Citation: Gao Yaohui, Wang Gaoqian, Huang Huiyun, Gao Hao, Yao Xinsheng, Hu Dan. Biosynthesis of Fungal Triterpenoids and Steroids[J]. Chinese Journal of Organic Chemistry, ;2018, 38(9): 2335-2347. doi: 10.6023/cjoc201806033 shu

Biosynthesis of Fungal Triterpenoids and Steroids

  • Corresponding author: Hu Dan, thudan@jnu.edu.cn
  • Received Date: 20 June 2018
    Revised Date: 6 July 2018
    Available Online: 16 September 2018

    Fund Project: Project supported by the National Natural Science Foundation of China (No. 31670036)the National Natural Science Foundation of China 31670036

Figures(12)

  • Triterpenoids and steroids are one of the largest classes of natural products composed of six isoprene units, with various chemical structures as well as wide range of biological activities. Fungi serves as important sources for triterpenoids and steroids. However, compared with plants, the types of triterpenoid skeletons discovered in fungi are much fewer, suggesting that there is a large research space. Genome mining has become an important method of discovering novel natural products in the post-genomic era, which uses the genes with similar functional to identify the target genes with new functions. With the rapid development of high-throughput sequencing and biological information technology, biosynthetic pathways of some triterpenoids and steroids with important biological activities have been elucidated in recent years, which build the foundations for the discovery of new triterpenoids or steroids from fungi via genome mining. The recent advances in the biosynthesis of fungal triterpenoids and steroids are mainly introduced.
  • 加载中
    1. [1]

      Hill, R. A.; Connolly, J. D. Nat. Prod. Rep. 2017, 34, 90.

    2. [2]

      Thimmappa, R.; Geisler, K.; Louveau, T.; O'Maille, P.; Osbourn, A. Annu. Rev. Plant Biol. 2014, 65, 225.
       

    3. [3]

      Schaller, H. In Comprehensive Natural Products Ⅱ, Elsevier, Oxford, 2010, pp. 755~787.

    4. [4]

      Arora, A.; Raghuraman, H.; Chattopadhyay, A. Biochem. Biophys. Res. Commun. 2004, 318, 920.  doi: 10.1016/j.bbrc.2004.04.118

    5. [5]

      Beck, J. G.; Mathieu, D.; Loudet, C.; Buchoux, S.; Dufourc, E. J. FASEB J. 2007, 21, 1714.
       

    6. [6]

      Frye, C. A. Minerva Ginecol. 2009, 61, 541.

    7. [7]

      Funder, J. W.; Krozowski, Z.; Myles, K.; Sato, A.; Sheppard, K. E.; Young, M. Recent Prog. Horm. Res. 1997, 52, 247~260; discussion 261~262.

    8. [8]

      Schaaf, M. J.; Cidlowski, J. A. J. Steroid Biochem. Mol. Biol. 2002, 83, 37.  doi: 10.1016/S0960-0760(02)00263-7

    9. [9]

      Sun, M.; Ye, Y.; Xiao, L.; Duan, X.; Zhang Y.; Zhang, H. Int. J. Mol. Med. 2017, 39, 507.
       

    10. [10]

      Ali-Seyed, M.; Jantan, I.; Vijayaraghavan, K.; Bukhari, S. N. Chem. Biol. Drug Des. 2016, 87, 517.

    11. [11]

      Zhang, H. F.; Semenza, G. L. Proc. Natl. Acad. Sci. U. S. A. 2009, 106, E27.  doi: 10.1073/pnas.0900125106

    12. [12]

      Ming, L. J.; Yin, A. C. Nat. Prod. Commun. 2013, 8, 415.

    13. [13]

      Bishop, K. S.; Kao, C. H. J.; Xu, Y. Y.; Glucina, M. P.; Paterson R. R. M.; Ferguson, L. R. Phytochemistry 2015, 114, 56.  doi: 10.1016/j.phytochem.2015.02.015

    14. [14]

      Tanret, C. C. R. Seances Acad. Sci. 1889, 108, 98.

