Citation: Tian Kai, Deng Youchao, Li Yuling, Duan Yanwen, Huang Yong. Biosynthesis, Total Synthesis and Semisynthesis of Platensimycin, Platencin and their Analogues[J]. Chinese Journal of Organic Chemistry, ;2018, 38(9): 2348-2362. doi: 10.6023/cjoc201805062 shu

Biosynthesis, Total Synthesis and Semisynthesis of Platensimycin, Platencin and their Analogues

  • Corresponding author: Huang Yong, jonghuang@csu.edu.cn
  • Received Date: 31 May 2018
    Revised Date: 28 June 2018
    Available Online: 16 September 2018

    Fund Project: the Chinese Ministry of Education 111 Project B0803420the National Natural Science Foundation of China 81473123Project supported by the National Natural Science Foundation of China (No. 81473123) and the Chinese Ministry of Education 111 Project (No. B0803420)

Figures(11)

  • The emergence of multi-drug resistant bacteria is one of the major public heath crises. Platensimycin (PTM) and platencin (PTN) are potent antibacterial drug leads against many gram-postive pathogens, such as methicillin-resistant Staphylococcus aureus and vancomycin-resistant Enterococcus. The past decade has witnessed the systematic study of biosynthesis, total synthesis and semisynthesis of these facinating molecules, due to their novel structures and excellent biological activities in vitro and in vivo. These studies have shed new lights on the disovery of microbial drug leads through novel high throughput strategies. Dedicated enzymes for the formation of PTM and PTN and other metabolites in their biosynthetic pathways, including new-characterized bacterial diterpenoid synthases and thiocarboxylate biosynthetic enzymes, have been revealed. The generation of many analogues of PTM and PTN though organic synthesis and precursor-directed biosynthesis has helped to establish the structure-activity relationships of PTM, PTN and their analgues. This review summarizes the progress in the disovery and development of these outstanding natural product drug leads, which supports the notion to integrate biosynthesis and organic synthesis for rapid microbial drug discovery and development.
  • 加载中
    1. [1]

      (a) Laxminarayan, R.; Duse, A.; Wattal, C.; Zaidi, A. K. M.; Wertheim, H. F. L.; Sumpradit, N.; Vlieghe, E.; Hara, G. L.; Gould, I. M.; Goossens, H.; Greko, C.; So, A. D.; Bigdeli, M.; Tomson, G.; Woodhouse, W.; Ombaka, E.; Peralta, A. Q.; Qamar, F. N.; Mir, F.; Kariuki, S.; Bhutta, Z. A.; Coates, A.; Bergstrom, R.; Wright, G. D.; Brown, E. D.; Cars, O. Lancet Infect. Dis. 2013, 13, 1057.
      (b) Zhang, Q.-Q.; Ying, G.-G.; Pan, C.-G.; Liu, Y.-S.; Zhao, J.-L. Environ. Sci. Technol. 2015, 49, 6772.
      (c) Berendonk, T. U.; Manaia, C. M.; Merlin, C.; Fatta-Kassinos, D.; Cytryn, E.; Walsh, F.; Burgmann, H.; Sorum, H.; Norstrom, M.; Pons, M. N.; Kreuzinger, N.; Huovinen, P.; Stefani, S.; Schwartz, T.; Kisand, V.; Baquero, F.; Martinez, J. L. Nat. Rev. Microbiol. 2015, 13, 310.
      (d) Tommasi, R.; Brown, D. G.; Walkup, G. K.; Manchester, J. I.; Miller, A. A. Nat. Rev. Drug Discovery 2015, 14, 529.

    2. [2]

      The Pew Charitable Trusts, March 11, 2016. "A Scientific Roadmap for Antibiotic Discovery" http://www.pewtrusts.org/en/research-and-analysis/reports/2016/05/a-scientific-roadmap-for-antibiotic-discovery.

    3. [3]

      (a) Parsons, J. B.; Rock, C. O. Curr. Opin. Microbiol. 2011, 14, 544.
      (b) Heath, R. J.; Rock, C. O. Nat. Prod. Rep. 2002, 19, 581.

