Citation: Wang Pingping, Yang Chengshuai, Li Xiaodong, Jiang Yuguo, Yan Xing, Zhou Zhihua. Route to Artificially Synthesize Plant Natural Products[J]. Chinese Journal of Organic Chemistry, ;2018, 38(9): 2199-2214. doi: 10.6023/cjoc201805060 shu

Route to Artificially Synthesize Plant Natural Products

  • Corresponding author: Zhou Zhihua, zhouzhihua@sippe.ac.cn
  • Received Date: 31 May 2018
    Revised Date: 30 July 2018
    Available Online: 23 September 2018

    Fund Project: the Key Deployment Projects of the Chinese Academy of Sciences Nos.KFZD-SW-215the International Great Science Program of the Chinese Academy of Sciences 153D31KYSB20170121the "Strategic Priority Research Program" of the Chinese Academy of Sciences XDPB0400the National Natural Science Foundation of China 21672228Project supported by the National Natural Science Foundation of China (No. 21672228), the Key Deployment Projects of the Chinese Academy of Sciences (Nos. KFZD-SW-215), the "Strategic Priority Research Program" of the Chinese Academy of Sciences (No. XDPB0400) and the International Great Science Program of the Chinese Academy of Sciences (No. 153D31KYSB20170121)

Figures(7)

  • Plant natural products and their derivatives are the important reservoirs for the development of medicines, health products and food additives. The synthetic biology technology brings new strategies to manufacture rare plant natural products with complicated structures at large scale by artificially constructing and optimizing the biosynthesis pathway of target compounds in microbial chassis cells. In this paper, the research progress on the artificial syntheses of important plant natural products such as artemisinin, ginsenosides, morphinan alkaloids, paclitaxel and vinblastine is reviewed. These examples not only demonstrate the great potentials of synthetic biology as well as its combination with synthetic chemistry applied in the artificial syntheses of plant natural compounds, but also show us the roadmap for future research and development on de novo synthesis of plant natural products. New technologies developed in synthetic biology and synthetic chemistry would further promote the unveiling of biosynthetic pathways of complex natural compounds, the discovery and characterization of key bioparts, the design and building of novel chassis cells, the strong-strong combination of biosynthesis and chemical synthesis, and thus accelerate the process to transfer the developed technologies to artificially synthesize plant natural products from laboratories to markets.
  • 加载中
    1. [1]

      Chang, M. C. Y.; Keasling, J. D. Nat. Chem. Biol. 2006, 2, 674.  doi: 10.1038/nchembio836

    2. [2]

      Paddon, C. J.; Keasling, J. D. Nat. Rev. Microbiol. 2014, 12, 355.  doi: 10.1038/nrmicro3240

    3. [3]

      Morrison, K. C.; Hergenrother, P. J. Nat. Prod. Rep. 2014, 31, 6.  doi: 10.1039/C3NP70063A

    4. [4]

      (a) Chen, J. C.; Chen, X. C.; Bois-Choussy, M.; Zhu, J. P. J. Am. Chem. Soc. 2006, 128, 87.
      (b) Cuevas, C.; Perez, M.; Martin, M. J.; Chicharro, J. L.; Fernandez-Rivas, C.; Flores, M.; Francesch, A.; Gallego, P.; Zarzuelo, M.; de la Calle, F.; Garcia, J.; Polanco, C.; Rodriguez, I.; Manzanares, I. Org. Lett. 2000, 2, 2545.

    5. [5]

      Horwitz, S. B. Nature 1994, 367, 593.  doi: 10.1038/367593a0

    6. [6]

      (a) Shibata, S. J. Korean Med. Sci. 2001, 16, S28.
      (b) Liu, Z. Q. Chem. Rev. 2012, 112, 3329.

