Recent Advances in Acyltransferase Domain of Type Ⅰ Polyktide Synthases
- Corresponding author: Li Yongquan, lyq@zju.edu.cn
Citation:
Shen Jiejie, Mao Xuming, Chen Xin'ai, Li Yongquan. Recent Advances in Acyltransferase Domain of Type Ⅰ Polyktide Synthases[J]. Chinese Journal of Organic Chemistry,
;2018, 38(9): 2377-2385.
doi:
10.6023/cjoc201806016
Dunn, B. J.; Khosla, C. J. R. Soc., Interface 2013, 10, 20130297.
doi: 10.1098/rsif.2013.0297
Shen, B. Curr. Opin. Chem. Biol. 2003, 7, 285.
doi: 10.1016/S1367-5931(03)00020-6
Demydchuk, Y.; Sun, Y.; Hong, H.; Staunton, J.; Spencer, J. B.; Leadlay, P. F. ChemBioChem 2008, 9, 1136.
doi: 10.1002/(ISSN)1439-7633
Khosla, C.; Tang, Y.; Chen, A. Y.; Schnarr, N. A.; Cane, D. E. Annu. Rev. Biochem. 2007, 76, 195.
doi: 10.1146/annurev.biochem.76.053105.093515
Bailey, C. B.; Pasman, M. E.; Keatinge-Clay, A. T. Chem. Commun. (Camb) 2016, 52, 792.
doi: 10.1039/C5CC07315D
Li, S.; Lu, C.; Chang, X.; Shen, Y. Appl. Microbiol. Biotechnol. 2016, 100, 2641.
doi: 10.1007/s00253-015-7127-7
Luhavaya, H.; Williams, S. R.; Hong, H.; Gonzaga de Oliveira, L.; Leadlay, P. F. ChemBioChem 2014, 15, 2081.
doi: 10.1002/cbic.201402300
Liang, Z. X. Nat. Prod. Rep. 2010, 27, 499.
doi: 10.1039/b908165h
Lanen, S. G. V.; Shen, B. Curr. Top. Med. Chem. 2008, 8, 448.
doi: 10.2174/156802608783955656
Fu, L. F.; Tao, Y.; Jin, M. Y.; Jiang, H. Biotechnol. Lett. 2016, 38, 2015.
doi: 10.1007/s10529-016-2202-4
Taguchi, C.; Taura, F.; Tamada, T.; Shoyama, Y.; Tanaka, H.; Shoyama, Y.; Kuroki, R.; Morimoto, S. Acta Crystallogr., Sect. F 2008, 64, 217.
doi: 10.1107/S1744309108003795
Yu, D. Y.; Xu, F. C.; Zeng, J.; Zhan, J. X. IUBMB Life 2012, 64, 285.
doi: 10.1002/iub.v64.4
Fang, W. J.; Wang, C. J.; He, Y.; Zhou, Y. L.; Peng, X. D.; Liu, S. K. Acta Pharmacol. Sin. 2018, 39, 59.
doi: 10.1038/aps.2017.50
Fischbach, M. A.; Walsh, C. T. Chem. Rev. 2006, 106, 3468.
doi: 10.1021/cr0503097
Kotowska, M.; Pawlik, K.; Smulczyk-Krawczyszyn, A.; Bar-tosz-Bechowski, H.; Kuczek, K. Appl. Environ. Microbiol. 2009, 75, 887.
doi: 10.1128/AEM.01371-08
Musiol, E. M.; Weber, T. Med. Chem. Commun. 2012, 3, 871.
doi: 10.1039/c2md20048a
Ye, Z.; Musiol, E. M.; Weber, T.; Williams, G. J. Chem. Biol. 2014, 21, 636.
doi: 10.1016/j.chembiol.2014.02.019
Wong, F. T.; Jin, X.; Mathews, I. I.; Cane, D. E.; Khosla, C. Biochemistry 2011, 50, 6539.
doi: 10.1021/bi200632j
Cheng, Y. Q.; Tang, G. L.; Shen, B. Proc. Natl. Acad. Sci. U. S. A. 2003, 100, 3149.
doi: 10.1073/pnas.0537286100
Pan, G. H.; Xu, Z. R.; Guo, Z. K.; Hindra; Ma, M.; Yang, D.; Zhou, H.; Gansemans, Y.; Zhu, X. C.; Huang, Y.; Zhao, L. X.; Jiang, Y.; Cheng, J. H.; Nieuwerburgh F. V.; Suh, J. W.; Duan, Y. W.; Shen, B. Proc. Natl. Acad. Sci. U. S. A. 2017, 114, E11131.