    4. [4]

      (a) Wang, J.; Soisson, S. M.; Young, K.; Shoop, W.; Kodali, S.; Galgoci, A.; Painter, R.; Parthasarathy, G.; Tang, Y. S.; Cummings, R.; Ha, S.; Dorso, K.; Motyl, M.; Jayasuriya, H.; Ondeyka, J.; Herath, K.; Zhang, C.; Hernandez, L.; Allocco, J.; Basilio, A. N.; Tormo, J. R.; Genilloud, O.; Vicente, F.; Pelaez, F.; Colwell, L.; Lee, S. H.; Michael, B.; Felcetto, T.; Gill, C.; Silver, L. L.; Hermes, J. D.; Bartizal, K.; Barrett, J.; Schmatz, D.; Becker, J. W.; Cully, D.; Singh, S. B. Nature 2006, 441, 358.
      (b) Wang, J.; Kodali, S.; Lee, S. H.; Galgoci, A.; Painter, R.; Dorso, K.; Racine, F.; Motyl, M.; Hernandez, L.; Tinney, E.; Colletti, S. L.; Herath, K.; Cummings, R.; Salazar, O.; González, I.; Basilio, A.; Vicente, F.; Genilloud, O.; Pelaez, F.; Jayasuriya, H.; Young, K.; Cully, D. F.; Singh, S. B. Proc. Natl. Acad. Sci. U. S. A. 2007, 104, 7612.

    5. [5]

    6. [6]

      Rudolf, J. D.; Dong, L.-B.; Shen, B. Biochem. Pharmacol. 2017, 133, 139.
       

    7. [7]

      Shang, R.; Liang, J.; Yi, Y.; Liu, Y.; Wang, J. Molecules 2015, 20, 16127.
       

    8. [8]

      Martens, E.; Demain, A. L. J. Antibiot. 2011, 64, 705.

    9. [9]

      Singh, S. B.; Young, K.; Miesel, L. Expert. Rev. Anti-Infect. Ther. 2011, 9, 589.  doi: 10.1586/eri.11.81

    10. [10]

      Saleem, M.; Hussain, H.; Ahmed, I.; van Ree, T.; Krohn, K. Nat. Prod. Rep. 2011, 28, 1534.
       

    11. [11]

      Nicolaou, K. C.; Chen, J. S.; Edmonds, D. J.; Estrada, A. A. Angew. Chem., Int. Ed. 2009, 48, 660.  doi: 10.1002/anie.v48:4

    12. [12]

      Lu, X.; You, Q. Curr. Med. Chem. 2010, 17, 1139.  doi: 10.2174/092986710790827852

    13. [13]

      Young, K.; Jayasuriya, H.; Ondeyka, J. G.; Herath, K.; Zhang, C.; Kodali, S.; Galgoci, A.; Painter, R.; Brown-Driver, V.; Yamamoto, R.; Silver, L. L.; Zheng, Y.; Ventura, J. I.; Sigmund, J.; Ha, S.; Basilio, A.; Vicente, F.; Tormo, J. R. n.; Pelaez, F.; Youngman, P.; Cully, D.; Barrett, J. F.; Schmatz, D.; Singh, S. B.; Wang, J. Antimicrob. Agents Chemother. 2006, 50, 519.

    14. [14]

      Ondeyka, J. G.; Zink, D.; Basilio, A.; Vicente, F.; Bills, G.; Diez, M. T.; Motyl, M.; Dezeny, G.; Byrne, K.; Singh, S. B. J. Nat. Prod. 2007, 70, 668.
       

    15. [15]

      Jayasuriya, H.; Zink, D.; Basilio, A.; Vicente, F.; Collado, J.; Bills, G.; Goldman, M. L.; Motyl, M.; Huber, J.; Dezeny, G.; Byrne, K.; Singh, S. B. J. Antibiot. 2009, 62, 265.
       

    16. [16]

      Ondeyka, J.; Buevich, A. V.; Williamson, R. T.; Zink, D. L.; Polishook, J. D.; Occi, J.; Vicente, F.; Basilio, A.; Bills, G. F.; Donald, R. G. K.; Phillips, J. W.; Goetz, M. A.; Singh, S. B. J. Nat. Prod. 2014, 77, 497.  doi: 10.1021/np400759f

    17. [17]

      Brown, A. K.; Taylor, R. C.; Bhatt, A.; Terer, K. F.; Besra, G. S. PLoS One 2009, 4, e6306.

    18. [18]

      Moustafa, G. A. I.; Nojima, S.; Yamano, Y.; Aono, A.; Arai, M.; Mitarai, S.; Tanaka, T.; Yoshimitsu, T. Med. Chem. Commun. 2013, 4, 720.
       