    15. [15]

      Rios, J. L.; Andujar, I.; Recio, M. C.; Giner, R. M. J. Nat. Prod. 2012, 75, 2016.
       

    16. [16]

      Xu, J. W.; Zhao, W.; Zhong, J. J. Appl. Microbiol. Biotechnol. 2010, 87, 457.
       

    17. [17]

      Weete, J. D.; Abril, M.; Blackwell, M. PLoS One 2010, 5, e10899.

    18. [18]

      Hirotani, M.; Hirotani, S.; Takayanagi, H.; Yoshikawa, T. Tetrahedron Lett. 1999, 40, 329.

    19. [19]

      Kikuchi, T.; Masumoto, Y.; In, Y.; Tomoo, K.; Yamada, T.; Tanaka, R. Eur. J. Org. Chem. 2015, 4645.

    20. [20]

      Kikuchi, T.; Maekawa, Y.; Tomio, A.; Masumoto, Y.; Yamamoto, T.; In, Y.; Yamada, T.; Tanaka, R. Steroids 2016, 115, 9.

    21. [21]

      Kikuchi, T.; Horii, Y.; Maekawa, Y.; Masumoto, Y.; In, Y.; Tomoo, K.; Sato, H.; Yamano, A.; Yamada, T.; Tanaka, R. J. Org. Chem. 2017, 82, 10611.  doi: 10.1021/acs.joc.7b01259

    22. [22]

      Hu, Z.; Wu, Y.; Xie, S.; Sun, W.; Guo, Y.; Li, X. N.; Liu, J.; Li, H.; Wang, J.; Luo, Z.; Xue, Y.; Zhang, Y. Org. Lett. 2017, 19, 258.

    23. [23]

      Han, J. J.; Bao, L.; Tao, Q. Q.; Yao, Y. J.; Liu, X. Z.; Yin, W. B.; Liu, H. W. Org. Lett. 2015, 17, 2538.  doi: 10.1021/acs.orglett.5b01080

    24. [24]

      Luo, Q.; Tu, Z. C.; Yang, Z. L.; Cheng, Y. X. Fitoterapia 2018, 125, 273.

    25. [25]

      Weete, J. D.; Fuller, M. S.; Huang, M. Q.; Gandhi, S. Exp. Mycol. 1989, 13, 183.  doi: 10.1016/0147-5975(89)90023-6

    26. [26]

      Muchembled, J.; Alh, S.; Grandmouginferjani, A.; Sancholle, M. Can. J. Bot. 2000, 78, 1288.

    27. [27]

      Chepkirui, C.; Sum, W. C.; Cheng, T.; Matasyoh, J. C.; Decock C.; Stadler, M. Molecules 2018, 23.

    28. [28]

      Elsebai, M. F.; Kehraus, S.; Konig, G. M. Steroids 2013, 78, 880.  doi: 10.1016/j.steroids.2013.05.003

    29. [29]

      Zhao, Q.; Wang, G. Q.; Chen, G. D.; Hu, D.; Li, X. X.; Guo, L. D.; Li, Y.; Yao, X. S.; Gao, H. Steroids 2015, 102, 101.

    30. [30]

      Blight, M. M.; Grove, J. F. J. Chem. Soc., Perkin Trans. 1, 1986, 7, 1317.

    31. [31]

      Andersson, P. F.; Bengtsson, S.; Cleary, M.; Stenlid, J.; Broberg, A. Phytochemistry 2013, 86, 195.  doi: 10.1016/j.phytochem.2012.09.012

    32. [32]

      Ding, H. E.; Yang, Z. D.; Sheng, L.; Zhou, S. Y.; Li, S.; Yao, X. J.; Zhi, K. K.; Wang, Y. G.; Zhang, F. Tetrahedron Lett. 2015, 56, 6754.