    7. [7]

      Cameron, D. E.; Bashor, C. J.; Collins, J. J. Nat. Rev. Microbiol. 2014, 12, 381.  doi: 10.1038/nrmicro3239

    8. [8]

      Paddon, C. J.; Westfall, P. J.; Pitera, D. J.; Benjamin, K.; Fisher, K.; McPhee, D.; Leavell, M. D.; Tai, A.; Main, A.; Eng, D.; Polichuk, D. R.; Teoh, K. H.; Reed, D. W.; Treynor, T.; Lenihan, J.; Fleck, M.; Bajad, S.; Dang, G.; Dengrove, D.; Diola, D.; Dorin, G.; Ellens, K. W.; Fickes, S.; Galazzo, J.; Gaucher, S. P.; Geistlinger, T.; Henry, R.; Hepp, M.; Horning, T.; Iqbal, T.; Jiang, H.; Kizer, L.; Lieu, B.; Melis, D.; Moss, N.; Regentin, R.; Secrest, S.; Tsuruta, H.; Vazquez, R.; Westblade, L. F.; Xu, L.; Yu, M.; Zhang, Y.; Zhao, L.; Lievense, J.; Covello, P. S.; Keasling, J. D.; Reiling, K. K.; Renninger, N. S.; Newman, J. D. Nature 2013, 496, 528.  doi: 10.1038/nature12051

    9. [9]

      Yan, X.; Fan, Y.; Wei, W.; Wang, P. P.; Liu, Q. F.; Wei, Y. J.; Zhang, L.; Zhao, G. P.; Yue, J. M.; Zhou, Z. H. Cell Res. 2014, 24, 770.  doi: 10.1038/cr.2014.28

    10. [10]

      Rodriguez, A.; Kildegaard, K. R.; Li, M. J.; Borodina, I.; Nielsen, J. Metab. Eng. 2015, 31, 181.  doi: 10.1016/j.ymben.2015.08.003

    11. [11]

      Li, M.; Kildegaard, K. R.; Chen, Y.; Rodriguez, A.; Borodina, I.; Nielsen, J. Metab. Eng. 2015, 32, 1.  doi: 10.1016/j.ymben.2015.08.007

    12. [12]

      Galanie, S.; Thodey, K.; Trenchard, I. J.; Filsinger, I. M.; Smolke, C. D. Science 2015, 349, 1095.  doi: 10.1126/science.aac9373

    13. [13]

      Westfall, P. J.; Pitera, D. J.; Lenihan, J. R.; Eng, D.; Woolard, F. X.; Regentin, R.; Horning, T.; Tsuruta, H.; Melis, D. J.; Owens, A.; Fickes, S.; Diola, D.; Benjamin, K. R.; Keasling, J. D.; Leavell, M. D.; McPhee, D. J.; Renninger, N. S.; Newman, J. D.; Paddon, C. J. Proc. Natl. Acad. Sci. U. S. A. 2012, 109, E111.  doi: 10.1073/pnas.1110740109

    14. [14]

      Tu, Y. Y. Nat. Med. 2011, 17, 1217.  doi: 10.1038/nm.2471

    15. [15]

      Martin, V. J.; Yoshikuni, Y.; Keasling, J. D. Biotechnol. Bioeng. 2001, 75, 497.  doi: 10.1002/(ISSN)1097-0290

    16. [16]

      Martin, V. J.; Pitera, D. J.; Withers, S. T.; Newman, J. D.; Keasling, J. D. Nat. Biotechnol. 2003, 21, 796.  doi: 10.1038/nbt833

    17. [17]

      Ro, D. K.; Paradise, E. M.; Ouellet, M.; Fisher, K. J.; Newman, K. L.; Ndungu, J. M.; Ho, K. A.; Eachus, R. A.; Ham, T. S.; Kirby, J.; Chang, M. C.; Withers, S. T.; Shiba, Y.; Sarpong, R.; Keasling, J. D. Nature 2006, 440, 940.  doi: 10.1038/nature04640

    18. [18]

      Chang, M. C.; Eachus, R. A.; Trieu, W.; Ro, D. K.; Keasling, J. D. Nat. Chem. Biol. 2007, 3, 274.  doi: 10.1038/nchembio875

    19. [19]

      Zhang, Y.; Teoh, K. H.; Reed, D. W.; Maes, L.; Goossens, A.; Olson, D. J.; Ross, A. R.; Covello, P. S. J. Biol. Chem. 2008, 283, 21501.  doi: 10.1074/jbc.M803090200

    20. [20]

      Teoh, K. H.; Polichuk, D. R.; Reed, D. W.; Covello, P. S. Botany 2009, 87, 635.  doi: 10.1139/B09-032