    19. [19]

      Hindra; Huang, T.; Yang, D.; Rudolf, J. D.; Xie, P.; Xie, G.; Teng, Q.; Lohman, J. R.; Zhu, X.; Huang, Y.; Zhao, L.-X.; Jiang, Y.; Duan, Y.; Shen, B. J. Nat. Prod. 2014, 77, 2296.

    20. [20]

      Herath, K. B.; Attygalle, A. B.; Singh, S. B. J. Am. Chem. Soc. 2007, 129, 15422.
       

    21. [21]

      Herath, K.; Attygalle, A. B.; Singh, S. B. Tetrahedron Lett. 2008, 49, 5755.

    22. [22]

      (a) Smanski, M. J.; Peterson, R. M.; Rajski, S. R.; Shen, B. Antimicrob. Agents Chemother. 2009, 53, 1299.
      (b) Smanski, M. J.; Yu, Z.; Casper, J.; Lin, S.; Peterson, R. M.; Chen, Y.; Wendt-Pienkowski, E.; Rajski, S. R.; Shen, B. Proc. Natl. Acad. Sci. U. S. A. 2011, 108, 13498.

    23. [23]

      Rudolf, J. D.; Dong, L.-B.; Manoogian, K.; Shen, B. J. Am. Chem. Soc. 2016, 138, 16711.
       

    24. [24]

      Rudolf, J. D.; Dong, L.-B.; Cao, H.; Hatzos-Skintges, C.; Osipiuk, J.; Endres, M.; Chang, C.-Y.; Ma, M.; Babnigg, G.; Joachimiak, A.; George N.; Phillips, J.; Shen, B. J. Am. Chem. Soc. 2016, 138, 10905.
       

    25. [25]

      Wang, N.; Rudolf, J. D.; Dong, L. B.; Osipiuk, J.; Hatzos-Skintges, C.; Endres, M.; Chang, C. Y.; Babnigg, G.; Joachimiak, A.; Phillips, G. N., Jr.; Shen, B. Nat. Chem. Biol. 2018, 14, 730.
       

    26. [26]

      Dong, L.-B.; Rudolf, J. D.; Shen, B. Bioorg. Med. Chem. 2016, 24, 6348.
       

    27. [27]

      Dong, L.-B.; Rudolf, J. D.; Kang, D.; Wang, N.; He, C. Q.; Deng, Y.; Huang, Y.; Houk, K. N.; Duan, Y.; Shen, B. Nat. Commun. 2018, 9, 1.

    28. [28]

      Wang, J.; Sun, W.-B.; Li, Y.-Z.; Wang, X.; Sun, B.-F.; Lin, G.-Q.; Zou, J.-P. Org. Chem. Front. 2015, 2, 674.

    29. [29]

      Jiao, Z.-W.; Tu, Y.-Q.; Zhang, Q.; Liu, W.-X.; Wang, S.-H.; Wang, M. Org. Chem. Front. 2015, 2, 913.

    30. [30]

      Zhu, L.; Zhou, C.; Yang, W.; He, S.; Cheng, G.-J.; Zhang, X.; Lee, C.-S. J. Org. Chem. 2013, 78, 7912.
       

    31. [31]

      Nicolaou, K. C.; Li, A.; Edmonds, D. J. Angew. Chem., Int. Ed. 2006, 45, 7086.

    32. [32]

      Ghosh, A. K.; Xi, K. J. Org. Chem. 2009, 74, 1163.  doi: 10.1021/jo802261f

    33. [33]

      Eey, S. T.-C.; Lear, M. J. Chem.-Eur. J. 2014, 20, 11556.
       

    34. [34]

      Nicolaou, K. C.; Tria, G. S.; Edmonds, D. J. Angew. Chem., Int. Ed. 2008, 120, 1804.

    35. [35]

      Yoshimitsu, T.; Nojima, S.; Hashimoto, M.; Tanaka, T. Org. Lett. 2011, 13, 3698.

    36. [36]

      Tiefenbacher, K.; Mulzer, J. J. Org. Chem. 2009, 74, 2937.  doi: 10.1021/jo9001855

    37. [37]

      Chang, E. L.; Schwartz, B. D.; Draffan, A. G.; Banwell, M. G.; Willis, A. C. Chem.-Asian J. 2015, 10, 427.