    33. [33]

      Jimeno, A.; Bauman, J. E.; Weissman, C.; Adkins, D.; Schnadig, I.; Beauregard, P.; Bowles, D. W.; Spira, A.; Levy, B.; Seetharamu, N. Oral Oncol. 2015, 51, 383.  doi: 10.1016/j.oraloncology.2014.12.013

    34. [34]

      Zhao, Q.; Chen, G. D.; Feng, X. L.; Yu, Y.; He, R. R.; Li, X. X.; Huang, Y.; Zhou, W. X.; Guo, L. D.; Zheng, Y. Z. J. Nat. Prod. 2015, 78, 1221.

    35. [35]

      Cao, S.; Ross, L.; Tamayo, G.; Clardy, J. Org. Lett. 2010, 12, 4661.

    36. [36]

      Lv, J.-M.; Hu, D.; Gao, H.; Kushiro, T.; Awakawa, T.; Chen, G.-D.; Wang, C.-X.; Abe, I.; Yao, X.-S. Nat. Commun. 2017, 8, 1644.

    37. [37]

      Deyrup, S. T.; Gloer, J. B.; O'Donnell, K.; Wicklow, D. T. J. Nat. Prod. 2007, 70, 378.  doi: 10.1021/np060546k

    38. [38]

      Joshi, B. K.; Gloer, J. B.; Wicklow, D. T. J. Nat. Prod. 2002, 65, 1734.

    39. [39]

      Schwartz, R. E.; Smith, S. K.; Onishi, J. C.; Meinz, M.; Kurtz, M.; Giacobbe, R. A.; Wilson, K. E.; Liesch, J.; Zink, D.; Horn, W.; Morris, S.; Cabello, A.; Vicente, F. J. Am. Chem. Soc. 2000, 122, 4882.

    40. [40]

      Shigematsu, N.; Tsujii, E.; Kayakiri, N.; Takase, S.; Tanaka, H.; Tada, T. J. Antibiot. (Tokyo) 1992, 45, 704.

    41. [41]

      Kumla, D.; Shine, A. T.; Buttachon, S.; Dethoup, T.; Gales, L.; Pereira, J. A.; Inácio, Â.; Costa, P. M.; Lee, M.; Sekeroglu, N. Mar. Drugs 2017, 15, 375.

    42. [42]

      Kristan, K.; Rizner, T. L. J. Steroid Biochem. 2012, 129, 79.

    43. [43]

      Kalb, V. F.; Woods, C. W.; Turi, T. G.; Dey, C. R.; Sutter, T. R.; Loper, J. C. DNA 1987, 6, 529.  doi: 10.1089/dna.1987.6.529

    44. [44]

      Lepesheva, G. I.; Waterman, M. R. Mol. Cell. Endocrinol. 2004, 215, 165.  doi: 10.1016/j.mce.2003.11.016

    45. [45]

      Ghannoum, M. A.; Rice, L. B. Clin. Microbiol. Rev. 1999, 12, 501.

    46. [46]

      Lai, M. H.; Bard, M.; Pierson, C. A.; Alexander, J. F.; Goebl, M.; Carter, G. T.; Kirsch, D. R. Gene 1994, 140, 41.

    47. [47]

      Akins, R. A.; Sobel, J. D. Med. Mycol. 2017, 347.

    48. [48]

      Blosser, S. J.; Merriman, B.; Grahl, N.; Chung, D.; Cramer, R. A. Microbiol. 2014, 160, 2492.

    49. [49]

      Aaron, K. E.; Pierson, C. A.; Lees, N. D.; Bard, M. Fems Yeast Res. 2001, 1, 93.  doi: 10.1111/fyr.2001.1.issue-2

    50. [50]

      Daum, G.; Lees, N. D.; Bard, M.; Dickson, R. Yeast 1998, 14, 1471.

    51. [51]

      Mo, C.; Valachovic, M.; Randall, S. K. J.; Nickels, T.; Bard, M. P. Natl. Acad. Sci. U. S. A. 2002, 99, 9739.