    21. [21]

      Carlsen, S.; Ajikumar, P. K.; Formenti, L. R.; Zhou, K.; Phon, T. H.; Nielsen, M. L.; Lantz, A. E.; Kielland-Brandt, M. C.; Stephanopoulos, G. Appl. Microbiol. Biotechnol. 2013, 97, 5753.  doi: 10.1007/s00253-013-4877-y

    22. [22]

    23. [23]

      (a) Ye, B.; Wu, Y. L. Tetrahedron 1989, 45, 7287.
      (b) Ye, B.; Wu, Y. L. J. Chem. Soc., Chem. Commun. 1990, 726.

    24. [24]

      Lévesque, F.; Seeberger, P. P. H. Angew. Chem., Int. Ed. 2012, 51, 1706.  doi: 10.1002/anie.v51.7

    25. [25]

      Liu, D.-L.; Zhang, W.-B.; Yuan, Q.-J. CN 102718773, 2012 [Chem. Abstr. 2012, 157, 634538].

    26. [26]

      Chen, H. J.; Han, W. B.; Hao, H. D.; Wu, Y. Tetrahedron 2013, 69, 1112.  doi: 10.1016/j.tet.2012.11.056

    27. [27]

      Turconi, J.; Griolet, F.; Guevel, R.; Oddon, G.; Villa, R.; Geatti, A.; Hvala, M.; Kai, R.; Göller, R.; Burgard, A. Org. Process Res. Dev. 2014, 18, 417.  doi: 10.1021/op4003196

    28. [28]

      Chae, S.; Kang, K. A.; Chang, W. Y.; Kim, M. J.; Lee, S. J.; Lee, Y. S.; Kim, H. S.; Kim, D. H.; Hyun, J. W. J. Agric. Food. Chem. 2009, 57, 5777.  doi: 10.1021/jf900331g

    29. [29]

      Han, J. Y.; Kim, H. J.; Kwon, Y. S.; Choi, Y. E. Plant Cell Physiol. 2011, 52, 2062.  doi: 10.1093/pcp/pcr150

    30. [30]

      Han, J. Y.; Hwang, H. S.; Choi, S. W.; Kim, H. J.; Choi, Y. E. Plant Cell Physiol. 2012, 53, 1535.  doi: 10.1093/pcp/pcs106

    31. [31]

      Dai, Z. B.; Wang, B. B.; Liu, Y.; Shi, M. Y.; Wang, D.; Zhang, X. N.; Liu, T.; Huang, L. Q.; Zhang, X. L. Sci. Rep. 2014, 4, 3698.

    32. [32]

      (a) Wang, P. P.; Wei, Y. J.; Fan, Y.; Liu, Q. F.; Wei, W.; Yang, C. S.; Zhang, L.; Zhao, G. P.; Yue, J. M.; Yan, X.; Zhou, Z. H. Metab. Eng. 2015, 29, 97.
      (b) Wei, W.; Wang, P. P.; Wei, Y. J.; Liu, Q. F.; Yang, C. S.; Zhao, G. P.; Yue, J. M.; Yan, X.; Zhou, Z. H. Mol. Plant 2015, 8, 1412.

    33. [33]

      (a) Kai, G. Y.; Xu, H.; Zhou, C. C.; Liao, P.; Xiao, J. B.; Luo, X. Q.; You, L. J.; Zhang, L. Metab. Eng. 2011, 13, 319.
      (b) Zhou, L. M.; Zuo, Z.; Chow, M. S. S. J. Clin. Pharmacol. 2005, 45, 1345.

    34. [34]

      Zhou, Y. J. J.; Gao, W.; Rong, Q. X.; Jin, G. J.; Chu, H. Y.; Liu, W. J.; Yang, W.; Zhu, Z. W.; Li, G. H.; Zhu, G. F.; Huang, L. Q.; Zhao, Z. B. K. J. Am. Chem. Soc. 2012, 134, 3234.  doi: 10.1021/ja2114486

    35. [35]

      Dai, Z. B.; Liu, Y.; Huang, L. Q.; Zhang, X. L. Biotechnol. Bioeng. 2012, 109, 2845.  doi: 10.1002/bit.v109.11