    38. [38]

      (a) Heretsch, P.; Giannis, A. Synthesis 2007, 2614.
      (b) McNulty, J.; Nair, J. J.; Capretta, A. Tetrahedron Lett. 2009, 50, 4087.

    39. [39]

      Eey, S. T.-C.; Lear, M. J. Org. Lett. 2010, 12, 5510.  doi: 10.1021/ol102390t

    40. [40]

      Zhu, L.; Han, Y.; Du, G.; Lee, C.-S. Org. Lett. 2013, 15, 524.

    41. [41]

      (a) Nicolaou, K. C.; Edmonds, D. J.; Li, A.; Tria, G. S. Angew. Chem., Int. Ed. 2007, 46, 3942.
      (b) Nicolaou, K. C.; Li, A.; Edmonds, D. J.; Tria, G. S.; Ellery, S. P. J. Am. Chem. Soc. 2009, 131, 16905.
      (c) Nicolaou, K. C.; Li, A.; Ellery, S. P.; Edmonds, D. J. Angew. Chem., Int. Ed. 2009, 48, 6293.
      (d) Nicolaou, K. C.; Tria, G. S.; Edmonds, D. J.; Kar, M. J. Am. Chem. Soc. 2009, 131, 15909.
      (e) Tiefenbacher, K.; Mulzer, J. Angew. Chem., Int. Ed. 2007, 46, 8074.
      (f) Tiefenbacher, K.; Tröndlin, L.; Mulzer, J.; Pfaltz, A. Tetrahedron 2010, 66, 6508.
      (g) Tiefenbacher, K.; Mulzer, J. Angew. Chem., Int. Ed. 2008, 47, 6199.
      (h) Tiefenbacher, K.; Mulzer, J. J. Org. Chem. 2009, 74, 2937.
      (i) Yun, S. Y.; Zheng, J. C.; Lee, D. Angew. Chem., Int. Ed. 2008, 47, 6201.
      (j) Yun, S. Y.; Zheng, J.-C.; Lee, D. J. Am. Chem. Soc. 2009, 131, 8413.
      (k) Kim, C. H.; Jang, K. P.; Choi, S. Y.; Chung, Y. K.; Lee, E. Angew. Chem., Int. Ed. 2008, 47, 4009.
      (l) Beaulieu, M.-A.; Sabot, C.; Achache, N.; Gurard, K. C.; Canesi, S. Chem.-Eur. J. 2010, 16, 11224.
      (m) Horii, S.; Torihata, M.; Nagasawa, T.; Kuwahara, S. J. Org. Chem. 2013, 78, 2798.
      (n) McGrath, N. A.; Bartlett, E. S.; Sittihan, S.; Njardarson, J. T. Angew. Chem., Int. Ed. 2009, 48, 8543.
      (o) Ghosh, A. K.; Xi, K. Org. Lett. 2007, 9, 4013.
      (p) Ghosh, A. K.; Xi, K. J. Org. Chem. 2009, 74, 1163.
      (q) Ghosh, A. K.; Xi, K. Angew. Chem., Int. Ed. 2009, 48, 5372.
      (r) Magnus, P.; Rivera, H.; Lynch, V. Org. Lett. 2010, 12, 5677.
      (s) Oblak, E. Z.; Wright, D. L. Org. Lett. 2011, 13, 2263.
      (t) VanHeyst, M. D.; Oblak, E. Z.; Wright, D. L. J. Org. Chem. 2013, 78, 10555.
      (u) Waalboer, D. C.; Schaapman, M. C.; van Delft, F. L.; Rutjes, F. P. Angew. Chem., Int. Ed. 2008, 47, 6576.
      (v) Varseev, G. N.; Maier, M. E. Angew. Chem., Int. Ed. 2009, 121, 3739.
      (w) Li, P.; Yamamoto, H. Chem. Commun. 2010, 46, 6294.
      (x) Kerrie, A. B. Austin; Banwell, M. G.; Willis, A. C. Org. Lett. 2008, 10, 4465.
      (y) Yoshimitsu, T.; Nojima, S.; Hashimoto, M.; Tanaka, T. Org. Lett. 2011, 13, 3698.
      (z) Moustafa, G. A.; Saku, Y.; Aoyama, H.; Yoshimitsu, T. Chem. Commun. 2014, 50, 15706.

    42. [42]

      Rossiter, S. E.; Fletcher, M. H.; Wuest, W. M. Chem. Rev. 2017, 117, 12415.
       

