/nchem.2587

    20. [20]

      Wang, X.; Wang, S.; Xue, W.; Gong, H. J. Am. Chem. Soc. 2015, 137, 11562.  doi: 10.1021/jacs.5b06255

    21. [21]

      (a) Rollin, Y.; Troupel, M.; Tuck, D. G.; Perichon, J. J. Organomet. Chem. 1986, 303, 131.
      (b) Meyer, G.; Rollin, Y.; Perichon, J. J. Organomet. Chem. 1987, 333, 263.
      (c) Gosmini, C.; Lasry, S.; Nedelec, J.-Y.; Perichon, J. Tetrahedron 1998, 54, 1289.
      (d) Sengmany, S.; Vitu-Thiebaud, A.; Le Gall, E.; Condon, S.; Leonel, E.; Thobie-Gautier, C.; Pipelier, M.; Lebreton, J.; Dubreuil, D. J. Org. Chem. 2013, 78, 370.
      (e) Perkins, R. J.; Pedro, D. J.; Hansen, E. C. Org. Lett. 2017, 19, 3755.

    22. [22]

      (a) Pratsch, G.; Overman, L. E. J. Org. Chem. 2015, 80, 11388.
      (b) Duan, Z.; Li, W.; Lei, A. Org. Lett. 2016, 18, 4012.
      (c) Zhang, P.; Le, C. C.; MacMillan, D. W. C. J. Am. Chem. Soc. 2016, 138, 8084.

    23. [23]

      (a) Zuo, Z.; Ahneman, D. T.; Chu, L.; Terrett, J. A.; Doyle, A. G.; MacMillan, D. W. C. Science 2014, 345, 437.
      (b) Zuo, Z.; Cong, H.; Li, W.; Choi, J.; Fu, G. C.; MacMillan, D. W. C. J. Am. Chem. Soc. 2016, 138, 1832.

    24. [24]

      (a) Huihui, K. M. M.; Caputo, J. A.; Melchor, Z.; Olivares, A. M.; Spiewak, A. M.; Johnson, K. A.; DiBenedetto, T. A.; Kim, S.; Ackerman, L. K. G.; Weix, D. J. J. Am. Chem. Soc. 2016, 138, 5016.
      (b) Zhang, X.; MacMillan, D. W. C. J. Am. Chem. Soc. 2016, 138, 13862.

    25. [25]

      (a) Liang, Z.; Xue, W.; . Lin, K.; Gong, H. Org. Lett. 2014, 16, 5620.
      (b) Wang, J.; Zhao, J.; Gong, H. Chem. Commun. 2017, 53, 10180.
      (c) Komeyama, K.; Ohata, R.; Kiguchi, S.; Osaka, I. Chem. Commun. 2017, 53, 6401.

    26. [26]

      Anka-Lufford, L. L.; Huihui, K. M. M.; Gower, N. J.; Ackerman, L. K. G.; Weix, D. J. Chem.-Eur. J. 2016, 22, 11564.  doi: 10.1002/chem.201602668

    27. [27]

      (a) Ackerman, L. K. G.; Anka-Lufford, L. L.; Naodovic, M.; Weix, D. J. Chem. Sci. 2015, 6, 1115.
      (b) Konev, M. O.; Hanna, L. E.; Jarvo, E. R. Angew. Chem., Int. Ed. 2016, 55, 6730.

    28. [28]

      (a) Anka-Lufford, L. L.; Prinsell, M. R.; Weix, D. J. J. Org. Chem. 2012, 77, 9989.
      (b) Wang, S.; Qian, Q.; Gong, H. Org. Lett. 2012, 14, 3352.
      (c) Gomes, P.; Gosmini, C.; Périchon, J. Org. Lett. 2003, 5, 1043.