    36. [36]

      Guo, J.; Zhou, Y. J. J.; Hillwigc, M. L.; Shen, Y.; Yang, L.; Wang, Y. J.; Zhang, X. A.; Liu, W. J.; Peters, R. J.; Chen, X. Y.; Zhao, Z. B. K.; Huang, L. Q. Proc. Natl. Acad. Sci. U. S. A. 2013, 110, 12108.  doi: 10.1073/pnas.1218061110

    37. [37]

      Yao, Y. F.; Wang, C. S.; Qiao, J.; Zhao, G. R. Metab. Eng. 2013, 19, 79.  doi: 10.1016/j.ymben.2013.06.001

    38. [38]

      Bai, Y. F.; Bi, H. P.; Zhuang, Y. B.; Liu, C.; Cai, T.; Liu, X. N.; Zhang, X. L.; Liu, T.; Ma, Y. H. Sci. Rep. 2014, 4, 6640.

    39. [39]

      Bai, Y. F.; Yin, H.; Bi, H. P.; Zhuang, Y. B.; Liu, T.; Ma, Y. H. Metab. Eng. 2016, 35, 138.  doi: 10.1016/j.ymben.2016.01.002

    40. [40]

      Hawkins, K. M.; Smolke, C. D. Nat. Chem. Biol. 2008, 4, 564-73.  doi: 10.1038/nchembio.105

    41. [41]

      DeLoache, W. C.; Russ, Z. N.; Narcross, L.; Gonzales, A. M.; Martin, V. J.; Dueber, J. E. Nat. Chem. Biol. 2015, 11, 465.  doi: 10.1038/nchembio.1816

    42. [42]

      (a) Winzer, T.; Kern, M.; King, A. J.; Larson, T. R.; Teodor, R. I.; Donninger, S. L.; Li, Y.; Dowle, A. A.; Cartwright, J.; Bates, R.; Ashford, D.; Thomas, J.; Walker, C.; Bowser, T. A.; Graham, I. A. Science 2015, 349, 309.
      (b) Farrow, S. C.; Hagel, J. M.; Beaudoin, G. A.; Burns, D. C.; Facchini, P. J. Nat. Chem. Biol. 2015, 11, 728.

    43. [43]

      Li, Y.; Li, S.; Thodey, K.; Trenchard, I.; Cravens, A.; Smolke, C. D. Proc. Natl. Acad. Sci. U. S. A. 2018, 115, E3922.  doi: 10.1073/pnas.1721469115

    44. [44]

      Trenchard, I. J.; Smolke, C. D. Metab. Eng. 2015, 30, 96.  doi: 10.1016/j.ymben.2015.05.001

    45. [45]

      Fossati, E.; Ekins, A.; Narcross, L.; Zhu, Y.; Falgueyret, J. P.; Beaudoin, G. A. W.; Facchini, P. J.; Martin, V. J. J. Nat. Commun. 2014, 5, 3283.  doi: 10.1038/ncomms4283

    46. [46]

      Mountford, P. G. In Green Chemistry in the Pharmaceutical Industry, Eds.: Dunn, P. J.; Wells, A. S.; Williams, M. T., Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, 2010, pp. 145~160.

    47. [47]

      (a) Nicolaou, K. C.; Dai, W. M.; Guy, R. K. Angew. Chem., Int. Ed. 1994, 33, 15.
      (b) Gueritte-Voegelein, F.; Guenard, D.; Dubois, J.; Wahl, A.; Potier, P. J. Pharm. Belg. 1994, 49, 193.
      (c) Guenard, D.; Guerittevoegelein, F.; Potier, P. Acc. Chem. Res. 1993, 26, 160.

    48. [48]

      Yang, T.; Li, M.; Chen, J. M. Nat. Prod. Res. 2006, 20, 119.  doi: 10.1080/14786410500045218

    49. [49]

      Commerçon, A.; Bourzat, J. D.; Didier, E.; Lavelle, F. ACS Symp. Ser. 1995, 583, 233.