    43. [43]

      Nicolaou, K. C.; Stepan, A. F.; Lister, T.; Li, A.; Montero, A.; Tria, G. S.; Turner, C. I.; Tang, Y.; Wang, J.; Denton, R. M.; Edmonds, D. J. J. Am. Chem. Soc. 2008, 130, 13110.
       

    44. [44]

      Nicolaou, K. C.; Lister, T.; Denton, R. M.; Montero, A.; Edmonds, D. J. Angew. Chem., Int. Ed. 2007, 46, 4712.  doi: 10.1002/(ISSN)1521-3773

    45. [45]

      Nicolaou, K. C.; Tang, Y.; Wang, J.; Stepan, A. F.; Li, A.; Montero, A. J. Am. Chem. Soc. 2007, 129, 14850.

    46. [46]

      Wang, J.; Lee, V.; Sintim, H. O. Chem.-Eur. J. 2009, 15, 2747.

    47. [47]

      Jang, K. P.; Kim, C. H.; Na, S. W.; Jang, D. S.; Kim, H.; Kang, H.; Lee, E. Bioorg. Med. Chem. Lett. 2010, 20, 2156.  doi: 10.1016/j.bmcl.2010.02.037

    48. [48]

      Tiefenbacher, K.; Gollner, A.; Mulzer, J. Chem.-Eur. J. 2010, 16, 9616.

    49. [49]

      Leung, G. Y. C.; Li, H.; Toh, Q.-Y.; Ng, A. M. Y.; Sum, R. J.; Bandow, J. E.; Chen, D. Y. K. Eur. J. Org. Chem. 2011, 183.

    50. [50]

      Waalboer, D. C.; Leenders, S. H.; Schulin-Casonato, T.; van Delft, F. L.; Rutjes, F. P. Chem.-Eur. J. 2010, 16, 11233.  doi: 10.1002/chem.v16:37

    51. [51]

      Barykina, O. V.; Rossi, K. L.; Rybak, M. J.; Snider, B. B. Org. Lett. 2009, 11, 5334.  doi: 10.1021/ol902194q

    52. [52]

      (a) Cragg, G. M.; Grothaus, P. G.; Newman, D. J. J. Nat. Prod. 2014, 77, 703.
      (b) Florence, G. J.; Gardner, N. M.; Paterson, I. Nat. Prod. Rep. 2008, 25, 342.
      (c) Mickel, S. J.; Niederer, D.; Daeffler, R.; Osmani, A.; Kuesters, E.; Schmid, E.; Schaer, K.; Gamboni, R. Org. Process Res. Dev. 2004, 8, 122.
      (d) Wender, P. A.; Hardman, C. T.; Ho, S.; Jeffreys, M. S.; Maclaren, J. K.; Quiroz, R. V.; Ryckbosch, S. M.; Shimizu, A. J.; Sloane, J. L.; Stevens, M. C. Science 2017, 358, 218.
      (e) Smanski, M. J.; Peterson, R. M.; Huang, S. X.; Shen, B. Curr. Opin. Chem. Biol. 2012, 16, 132.

    53. [53]

      Zhang, C.; Ondeyka, J.; Herath, K.; Jayasuriya, H.; Guan, Z.; Zink, D. L.; Dietrich, L.; Burgess, B.; Ha, S. N.; Wang, J.; Singh, S. B. J. Nat. Prod. 2011, 74, 329.  doi: 10.1021/np100635f

    54. [54]

      Yu, Z.; Smanski, M. J.; Peterson, R. M.; Marchillo, K.; Andes, D.; Rajski, S. R.; Shen, B. Org. lett. 2010, 12, 1744.

    55. [55]

      Shi, J.; Pan, J.; Liu, L.; Yang, D.; Lu, S.; Zhu, X.; Shen, B.; Duan, Y.; Huang, Y. J. Ind. Microbiol. Biotechnol. 2016, 43, 1027.

    56. [56]

      Singh, S. B.; Herath, K. B.; Wang, J.; Tsou, N.; Ball, R. G. Tetrahedron Lett. 2007, 48, 5429.