    29. [29]

      Jia, X.-G.; Guo, P.; Duan, J.; Shu, X.-Z. Chem. Sci. 2018, 9, 640.  doi: 10.1039/C7SC03140H

    30. [30]

      Chen, F.; Chen, K.; Zhang, Y.; He, Y.; Wang, Y.-M.; Zhu, S. J. Am. Chem. Soc. 2017, 139, 13929.  doi: 10.1021/jacs.7b08064

    31. [31]

      (a) Cannes, C.; Condon, S.; Durandetti, M.; Périchon, J.; Nédélec, J.-Y. J. Org. Chem. 2000, 65, 4575.
      (b) Qiu, C.; Yao, K.; Zhang, X.; Gong, H. Org. Biomol. Chem. 2016, 14, 11332.

    32. [32]

      (a) Johnson, K. A.; Biswas, S.; Weix, D. J. Chem.-Eur. J. 2016, 22, 7399.
      (b) Gu, J.; Qiu, C.; Lu, W.; Qian, Q.; Lin, K.; Gong, H. Synthesis 2017, 49, 1867.
      (c) Noble, A.; McCarver, S. J.; MacMillan, D. W. C. J. Am. Chem. Soc. 2015, 137, 624.
      (d) Patel, N. R.; Kelly, C. B.; Jouffroy, M.; Molander, G. A. Org. Lett. 2016, 18, 764.

    33. [33]

      Wotal, A. C.; Weix, D. J. Org. Lett. 2012, 14, 1476.  doi: 10.1021/ol300217x

    34. [34]

      Ni, S.; Zhang, W.; Mei, H.; Han, J.; Pan, Y. Org. Lett. 2017, 19, 2536.  doi: 10.1021/acs.orglett.7b00831

    35. [35]

      Yin, H.; Zhao, C.; You, H.; Lin, K.; Gong, H. Chem. Commun. 2012, 48, 7034.  doi: 10.1039/c2cc33232a

    36. [36]

      Zhao, C.; Jia, X.; Wang, X.; Gong, H. J. Am. Chem. Soc. 2014, 136, 17645.  doi: 10.1021/ja510653n

    37. [37]

      Wotal, A. C.; Ribson, R. D.; Weix, D. J. Organometallics 2014, 33, 5874.  doi: 10.1021/om5004682

    38. [38]

      Zheng, M.; Xue W.; Xue, T.; Gong, H. Org. Lett. 2016, 18, 6152.  doi: 10.1021/acs.orglett.6b03158

    39. [39]

      Kadunce, N. T.; Reisman, S. E. J. Am. Chem. Soc. 2015, 137, 10480.  doi: 10.1021/jacs.5b06466

    40. [40]

      Poremba, K. E.; Kadunce, N. T.; Suzuki, N.; Cherney, A. H.; Reisman, S. E. J. Am. Chem. Soc. 2017, 139, 5684.  doi: 10.1021/jacs.7b01705

    41. [41]

      (a) Evans, P. A.; Uraguchi, D. J. Am. Chem. Soc. 2003, 125, 7158.
      (b) Alexakis, A.; El Hajjaji, S.; Polet, D.; Rathgeb, X. Org. Lett. 2007, 9, 3393.
      (c) Cherney, A. H.; Reisman, S. E. J. Am. Chem. Soc. 2014, 136, 14365.
      (d) Hofstra, J. L.; Cherney, A. H.; Ordner, C. M.; Reisman, S. E. J. Am. Chem. Soc. 2018, 140, 139.

    42. [42]

      Suzuki, N.; Hofstra, J. L.; Poremba, K. E.; Reisman, S. E. Org. Lett. 2017, 19, 2150.  doi: 10.1021/acs.orglett.7b00793

    43. [43]

      Cherney, A. H.; Kadunce, N. T.; Reisman, S. E. J. Am. Chem. Soc. 2013, 135, 7442.  doi: 10.1021/ja402922w

  • 加载中
    1. [1]

      Yi Yang Xin Zhou Miaoli Gu Bei Cheng Zhen Wu Jianjun Zhang . S型ZnO/CdIn2S4光催化剂制备H2O2偶联苄胺氧化的超快电子转移飞秒吸收光谱研究. Acta Physico-Chimica Sinica, 2025, 41(6): 100064-. doi: 10.1016/j.actphy.2025.100064

    2. [2]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    3. [3]