    50. [50]

      Ajikumar, P. K.; Xiao, W. H.; Tyo, K. E. J.; Wang, Y.; Simeon, F.; Leonard, E.; Mucha, O.; Phon, T. H.; Pfeifer, B.; Stephanopoulos, G. Science 2010, 330, 70.  doi: 10.1126/science.1191652

    51. [51]

      Wildung, M. R.; Croteau, R. J. Biol. Chem. 1996, 271, 9201.  doi: 10.1074/jbc.271.16.9201

    52. [52]

      (a) Chau, M.; Croteau, R. Arch. Biochem. Biophys. 2004, 427, 48.
      (b) Chau, M.; Jennewein, S.; Walker, K.; Croteau, R. Chem. Biol. 2004, 11, 663.
      (c) Jennewein, S.; Long, R. M.; Williams, R. M.; Croteau, R. Chem. Biol. 2004, 11, 379.
      (d) Jennewein, S.; Rithner, C. D.; Williams, R. M.; Croteau, R. B. Proc. Natl. Acad. Sci. U. S. A. 2001, 98, 13595.
      (e) Jennewein, S.; Wildung, M. R.; Chau, M.; Walker, K.; Croteau, R. Proc. Natl. Acad. Sci. U. S. A. 2004, 101, 9149.
      (f) Schoendorf, A.; Rithner, C. D.; Williams, R. M.; Croteau, R. B. Proc. Natl. Acad. Sci. U. S. A. 2001, 98, 1501.

    53. [53]

      (a) Guerra-Bubb, J.; Croteau, R.; Williams, R. M., Nat. Pro. Rep. 2012, 29, 683.
      (b) McElroy C.; Jennewein S. In Biotechnology of Natural Products, Eds.: Schwab, W.; Lange, B.; Wüst, M., Springer, Cham, 2018, pp. 145~185.

    54. [54]

      (a) Walker, K.; Croteau, R. Proc. Natl. Acad. Sci. U. S. A. 2000, 97, 13591.
      (b) Walker, K.; Croteau, R. Proc. Natl. Acad. Sci. U. S. A. 2000, 97, 583.
      (c) Walker, K.; Schoendorf, A.; Croteau, R. Arch. Biochem. Biophys. 2000, 374, 371.

    55. [55]

      Walker, K.; Fujisaki, S.; Long, R.; Croteau, R. Proc. Natl. Acad. Sci. U. S. A. 2002, 99, 12715.  doi: 10.1073/pnas.192463699

    56. [56]

      Walker, K.; Long, R.; Croteau, R. Proc. Natl. Acad. Sci. U. S. A. 2002, 99, 9166.  doi: 10.1073/pnas.082115799

    57. [57]

      Muchiri, R.; Walker, K. D. Chem. Biol. 2012, 19, 679.  doi: 10.1016/j.chembiol.2012.05.007

    58. [58]

      Zhou, K.; Qiao, K. J.; Edgar, S.; Stephanopoulos, G. Nat. Biotechnol. 2015, 33, 377.  doi: 10.1038/nbt.3095

    59. [59]

      Biggs, B. W.; Lim, C. G.; Sagliani, K.; Shankar, S.; Stephanopoulos, G.; De Mey, M.; Ajikumar, P. K. Proc. Natl. Acad. Sci. U. S. A. 2016, 113, 3209.  doi: 10.1073/pnas.1515826113

    60. [60]

      Zhu, J.; Wang, M.; Wen, W.; Yu, R. Pharmacogn. Rev. 2015, 9, 24.  doi: 10.4103/0973-7847.156323

    61. [61]

      Van Der Heijden, R.; Jacobs, D. I.; Snoeijer, W.; Hallard, D.; Verpoorte, R. Curr. Med. Chem. 2004, 11, 607.  doi: 10.2174/0929867043455846

    62. [62]