    57. [57]

      (a) Qiu, L.; Tian, K.; Pan, J.; Jiang, L.; Yang, H.; Zhu, X.; Shen, B.; Duan, Y.; Huang, Y. Tetrahedron 2017, 73, 771.
      (b) Deng, Y.; Kang, D.; Shi, J.; Zhou, W.; Sun, A.; Ju, J.; Zhu, X.; Shen, B.; Duan, Y.; Huang, Y. Med. Chem. Commun. 2018, 9, 789.
      (c) Qiu, L.; Tian, K.; Wen, Z.; Deng, Y.; Kang, D.; Liang, H.; Zhu, X.; Shen, B.; Duan, Y.; Huang, Y. J. Nat. Prod. 2018, 81, 316.

    58. [58]

      Tian, K.; Deng, Y.; Qiu, L.; Zhu X.; Shen, B.; Duan, Y.; Huang, Y. (under review).

    59. [59]

      Shen, H. C.; Ding, F. X.; Singh, S. B.; Parthasarathy, G.; Soisson, S. M.; Ha, S. N.; Chen, X.; Kodali, S.; Wang, J.; Dorso, K.; Tata, J. R.; Hammond, M. L.; Maccoss, M.; Colletti, S. L. Bioorg. Med. Chem. Lett. 2009, 19, 1623.  doi: 10.1016/j.bmcl.2009.02.006

    60. [60]

      Dong, L.-B.; Rudolf, J. D.; Lin, L.; Ruiz, C.; Cameron, M. D.; Shen, B. Bioorg. Med. Chem. 2017, 25, 1990.

    61. [61]

      Dong, L. B.; Rudolf, J. D.; Shen, B. Org. Lett. 2016, 18, 4606.  doi: 10.1021/acs.orglett.6b02248

    62. [62]

      Nicolaou, K. C.; Lister, T.; Denton, R. M.; Montero, A.; Edmonds, D. J. Angew. Chem., Int. Ed. 2007, 119, 4796.

    63. [63]

      Nicolaou, K. C.; Tang, Y.; Wang, J.; Stepan, A. F.; Li, A.; Montero, A. J. Am. Chem. Soc. 2007, 129, 14850.

    64. [64]

      (a) Wu, M.; Singh, S. B.; Wang, J.; Chung, C. C.; Salituro, G.; Karanam, B. V.; Lee, S. H.; Powles, M.; Ellsworth, K. P.; Lassman, M. E.; Miller, C.; Myers, R. W.; Tota, M. R.; Zhang, B. B.; Li, C. Proc. Natl. Acad. Sci. U. S. A. 2011, 108, 5378.
      (b) Singh, S. B.; Kang, L.; Nawrocki, A. R.; Zhou, D.; Wu, M.; Previs, S.; Miller, C.; Liu, H.; Hines, C. D.; Madeira, M.; Cao, J.; Herath, K.; Spears, L. D.; Semenkovich, C. F.; Wang, L.; Kelley, D. E.; Li, C.; Guan, H. P. PLoS One 2016, 11, e0164133.

    65. [65]

      Smanski, M. J.; Peterson, R. M.; Huang, S. X.; Shen, B. Curr. Opin. Chem. Biol. 2012, 16, 132.  doi: 10.1016/j.cbpa.2012.03.002

  • 加载中
    1. [1]

      Jijun Sun Qianlang Wang Qian Chen Quanqin Zhao Shumei Zhai . The Antibiotic Legion’s Manifesto to Human Allies. University Chemistry, 2025, 40(4): 307-321. doi: 10.12461/PKU.DXHX202405206

    2. [2]

      Peiling Li Qing Feng Hongling Yuan Qin Wang . Live Interview Recording about the Penicillin Family. University Chemistry, 2024, 39(9): 122-127. doi: 10.3866/PKU.DXHX202311022

    3. [3]

      Chao LiuHuan YuJiaming LiXi YuZhuangzhi YuYuxi SongFeng ZhangQinfang ZhangZhigang Zou . 具有光热效应的多级Ti3C2/Bi12O17Br2肖特基异质结简单合成及其太阳能驱动抗生素光降解的研究. Acta Physico-Chimica Sinica, 2025, 41(7): 100075-0. doi: 10.1016/j.actphy.2025.100075

    4. [4]

      Yongzhi LIHan ZHANGGangding WANGYanwei SUILei HOUYaoyu WANG . A two-dimensional metal-organic framework for the determination of nitrofurantoin and nitrofurazone in aqueous solution. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 245-253. doi: 10.11862/CJIC.20240307

    5. [5]