doi: 10.1073/pnas.1716245115
Helfrich, E. J. N.; Piel, J. Nat. Prod. Rep. 2016, 33, 231.
doi: 10.1039/C5NP00125K
Calderone, C. T.; Iwig, D. F.; Dorrestein, P. C.; Kelleher, N. L.; Walsh, C. T. Chem. Biol. 2007, 14, 835.
doi: 10.1016/j.chembiol.2007.06.008
Butcher, R. A.; Schroeder, F. C.; Fischbach, M. A.; Straight, P. D.; Kolter, R.; Walsh, C. T.; Clardy, J. Proc. Natl. Acad. Sci. U. S. A. 2007, 104, 1506.
doi: 10.1073/pnas.0610503104
Yadav, G.; Gokhale, R. S.; Mohanty, D. J. Mol. Biol. 2003, 328, 335.
doi: 10.1016/S0022-2836(03)00232-8
Jiang, C.; Qi, Z.; Kang, Q.; Liu, J.; Jiang, M.; Bai, L. Angew. Chem., Int. Ed. 2015, 54, 9097.
doi: 10.1002/anie.201503561
Luzhetskyy, A.; Mayer, A.; Hoffmann, J.; Pelzer, S.; Holzenkamper, M.; Schmitt, B.; Wohlert, S. E.; Vente, A.; Bechthold, A. ChemBio-Chem 2007, 8, 599.
doi: 10.1002/(ISSN)1439-7633
Blauenburg, B.; Oja, T.; Klika, K. D.; Metsa-Ketela, M. ACS Chem. Biol. 2013, 8, 2377.
doi: 10.1021/cb400384c
Xu, Z.; Schenk, A.; Hertweck, C. J. Am. Chem. Soc. 2007, 129, 6022.
doi: 10.1021/ja069045b
Lowden, P. A.; Wilkinson, B.; Böhm, G. A.; Handa, S.; Floss, H. G.; Leadlay, P. F.; Staunton, J. Angew. Chem., Int. Ed. 2001, 40, 777.
doi: 10.1002/1521-3773(20010216)40:4<>1.0.CO;2-X
Paiva, N. L.; Roberts, M. F.; Demain, A. L. J. Ind. Microbiol. 1993, 12, 423.
doi: 10.1007/BF01569676
Mo, S.; Kim, D. H.; Lee, J. H.; Park, J. W.; Basnet, D. B.; Ban, Y. H.; Yoo, Y. J.; Chen, S. W.; Park, S. R.; Choi, E. A.; Kim, E.; Jin, Y. Y.; Lee, S. K.; Park, J. Y.; Liu, Y.; Lee, M. O.; Lee, K. S.; Kim, S. J.; Kim, D.; Park, B. C.; Lee, S. G.; Kwon, H. J.; Suh, J. W.; Moore, B. S.; Lim, S. K.; Yoon, Y. J. J. Am. Chem. Soc. 2011, 133, 976.
doi: 10.1021/ja108399b
Kato, Y.; Bai, L. Q.; Xue, Q.; Revill, W. P.; Yu, T. W.; Floss, H. G. J. Am. Chem. Soc. 2002, 124, 5268.
doi: 10.1021/ja0127483
Xia, M. L.; Huang, D.; Li, S. S.; Wen, J. P.; Jia, X. Q.; Chen Y. Biotechnol. Bioeng. 2013, 110, 2717.
doi: 10.1002/bit.24941
Goranovic, D.; Kosec, G.; Mrak, P.; Fujs, S.; Horvat, J.; Kuscer, E.; Kopitar, G.; Petkovic, H. J. Biol. Chem. 2010, 285, 14292.
doi: 10.1074/jbc.M109.059600
Dunn, B. J.; Cane, D. E.; Khosla, C. Biochemistry 2013, 52, 1839.
doi: 10.1021/bi400185v
Marsden, A. F.; Caffrey, P.; Aparicio, J. F.; Loughran, M. S.; Staunton, J.; Leadlay, P. F. Science 1994, 263, 378.
doi: 10.1126/science.8278811
Tsai, S. C.; Lu, H.; Cane, D. E.; Khosla, C.; Stroud, R. M. Bio-chemistry 2002, 41, 12598.