    52. [52]

      Mo, C. Q.; Bard, M. J. Lipid Res. 2005, 46, 1991.  doi: 10.1194/jlr.M500153-JLR200

    53. [53]

      Keon, J. P.; James, C. S.; Court, S.; Baden-Daintree, C.; Bailey, A. M.; Burden, R. S.; Bard, M.; Hargreaves, J. A. Curr. Genet. 1994, 25, 531.

    54. [54]

      Taton, M.; Husselstein, T.; Benveniste, P.; Rahier, A. Biochemistry 2000, 39, 701.

    55. [55]

      Kelly, S. L.; Lamb, D. C.; Corran, A. J.; Baldwin, B. C.; Parks, L. W.; Kelly, D. E. FEBS Lett. 1995, 377, 217.  doi: 10.1016/0014-5793(95)01342-3

    56. [56]

      Zweytick, D.; Hrastnik, C.; Kohlwein, S. D.; Daum, G. FEBS Lett. 2000, 470, 83.  doi: 10.1016/S0014-5793(00)01290-4

    57. [57]

      Wang, F.-Q.; Zhao, Y.; Dai, M.; Liu, J.; Zheng, G.-Z.; Ren, Z.-H.; He, J.-G. FEMS Microbiol. Lett. 2008, 287, 91.  doi: 10.1111/fml.2008.287.issue-1

    58. [58]

      Long, N.; Xu, X.; Zeng, Q.; Sang, H.; Lu, L. Appl. Environ. Microbiol. 2017, 83.

    59. [59]

      Barrett-Bee, K.; Dixon, G. Acta Biochim. Pol. 1995, 42, 465.

    60. [60]

      Ragsdale, N. N. Biochim. Biophys. Acta 1975, 380, 81.

    61. [61]

      Hajjaj, H; Mace, C.; Roberts, M.; Niederberger, P.; Fay, L. B. Appl. Environ. Microbiol. 2005, 71, 3653.  doi: 10.1128/AEM.71.7.3653-3658.2005

    62. [62]

      Gao, J. J.; Min, B. S.; Ahn, E. M.; Nakamura, N.; Lee, H. K.; Hattori, M. Chem. Pharm. Bull. 2002, 50, 837.  doi: 10.1248/cpb.50.837

    63. [63]

      Shi, L. A.; Ren, A.; Mu, D. S.; Zhao, M. W. Appl. Microbiol. Biotechnol. 2010, 88, 1243.

    64. [64]

      Zhao, M.-W.; Liang, W.-Q.; Zhang, D.-B.; Wang, N.; Wang, C.-G.; Pan, Y.-J. J. Microbiol. Biotechnol. 2007, 17, 1106.

    65. [65]

      Shang, C.-H.; Zhu, F.; Li, N.; Ou-yang, X.; Shi, L.; Zhao, M.-W.; Li, Y.-X. Biosci. Biotechnol. Biochem. 2008, 72, 1333.  doi: 10.1271/bbb.80011

    66. [66]

      Shi, L.; Qin, L.; Xu, Y. J.; Ren, A.; Fang, X.; Mu, D. S.; Tan, Q.; Zhao, M. W. Mol. Biol. Rep. 2012, 39, 6149.

    67. [67]

      Ding, Y.-X.; Ou-yang, X.; Shang, C.-H.; Ren, A.; Shi, L.; Li, Y.-X.; Zhao, M.-W. Biosci. Biotechnol. Biochem. 2008, 72, 1571.