      (a) Miettinen, K.; Dong, L.; Navrot, N.; Schneider, T.; Burlat, V.; Pollier, J.; Woittiez, L.; van der Krol, S.; Lugan, R.; Ilc, T.; Verpoorte, R.; Oksman-Caldentey, K. M.; Martinoia, E.; Bouwmeester, H.; Goossens, A.; Memelink, J.; Werck-Reichhart, D. Nat. Commun. 2014, 5, 3606.
      (b) Collu, G.; Unver, N.; Peltenburg-Looman, A. M.; van der Heijden, R.; Verpoorte, R.; Memelink, J. FEBS Lett. 2001, 508, 215.
      (c) Irmler, S.; Schroder, G.; St-Pierre, B.; Crouch, N. P.; Hotze, M.; Schmidt, J.; Strack, D.; Matern, U.; Schroder, J. Plant J. 2000, 24 (6), 797.
      (d) Geu-Flores, F.; Sherden, N. H.; Courdavault, V.; Burlat, V.; Glenn, W. S.; Wu, C.; Nims, E.; Cui, Y.; O'Connor, S. E. Nature 2012, 492, 138.
      (e) Simkin, A. J.; Miettinen, K.; Claudel, P.; Burlat, V.; Guirimand, G.; Courdavault, V.; Papon, N.; Meyer, S.; Godet, S.; St-Pierre, B.; Giglioli-Guivarc'h, N.; Fischer, M. J.; Memelink, J.; Clastre, M. Phytochemistry 2013, 85, 36.

    63. [63]

      Brown, S.; Clastre, M.; Courdavault, V.; O'Connor, S. E. Proc. Natl. Acad. Sci. U. S. A. 2015, 112, 3205.  doi: 10.1073/pnas.1423555112

    64. [64]

      Qu, Y.; Easson, M.; Simionescu, R.; Hajicek, J.; Thamm, A. M. K.; Salim, V.; De Luca, V. Proc. Natl. Acad. Sci. U. S. A. 2018, 115, 3180.  doi: 10.1073/pnas.1719979115

    65. [65]

      Caputi, L.; Franke, J.; Farrow, S. C.; Chung, K.; Payne, R. M. E.; Nguyen, T. D.; Dang, T. T.; Soares Teto Carqueijeiro, I.; Kou-dounas, K.; Duge de Bernonville, T.; Ameyaw, B.; Jones, D. M.; Vieira, I. J. C.; Courdavault, V.; O'Connor, S. E. Science 2018.

    66. [66]

      (a) Liscombe, D. K.; O'Connor, S. E. Phytochemistry 2011, 72, 1969.
      (b) Qu, Y.; Easson, M. L.; Froese, J.; Simionescu, R.; Hudlicky, T.; De Luca, V. Proc. Natl. Acad. Sci. U. S. A. 2015, 112, 6224.

    67. [67]

      Sottomayor, M.; Lopez-Serrano, M.; DiCosmo, F.; Ros Barcelo, A. FEBS Lett. 1998, 428, 299.  doi: 10.1016/S0014-5793(98)00551-1

    68. [68]

      Shang, Y.; Ma, Y. S.; Zhou, Y.; Zhang, H. M.; Duan, L. X.; Chen, H. M.; Zeng, J. G.; Zhou, Q.; Wang, S. H.; Gu, W. J.; Liu, M.; Ren, J. W.; Gu, X. F.; Zhang, S. P.; Wang, Y.; Yasukawa, K.; Bouwmeester, H. J.; Qi, X. Q.; Zhang, Z. H.; Lucas, W. J.; Huang, S. W. Science 2014, 346, 1084.  doi: 10.1126/science.1259215

    69. [69]

      Yu, X.; Che, Z.; Xu, H. Chemistry 2017, 23, 4467.  doi: 10.1002/chem.201602472

    70. [70]

      Marques, J. V.; Kim, K. W.; Lee, C.; Costa, M. A.; May, G. D.; Crow, J. A.; Davin, L. B.; Lewis, N. G. J. Biol. Chem. 2013, 288, 466.  doi: 10.1074/jbc.M112.400689

    71. [71]

      Xu, H.; Lv, M.; Tian, X. Curr. Med. Chem. 2009, 16, 327.  doi: 10.2174/092986709787002682

    72. [72]

      Moses, T.; Pollier, J.; Almagro, L.; Buyst, D.; Van Montagu, M.; Pedreno, M. A.; Martins, J. C.; Thevelein, J. M.; Goossens, A., Proc. Natl. Acad. Sci. U. S. A. 2014, 111, 1634.  doi: 10.1073/pnas.1323369111

    73. [73]