Reeves, C. D.; Murli, S.; Ashley, G. W.; Piagentini, M.; Hutchinson, C. R.; McDaniel, R. Biochemistry 2001, 40, 15464.
doi: 10.1021/bi015864r
Wang, Y. Y.; Bai, L. F.; Ran, X. X.; Jiang, X. H.; Wu, H.; Zhang, W.; Jin, M. Y.; Li, Y. Q.; Jiang, H. Protein Pept. Lett. 2015, 22, 2.
Jiang, H.; Wang, Y. Y.; Guo, Y. Y.; Shen, J. J.; Zhang, X. S.; Luo, H. D.; Ren, X. X.; Jiang, X. H.; Li, Y. Q. FEBS J. 2015, 282, 2527.
doi: 10.1111/febs.13296
Liew, C. W.; Nilsson, M.; Chen, M. W.; Sun, H. H.; Cornvik, T.; Liang, Z. X.; Lescar, J. J. Biol. Chem. 2012, 287, 23203.
doi: 10.1074/jbc.M112.362210
Tang, Y.; Kim, C. Y.; Mathews, I. I.; Cane, D. E.; Khosla, C. Proc. Natl. Acad. Sci. U. S. A. 2006, 103, 11124.
doi: 10.1073/pnas.0601924103
Tang, Y.; Chen, A. Y.; Kim, C. Y.; Cane, D. E.; Khosla, C. Chem Biol. 2007, 14, 931.
doi: 10.1016/j.chembiol.2007.07.012
Li, Y.; Zhang, W.; Zhang, H.; Tian, W. Y.; Wu, L.; Wang, S. W.; Zheng, M. M.; Zhang, J. R.; Sun, C. H.; Deng, Z. X.; Sun, Y. H.; Qu, X. H.; Zhou, J. H. Angew. Chem., Int. Ed. 2018, 10.1002/anie.201802805.
doi: 10.1002/anie.201802805
Caffrey, P.; Lynch, S.; Flood, E.; Finnan, S.; Oliynyk, M. Chem. Biol. 2001, 8, 713.
doi: 10.1016/S1074-5521(01)00046-1
Feng, J. F.; Zhou, R. C.; Guo, X. T.; Zhang, Y. Mod. Agric. Sci. Technol. 2011, 3, 24(in Chinese).
Barajas, J. F.; Blake-Hedges, J. M.; Bailey, C. B.; Curran, S.; Keasling, J. D. Synth. Syst. Biotechnol. 2017, 2, 147.
doi: 10.1016/j.synbio.2017.08.005
Oliynyk, M.; Brown, M. J.; Cortes, J.; Staunton, J.; Leadlay, P. F. Chem. Biol. 1996, 3, 833.
doi: 10.1016/S1074-5521(96)90069-1
Stassi, D. L.; Kakavas, S. J.; Reynolds, K. A.; Gunawardana, G.; Swanson, S.; Zeidner, D.; Jackson, M.; Liu, H.; Buko, A.; Katz, L. Proc. Natl. Acad. Sci. U. S. A. 1998, 95, 7305.
doi: 10.1073/pnas.95.13.7305
Patel, K.; Piagentini, M.; Rascher, A.; Tian, Z. Q.; Buchanan, G. O.; Regentin, R.; Hu, Z.; Hutchinson, C. R.; McDaniel, R. Chem. Biol. 2004, 11, 1625.
doi: 10.1016/j.chembiol.2004.09.012
Wong, F. T.; Jin, X.; Mathews, I. I.; Cane, D. E.; Khosla, C. Biochemistry 2011, 50, 6539.
doi: 10.1021/bi200632j
Mcdaniel, R.; Thamchaipenet, A.; Gustafsson, C.; Fu, H.; Betlach, M.; Betlach, M.; Ashley, G. Proc. Natl. Acad. Sci. U. S. A. 1999, 96, 1846.
doi: 10.1073/pnas.96.5.1846
Yuzawa, S.; Deng, K.; Wang, G.; Baidoo, E. E.; Northen, T. R.; Adams, P. D.; Katz, L.; Keasling, J. D. ACS Synth. Biol. 2017, 6, 139.
doi: 10.1021/acssynbio.6b00176
Hans, M.; Hornung, A.; Dziarnowski, A.; Cane, D. E.; Khosla, C. J. Am. Chem. Soc. 2003, 125, 5366.