    68. [68]

      Shang, C.-H.; Shi, L.; Ren, A.; Qin, L.; Zhao, M.-W. Biosci. Biotechnol. Biochem. 2010, 74, 974.  doi: 10.1271/bbb.90833

    69. [69]

      Chen, S.; Xu, J.; Liu, C.; Zhu, Y.; Nelson, D. R.; Zhou, S.; Li, C.; Wang, L.; Guo, X.; Sun, Y.; Luo, H.; Li, Y.; Song, J.; Henrissat, B.; Levasseur, A.; Qian, J.; Li, J.; Luo, X.; Shi, L.; He, L.; Xiang, L.; Xu, X.; Niu, Y.; Li, Q.; Han, M. V.; Yan, H.; Zhang, J.; Chen, H.; Lv, A.; Wang, Z.; Liu, M.; Schwartz, D. C.; Sun, C. Nat. Commun. 2012, 3, 913.  doi: 10.1038/ncomms1923

    70. [70]

      Wang, W.-F.; Xiao, H.; Zhong, J.-J. Biotechnol. Bioeng. 2018, 115, 1842.  doi: 10.1002/bit.v115.7

    71. [71]

      Von Daehne, W.; Godtfredsen, W. O.; Rasmussen, P. R. Adv. Appl. Microbiol. 1979, 25, 95.  doi: 10.1016/S0065-2164(08)70148-5

    72. [72]

      Caspi, E.; Mulheirn, L. J. J. Am. Chem. Soc. 1970, 92, 404.

    73. [73]

      Chain, E.; Florey, H. W.; Jennings, M. A.; Willliams, T. I. Brit. J. Exp. Pathol. 1943, 24, 108.
       

    74. [74]

      Godtfredsen, W. O.; Jahnsen, S.; Lorck, H.; Roholt, K.; Tybring, L. Nature 1962, 193, 987.

    75. [75]

      Burton, H. S.; Abraham, E. P. Biochem. J. 1951, 50, 168.

    76. [76]

      Mitsuguchi, H.; Seshime, Y.; Fujii, I.; Shibuya, M.; Ebizuka, Y.; Kushiro, T. J. Am. Chem. Soc. 2009, 131, 6402.
       

    77. [77]

      Simpson, T. J.; Lunnon, M. W.; MacMillan, J. J. Chem. Soc., Perkin Trans. 11979, 931.

    78. [78]

      Hanson, J. R.; Wadsworth, H. J. B. J. Chem. Soc., Chem. Commun. 1979, 360.

    79. [79]

      Grove, J. F. J. Chem. Soc. 1969, C, 549.

    80. [80]

      Golder, W. S.; Watson, T. R. J. Chem. Soc., Perkin Trans. 11980, 422.

    81. [81]

      Hanson, J. R.; O'Leary, M. A.; Wadsworth, H. J. J. Chem. Soc., Perkin Trans. 11983, 871.

    82. [82]

      Alcazar-Fuoli, L.; Mellado, E.; Garcia-Effron, G.; Lopez, J. F.; Grimalt, J. O.; Cuenca-Estrella, J. M.; Rodriguez-Tudela, J. L. Steroids 2008, 73, 339.  doi: 10.1016/j.steroids.2007.11.005

    83. [83]

      Wang, G.-Q.; Chen, G.-D.; Qin, S.-Y.; Hu, D.; Awakawa, T.; Li, S.-Y.; Lv, J.-M.; Wang, C.-X.; Yao, X.-S.; Abe, I.; Gao, H. Nat. Commun. 2018, 9, 1838.  doi: 10.1038/s41467-018-04298-2

  • 加载中
    1. [1]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    2. [2]

      Ying Zhang Fang Ge Zhimin Luo . AI-Driven Biochemical Teaching Research: Predicting the Functional Effects of Gene Mutations. University Chemistry, 2025, 40(3): 277-284. doi: 10.12461/PKU.DXHX202412104

    3. [3]

      Zhongyan Cao Shengnan Jin Yuxia Wang Yiyi Chen Xianqiang Kong Yuanqing Xu . Advances in Highly Selective Reactions Involving Phenol Derivatives as Aryl Radical Precursors. University Chemistry, 2025, 40(4): 245-252. doi: 10.12461/PKU.DXHX202405186

    4. [4]