      (a) Naesby, M.; Nielsen, S. V. S.; Nielsen, C. A. F.; Green, T.; Tange, T. O.; Simon, E.; Knechtle, P.; Hansson, A.; Schwab, M. S.; Titiz, O.; Folly, C.; Archila, R. E.; Maver, M.; Fiet, S. V.; Boussemghoune, T.; Janes, M.; Kumar, A. S. S.; Sonkar, S. P.; Mitra, P. P.; Benjamin, V. A. K.; Korrapati, N.; Suman, I.; Hansen, E. H.; Thybo, T.; Goldsmith, N.; Sorensen, A. S. Microb. Cell Fact. 2009, 8, 45.
      (b) Klein, J.; Heal, J. R.; Hamilton, W. D. O.; Boussemghoune, T.; Tange, T. O.; Delegrange, F.; Jaeschke, G.; Hatsch, A.; Heim, J. ACS Synth. Biol. 2014, 3, 314.

    74. [74]

      Wu, J. J.; Zhou, T. T.; Du, G. C.; Zhou, J. W.; Chen, J. PLoS One 2014, 9, e101492.  doi: 10.1371/journal.pone.0101492

    75. [75]

      Thodey, K.; Galanie, S.; Smolke, C. D. Nat. Chem. Biol. 2014, 10, 837.  doi: 10.1038/nchembio.1613

    76. [76]

      Zhou, Y. J.; Buijs, N. A.; Zhu, Z. W.; Gomez, D. O.; Boonsombuti, A.; Siewers, V.; Nielsen, J. J. Am. Chem. Soc. 2016, 138, 15368.  doi: 10.1021/jacs.6b07394

    77. [77]

      Wang, H. H.; Isaacs, F. J.; Carr, P. A.; Sun, Z. Z.; Xu, G.; Forest, C. R.; Church, G. M. Nature 2009, 460, 894.  doi: 10.1038/nature08187

    78. [78]

      Guo, X.; Chavez, A.; Tung, A.; Chan, Y.; Kaas, C.; Yin, Y.; Cecchi, R.; Garnier, S. L.; Kelsic, E. D.; Schubert, M.; DiCarlo, J. E.; Collins, J. J.; Church, G. M. Nat. Biotechnol. 2018, 36, 540  doi: 10.1038/nbt.4147

    79. [79]

      Caspeta, L.; Chen, Y.; Ghiaci, P.; Feizi, A.; Buskov, S.; Hallstrom, B. M.; Petranovic, D.; Nielsen, J. Science 2014, 346, 75.  doi: 10.1126/science.1258137

  • 加载中
    1. [1]

      Hongyan Chen Yajun Hou Shui Hu Zhuoxun Wei Fang Zhu Chengyong Su . Construction of Synthetic Chemistry Experiment of the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 58-63. doi: 10.12461/PKU.DXHX202409109

    2. [2]

      Yang Liu Peng Chen Lei Liu . Chemistry “101 Plan”: Design and Construction of Chemical Biology Textbook. University Chemistry, 2024, 39(10): 45-51. doi: 10.12461/PKU.DXHX202407085

    3. [3]

      Tianyu Feng Guifang Jia Peng Zou Jun Huang Zhanxia Lü Zhen Gao Chu Wang . Construction of the Chemistry Biology Experiment Course in the Chemistry “101 Program”. University Chemistry, 2024, 39(10): 69-77. doi: 10.12461/PKU.DXHX202409002

    4. [4]

      Cunming Yu Dongliang Tian Jing Chen Qinglin Yang Kesong Liu Lei Jiang . Chemistry “101 Program” Synthetic Chemistry Experiment Course Construction: Synthesis and Properties of Bioinspired Superhydrophobic Functional Materials. University Chemistry, 2024, 39(10): 101-106. doi: 10.12461/PKU.DXHX202408008

    5. [5]

      Xinyi Hong Tailing Xue Zhou Xu Enrong Xie Mingkai Wu Qingqing Wang Lina Wu . Non-Site-Specific Fluorescent Labeling of Proteins as a Chemical Biology Experiment. University Chemistry, 2024, 39(4): 351-360. doi: 10.3866/PKU.DXHX202310010

    6. [6]