doi: 10.1021/ja029539i
Koryakina, I.; Kasey, C.; McArthur, J. B.; Lowell, A. N.; Chemler, J. A.; Hansen, D. A.; Sherman, D. H.; Williams, G. ACS Chem. Biol. 2017, 12, 114.
doi: 10.1021/acschembio.6b00732
Petković, H.; Sandmann, A.; Challis, I. R.; Hecht, H. J.; Silakowski, B.; Low, L.; Beeston, N.; Kuščer, E.; Gar-cia-Bernardo, J.; Leadlay, P. F.; Kendrew, S. G.; Wilkinson, B.; Müller R. Org. Biomol. Chem. 2008, 6, 500.
doi: 10.1039/B714804F
Vecchio, F. D.; Petkovic, H.; Kendrew, S. G.; Low, L.; Wilkinson, B.; Lill, R.; Cortés, J.; Rudd, B. A. M.; Staunton, J.; Leadlay, P. F. J. Ind. Microbiol. Biotechnol. 2003, 30, 489.
doi: 10.1007/s10295-003-0062-0
Ruan, X. A.; Pereda, A.; Stassi, D.; Zeidner, D.; Summers, R. G.; Jackson, M.; Shivakumar, A.; Kakavas, S.; Staver, M. J.; Donadio, S.; Katz, L. J. Bacteriol. 1997, 179, 6416.
doi: 10.1128/jb.179.20.6416-6425.1997
Sundermann U.; Bravo-Rodriguez, K.; Klopries, S.; Kushnir, S.; Gomez, H.; Sanchez-Garcia, E.; Schulz, F. ACS. Chem. Biol. 2013, 8, 443.
doi: 10.1021/cb300505w
Klopries, S.; Sundermann U.; Schulz, F. Beilstein J. Org. Chem. 2013, 9, 664.
doi: 10.3762/bjoc.9.75
Koryakina, I.; McArthur, J.; Randall, S.; Draelos, M. M.; Musiol, E. M.; Muddiman, D. C.; Weber, T.; Williams, G. J. ACS Chem. Biol. 2013, 8, 200.
doi: 10.1021/cb3003489
Dunn, B. J.; Watts, K. R.; Robbins. T.; Cane, D. E.; Khosla, C. Biochemistry 2014, 53, 379.
Ad, O.; Thuronyi, B. W.; Chang, M. C. Proc. Natl. Acad. Sci. U. S. A. 2017, 114, 660.
doi: 10.1073/pnas.1614196114
Wesener, S. R.; Potharla, V. Y.; Cheng, Y. Q. Appl. Environ. Microbiol. 2011, 77, 1501.
doi: 10.1128/AEM.01513-10
Lopanik, N. B.; Shields, J. A.; Buchholz, T. J.; Rath, C. M.; Hothersall, J.; Haygood, M. G.; Hakansson, K.; Thomas, C. M.; Sherman, D. H. Chem. Biol. 2008, 15, 1175.
doi: 10.1016/j.chembiol.2008.09.013
Chi Li , Jichao Wan , Qiyu Long , Hui Lv , Ying Xiong . N-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016
Geyang Song , Dong Xue , Gang Li . Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides. University Chemistry, 2024, 39(2): 321-329. doi: 10.3866/PKU.DXHX202308030
Jiaming Xu , Yu Xiang , Weisheng Lin , Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093
Xilin Zhao , Xingyu Tu , Zongxuan Li , Rui Dong , Bo Jiang , Zhiwei Miao . Research Progress in Enantioselective Synthesis of Axial Chiral Compounds. University Chemistry, 2024, 39(11): 158-173. doi: 10.12461/PKU.DXHX202403106
Yanan Liu , Yufei He , Dianqing Li . Preparation of Highly Dispersed LDHs-based Catalysts and Testing of Nitro Compound Reduction Performance: A Comprehensive Chemical Experiment for Research Transformation. University Chemistry, 2024, 39(8): 306-313. doi: 10.3866/PKU.DXHX202401081
Feng Han , Fuxian Wan , Ying Li , Congcong Zhang , Yuanhong Zhang , Chengxia Miao . Comprehensive Organic Chemistry Experiment: Phosphotungstic Acid-Catalyzed Direct Conversion of Triphenylmethanol for the Synthesis of Oxime Ethers. University Chemistry, 2025, 40(3): 342-348. doi: 10.12461/PKU.DXHX202405181
Zhen Yao , Bing Lin , Youping Tian , Tao Li , Wenhui Zhang , Xiongwei Liu , Wude Yang . Visible-Light-Mediated One-Pot Synthesis of Secondary Amines and Mechanistic Exploration. University Chemistry, 2024, 39(5): 201-208. doi: 10.3866/PKU.DXHX202311033
Zhuoming Liang , Ming Chen , Zhiwen Zheng , Kai Chen . Multidimensional Studies on Ketone-Enol Tautomerism of 1,3-Diketones By 1H NMR. University Chemistry, 2024, 39(7): 361-367. doi: 10.3866/PKU.DXHX202311029
Zhonghua Xi , Xuanfeng Kong , Jinyue Yang , Bin Liu , Tingyu Zhu , Hui Zhang , Wenwei Zhang . Construction of Public Teaching Instrument Platform and Exploration of Opening Mechanism. University Chemistry, 2024, 39(7): 200-206. doi: 10.12461/PKU.DXHX202405123
.