      Yue Zhao Yanfei Li Tao Xiong . Copper Hydride-Catalyzed Nucleophilic Additions of Unsaturated Hydrocarbons to Aldehydes and Ketones. University Chemistry, 2024, 39(4): 280-285. doi: 10.3866/PKU.DXHX202309001

    4. [4]

      Xueting Cao Shuangshuang Cha Ming Gong . 电催化反应中的界面双电层:理论、表征与应用. Acta Physico-Chimica Sinica, 2025, 41(5): 100041-. doi: 10.1016/j.actphy.2024.100041

    5. [5]

      Wentao Lin Wenfeng Wang Yaofeng Yuan Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095

    6. [6]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    7. [7]

      Lei Shi . Nucleophilicity and Electrophilicity of Radicals. University Chemistry, 2024, 39(11): 131-135. doi: 10.3866/PKU.DXHX202402018

    8. [8]

      Minna Ma Yujin Ouyang Yuan Wu Mingwei Yuan Lijuan Yang . Green Synthesis of Medical Chemiluminescence Reagents by Photocatalytic Oxidation. University Chemistry, 2024, 39(5): 134-143. doi: 10.3866/PKU.DXHX202310093

    9. [9]

      Tong Zhou Jun Li Zitian Wen Yitian Chen Hailing Li Zhonghong Gao Wenyun Wang Fang Liu Qing Feng Zhen Li Jinyi Yang Min Liu Wei Qi . Experiment Improvement of “Redox Reaction and Electrode Potential” Based on the New Medical Concept. University Chemistry, 2024, 39(8): 276-281. doi: 10.3866/PKU.DXHX202401005

    10. [10]

      Ji-Quan Liu Huilin Guo Ying Yang Xiaohui Guo . Calculation and Discussion of Electrode Potentials in Redox Reactions of Water. University Chemistry, 2024, 39(8): 351-358. doi: 10.3866/PKU.DXHX202401031

    11. [11]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    12. [12]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    13. [13]

      Dan Li Hui Xin Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046

    14. [14]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    15. [15]

      Xuejiao Wang Suiying Dong Kezhen Qi Vadim Popkov Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005

    16. [16]

      Xianghai Song Xiaoying Liu Zhixiang Ren Xiang Liu Mei Wang Yuanfeng Wu Weiqiang Zhou Zhi Zhu Pengwei Huo . 氮掺杂显著提升BiOBr光催化还原CO2性能研究. Acta Physico-Chimica Sinica, 2025, 41(6): 100055-. doi: 10.1016/j.actphy.2025.100055

    17. [17]

      Lubing Qin Fang Sun Meiyin Li Hao Fan Likai Wang Qing Tang Chundong Wang Zhenghua Tang . 原子精确的(AgPd)27团簇用于硝酸盐电还原制氨:一种配体诱导策略来调控金属核. Acta Physico-Chimica Sinica, 2025, 41(1): 2403008-. doi: 10.3866/PKU.WHXB202403008

    18. [18]

      Daojuan Cheng Fang Fang . Exploration and Implementation of Science-Education Integration in Organic Chemistry Teaching for Pharmacy Majors: A Case Study on Nucleophilic Substitution Reactions of Alkyl Halides. University Chemistry, 2024, 39(11): 72-78. doi: 10.12461/PKU.DXHX202403105

    19. [19]

      Hong Lu Yidie Zhai Xingxing Cheng Yujia Gao Qing Wei Hao Wei . Advancements and Expansions in the Proline-Catalyzed Asymmetric Aldol Reaction. University Chemistry, 2024, 39(5): 154-162. doi: 10.3866/PKU.DXHX202310074

    20. [20]

      Guojie Xu Fang Yu Yunxia Wang Meng Sun . Introduction to Metal-Catalyzed β-Carbon Elimination Reaction of Cyclopropenones. University Chemistry, 2024, 39(8): 169-173. doi: 10.3866/PKU.DXHX202401060

Metrics
  • PDF Downloads(127)
  • Abstract views(2653)
  • HTML views(645)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return