      Yurong Tang Yunren Shi Yi Xu Bo Qin Yanqin Xu Yunfei Cai . Innovative Experiment and Course Transformation Practice of Visible-Light-Mediated Photocatalytic Synthesis of Isoquinolinone. University Chemistry, 2024, 39(5): 296-306. doi: 10.3866/PKU.DXHX202311087

    7. [7]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    8. [8]

      Zhaoxin LIRuibo WEIMin ZHANGZefeng WANGJing ZHENGJianbo LIU . Advancements in the construction of inorganic protocells and their cell mimic and bio-catalytical applications. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2286-2302. doi: 10.11862/CJIC.20240235

    9. [9]

      Ying Zhang Fang Ge Zhimin Luo . AI-Driven Biochemical Teaching Research: Predicting the Functional Effects of Gene Mutations. University Chemistry, 2025, 40(3): 277-284. doi: 10.12461/PKU.DXHX202412104

    10. [10]

      Minna Ma Yujin Ouyang Yuan Wu Mingwei Yuan Lijuan Yang . Green Synthesis of Medical Chemiluminescence Reagents by Photocatalytic Oxidation. University Chemistry, 2024, 39(5): 134-143. doi: 10.3866/PKU.DXHX202310093

    11. [11]

      Liangzhen Hu Li Ni Ziyi Liu Xiaohui Zhang Bo Qin Yan Xiong . A Green Chemistry Experiment on Electrochemical Synthesis of Benzophenone. University Chemistry, 2024, 39(6): 350-356. doi: 10.3866/PKU.DXHX202312001

    12. [12]

      Renxiu Zhang Xin Zhao Yunfei Zhang . Application of Electrochemical Synthesis in the Teaching of Organic Chemistry. University Chemistry, 2025, 40(4): 174-180. doi: 10.12461/PKU.DXHX202406116

    13. [13]

      Jianfeng Yan Yating Xiao Xin Zuo Caixia Lin Yaofeng Yuan . Comprehensive Chemistry Experimental Design of Ferrocenylphenyl Derivatives. University Chemistry, 2024, 39(4): 329-337. doi: 10.3866/PKU.DXHX202310005

    14. [14]

      Zhibei Qu Changxin Wang Lei Li Jiaze Li Jun Zhang . Organoid-on-a-Chip for Drug Screening and the Inherent Biochemistry Principles. University Chemistry, 2024, 39(7): 278-286. doi: 10.3866/PKU.DXHX202311039

    15. [15]

      Li Jiang Changzheng Chen Yang Su Hao Song Yanmao Dong Yan Yuan Li Li . Electrochemical Synthesis of Polyaniline and Its Anticorrosive Application: Improvement and Innovative Design of the “Chemical Synthesis of Polyaniline” Experiment. University Chemistry, 2024, 39(3): 336-344. doi: 10.3866/PKU.DXHX202309002

    16. [16]

      Xiangyu CAOJiaying ZHANGYun FENGLinkun SHENXiuling ZHANGJuanzhi YAN . Synthesis and electrochemical properties of bimetallic-doped porous carbon cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 509-520. doi: 10.11862/CJIC.20240270

    17. [17]

      . . Chinese Journal of Inorganic Chemistry, 2024, 40(12): 0-0.

    18. [18]

      Fei Liu Dong-Yang Zhao Kai Sun Ting-Ting Yu Xin Wang . Comprehensive Experimental Design for Photochemical Synthesis, Analysis, and Characterization of Seleno-Containing Medium-Sized N-Heterocycles. University Chemistry, 2024, 39(3): 369-375. doi: 10.3866/PKU.DXHX202309047

    19. [19]

      Bingliang Li Yuying Han Dianyang Li Dandan Liu Wenbin Shang . One-Step Synthesis of Benorilate Guided by Green Chemistry Principles and in vivo Dynamic Evaluation. University Chemistry, 2024, 39(6): 342-349. doi: 10.3866/PKU.DXHX202311070

    20. [20]

      Aidang Lu Yunting Liu Yanjun Jiang . Comprehensive Organic Chemistry Experiment: Synthesis and Characterization of Triazolopyrimidine Compounds. University Chemistry, 2024, 39(8): 241-246. doi: 10.3866/PKU.DXHX202401029

Metrics
  • PDF Downloads(194)
  • Abstract views(7528)
  • HTML views(2457)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return