      Qilu DULi ZHAOPeng NIEBo XU . Synthesis and characterization of osmium-germyl complexes stabilized by triphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1088-1094. doi: 10.11862/CJIC.20240006

    5. [5]

      Wanmin Cheng Juan Du Peiwen Liu Yiyun Jiang Hong Jiang . Photoinitiated Grignard Reagent Synthesis and Experimental Improvement in Triphenylmethanol Preparation. University Chemistry, 2024, 39(5): 238-242. doi: 10.3866/PKU.DXHX202311066

    6. [6]

      Liang TANGJingfei NIKang XIAOXiangmei LIU . Synthesis and X-ray imaging application of lanthanide-organic complex-based scintillators. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1892-1902. doi: 10.11862/CJIC.20240139

    7. [7]

      Aidang Lu Yunting Liu Yanjun Jiang . Comprehensive Organic Chemistry Experiment: Synthesis and Characterization of Triazolopyrimidine Compounds. University Chemistry, 2024, 39(8): 241-246. doi: 10.3866/PKU.DXHX202401029

    8. [8]

      Yurong Tang Yunren Shi Yi Xu Bo Qin Yanqin Xu Yunfei Cai . Innovative Experiment and Course Transformation Practice of Visible-Light-Mediated Photocatalytic Synthesis of Isoquinolinone. University Chemistry, 2024, 39(5): 296-306. doi: 10.3866/PKU.DXHX202311087

    9. [9]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    10. [10]

      Jian Jin Jing Cheng Xueping Yang . Integration Practice of Organic Chemistry Experiment and Safety Education: Taking the Synthesis of Triphenylmethanol as an Example. University Chemistry, 2024, 39(3): 345-350. doi: 10.3866/PKU.DXHX202309010

    11. [11]

      Renxiao Liang Zhe Zhong Zhangling Jin Lijuan Shi Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024

    12. [12]

      Jinghua Wang Yanxin Yu Yanbiao Ren Yesheng Wang . Integration of Science and Education: Investigation of Tributyl Citrate Synthesis under the Promotion of Hydrate Molten Salts for Research and Innovation Training. University Chemistry, 2024, 39(11): 232-240. doi: 10.3866/PKU.DXHX202402057

    13. [13]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006

    14. [14]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

    15. [15]

      Yahui HANJinjin ZHAONing RENJianjun ZHANG . Synthesis, crystal structure, thermal decomposition mechanism, and fluorescence properties of benzoic acid and 4-hydroxy-2, 2′: 6′, 2″-terpyridine lanthanide complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 969-982. doi: 10.11862/CJIC.20240395

    16. [16]

      Weikang Wang Yadong Wu Jianjun Zhang Kai Meng Jinhe Li Lele Wang Qinqin Liu . 三聚氰胺泡沫支撑的S型硫铟锌镉/硫掺杂氮化碳异质结的绿色H2O2合成:协同界面电荷转移调控与局域光热效应. Acta Physico-Chimica Sinica, 2025, 41(8): 100093-. doi: 10.1016/j.actphy.2025.100093

    17. [17]

      Fengmiao Yu Yang Sheng Chanyue Li Bao Li . The Three Lives of Aspirin. University Chemistry, 2024, 39(9): 115-121. doi: 10.12461/PKU.DXHX202402033

    18. [18]

      Min LIUHuapeng RUANZhongtao FENGXue DONGHaiyan CUIXinping WANG . Neutral boron-containing radical dimers. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 123-130. doi: 10.11862/CJIC.20240362

    19. [19]

      . . Chinese Journal of Inorganic Chemistry, 2024, 40(12): 0-0.

    20. [20]

      Gonglan Ye Xia Yin Feng Xu Peng Yang Yingpeng Wu Huilong Fei . Innovations in “Four-in-One” Inorganic Chemistry Education. University Chemistry, 2024, 39(8): 136-141. doi: 10.3866/PKU.DXHX202401071

Metrics
  • PDF Downloads(183)
  • Abstract views(5626)
  • HTML views(1664)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return