CCS Chemistry | 超分子活化底物为自由基促进高效选择性光催化氧化
. CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -.Xinyu Miao , Hao Yang , Jie He , Jing Wang , Zhiliang Jin . 调整Keggin型多金属氧酸盐电子结构构建S型异质结用于光催化析氢. Acta Physico-Chimica Sinica, 2025, 41(6): 100051-. doi: 10.1016/j.actphy.2025.100051
Asif Hassan Raza , Shumail Farhan , Zhixian Yu , Yan Wu . 用于高效制氢的双S型ZnS/ZnO/CdS异质结构光催化剂. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-. doi: 10.3866/PKU.WHXB202406020
Yaping Li , Sai An , Aiqing Cao , Shilong Li , Ming Lei . The Application of Molecular Simulation Software in Structural Chemistry Education: First-Principles Calculation of NiFe Layered Double Hydroxide. University Chemistry, 2025, 40(3): 160-170. doi: 10.12461/PKU.DXHX202405185
Yihao Zhao , Jitian Rao , Jie Han . Synthesis and Photochromic Properties of 3,3-Diphenyl-3H-Naphthopyran: Design and Teaching Practice of a Comprehensive Organic Experiment. University Chemistry, 2024, 39(10): 149-155. doi: 10.3866/PKU.DXHX202402050
Hao Wu , Zhen Liu , Dachang Bai . 1H NMR Spectrum of Amide Compounds. University Chemistry, 2024, 39(3): 231-238. doi: 10.3866/PKU.DXHX202309020
Qianlang Wang , Jijun Sun , Qian Chen , Quanqin Zhao , Baojuan Xi . The Appeal of Organophosphorus Compounds: Clearing Their Name. University Chemistry, 2025, 40(4): 299-306. doi: 10.12461/PKU.DXHX202405205
Yurong Tang , Yunren Shi , Yi Xu , Bo Qin , Yanqin Xu , Yunfei Cai . Innovative Experiment and Course Transformation Practice of Visible-Light-Mediated Photocatalytic Synthesis of Isoquinolinone. University Chemistry, 2024, 39(5): 296-306. doi: 10.3866/PKU.DXHX202311087
Shijie Li , Ke Rong , Xiaoqin Wang , Chuqi Shen , Fang Yang , Qinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-Scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-. doi: 10.3866/PKU.WHXB202403005
Yang Xia , Kangyan Zhang , Heng Yang , Lijuan Shi , Qun Yi . 构建双通道路径增强iCOF/Bi2O3 S型异质结在纯水体系中光催化合成H2O2性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407012-. doi: 10.3866/PKU.WHXB202407012
Aidang Lu , Yunting Liu , Yanjun Jiang . Comprehensive Organic Chemistry Experiment: Synthesis and Characterization of Triazolopyrimidine Compounds. University Chemistry, 2024, 39(8): 241-246. doi: 10.3866/PKU.DXHX202401029
The substrates of AT domains are in three forms as carboxylic acid, acyl-CoA and acyl-ACP. Their structures are shown in the form of free carboxylic acid in Figure 3
The data was from protein data bank (PDB, ID: 4AMP). (A) Overall structure of ATDynE8 with malonate. The motifs GHSLG and HAFH in α/β-hydrolase-like core domain were colored red and orange. (B) The catalytic pocket of ATDynE8 domain with malonate. Ser in motif GHSLG and His in motif HAFH, malonate, oxygen and hydrogen atoms were colored green, yellow, red and blue. Hydrogen bonds were shown by the yellow dotted lines