      Ziheng Zhuang Xiao Xu Kin Shing Chan . Superdrugs for Superbugs. University Chemistry, 2024, 39(9): 128-133. doi: 10.3866/PKU.DXHX202309040

    6. [6]

      Zhenhua Wang Haoyang Feng Xiaoyang Shao Wenru Fan . Vitamins in Solid Propellants: Controlled Synthesis of Neutral Macromolecular Bonding Agents. University Chemistry, 2025, 40(4): 1-9. doi: 10.3866/PKU.DXHX202401007

    7. [7]

      Cun WANGShaohan XUYuqian ZHANGYaoyao ZHANGTao GONGRong WENYuhang LIAOYanrong REN . Terbium complex electrochemiluminescent emitters: Synthesis and application in the detection of epinephrine. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1351-1360. doi: 10.11862/CJIC.20240427

    8. [8]

      Shijie LiKe RongXiaoqin WangChuqi ShenFang YangQinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-0. doi: 10.3866/PKU.WHXB202403005

    9. [9]

      Kexin DongChuqi ShenRuyu YanYanping LiuChunqiang ZhuangShijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-0. doi: 10.3866/PKU.WHXB202310013

    10. [10]

      Jia-He Li Yu-Ze Liu Jia-Hui Ma Qing-Xiao Tong Jian-Ji Zhong Jing-Xin Jian . 洛芬碱衍生物的合成、化学发光与重金属离子检测. University Chemistry, 2025, 40(6): 230-237. doi: 10.12461/PKU.DXHX202407080

    11. [11]

      Benhua Wang Chaoyi Yao Yiming Li Qing Liu Minhuan Lan Guipeng Yu Yiming Luo Xiangzhi Song . 一种基于香豆素氟离子荧光探针的合成、表征及性能测试——“科研反哺教学”在有机化学综合实验教学中的探索与实践. University Chemistry, 2025, 40(6): 201-209. doi: 10.12461/PKU.DXHX202408070

    12. [12]

      Yurong Tang Yunren Shi Yi Xu Bo Qin Yanqin Xu Yunfei Cai . Innovative Experiment and Course Transformation Practice of Visible-Light-Mediated Photocatalytic Synthesis of Isoquinolinone. University Chemistry, 2024, 39(5): 296-306. doi: 10.3866/PKU.DXHX202311087

    13. [13]

      Bin SUNHeyan JIANG . Glucose-modified bis-Schiff bases: Synthesis and bio-activities in Alzheimer′s disease therapy. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1338-1350. doi: 10.11862/CJIC.20240428

    14. [14]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    15. [15]

      Wenda WANGJinku MAYuzhu WEIShuaishuai MA . Waste biomass-derived carbon modified porous graphite carbon nitride heterojunction for efficient photodegradation of oxytetracycline in seawater. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 809-822. doi: 10.11862/CJIC.20230353

    16. [16]

      Minna Ma Yujin Ouyang Yuan Wu Mingwei Yuan Lijuan Yang . Green Synthesis of Medical Chemiluminescence Reagents by Photocatalytic Oxidation. University Chemistry, 2024, 39(5): 134-143. doi: 10.3866/PKU.DXHX202310093

    17. [17]

      Qingying Gao Tao Luo Jianyuan Su Chaofan Yu Jiazhu Li Bingfei Yan Wenzuo Li Zhen Zhang Yi Liu . Refinement and Expansion of the Classic Cinnamic Acid Synthesis Experiment. University Chemistry, 2024, 39(5): 243-250. doi: 10.3866/PKU.DXHX202311074

    18. [18]

      Wenjun Zheng . Application in Inorganic Synthesis of Ionic Liquids. University Chemistry, 2024, 39(8): 163-168. doi: 10.3866/PKU.DXHX202401020

    19. [19]

      Hongyan Chen Yajun Hou Shui Hu Zhuoxun Wei Fang Zhu Chengyong Su . Construction of Synthetic Chemistry Experiment of the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 58-63. doi: 10.12461/PKU.DXHX202409109

    20. [20]

      Huijuan Liao Yulin Xiao Dong Xue Mingyu Yang Jianyang Dong . Synthesis of 1-Benzyl Isoquinoline via the Minisci Reaction. University Chemistry, 2025, 40(7): 294-299. doi: 10.12461/PKU.DXHX202409092

Metrics
  • PDF Downloads(61)
  • Abstract views(3171)
  • HTML views(938)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return