Citation: Zhao Qianyi, Liang Yuan, Xu Ting, Dou Ting, Zhang Jie, Chen Xuenian. Synthesis of Osmium Complexes with Bidentate Nitrogen-Based Ligands and Their Application in Catalytic Dehydrogenation of Ammonia Borane[J]. Chinese Journal of Organic Chemistry, ;2018, 38(12): 3286-3295. doi: 10.6023/cjoc201805050 shu

Synthesis of Osmium Complexes with Bidentate Nitrogen-Based Ligands and Their Application in Catalytic Dehydrogenation of Ammonia Borane

  • Corresponding author: Zhao Qianyi, qyzhao@htu.edu.cn Chen Xuenian, xnchen@htu.edu.cn
  • Received Date: 28 May 2018
    Revised Date: 10 July 2018
    Available Online: 14 December 2018

    Fund Project: the National Natural Science Foundation of China 21503070the National Natural Science Foundation of China 21501048the National Natural Science Foundation of China 21571052the Key Science and Technology Project of Henan Province 182102210377the National Natural Science Foundation of China 21771057Project supported by the National Natural Science Foundation of China (Nos. 21501048, 21503070, 21571052, 21771057) and the Key Science and Technology Project of Henan Province (No.182102210377)

Figures(7)

  • Reactions of OsCl2(PPh3)3 (1) with bidentate nitrogen-based ligands at room temperature led to the formation of complexes OsCl2(PPh3)2(diamine) (2~6) and OsCl2(PPh3)2(Phen*) (7~11). Complexes 2~11 showed high activity in the catalytic dehydrogenation of ammonia borane at 60℃, in THF/DME (V:V=1:1.6) solution with the catalyst loading of 5 mol%. Among all the catalysts, compound 4 demonstrated the highest catalytic activity, which represents the most efficient osmium catalyst in catalytic dehydrogenation of ammonia borane until now.
  • 加载中
    1. [1]

      Rand, D. A. J.; Dell, R. M. Hydrogen Energy: Challenges and Prospects, Royal Society of Chemistry, Cambridge, UK, 2008.

    2. [2]

      (a) Yadav, M.; Xu, Q. Energy Environ. Sci. 2012, 5, 9698.
      (b) Dalebrook, A. F.; Gan, W.; Grasemann, M.; Moret, S.; Laurenczy, G. Chem. Commun. 2013, 49, 8735. 

    3. [3]

      (a) Staubitz, A.; Robertson, A. P. M.; Manners, I. Chem. Rev. 2010, 110, 4079.
      (b) Zhang, X.; Kam, L.; Trerise, R.; Williams, T. J. Acc. Chem. Res. 2017, 50, 86. 

    4. [4]

      (a) Tang, Z.; Chen, X.; Chen, H.; Wu, L.; Yu, X. Angew. Chem., Int. Ed. 2013, 52, 5832.
      (b) Tang, Z.; Chen, H.; Chen, X.; Wu, L.; Yu, X. J. Am. Chem. Soc. 2012, 134, 5464. 

    5. [5]

      Wang, K.; Zhang, J.-G.; Man, T.-T.; Wu, M.; Chen, C.-C. Chem.-Asian. J. 2013, 8, 1076.  doi: 10.1002/asia.201201241

    6. [6]

      (a) Appelt, C.; Chris Slootweg, J.; Lammertsma, K.; Uhl, W. Angew. Chem., Int. Ed. 2013, 52, 4256.
      (b) Kalidindi, S. B.; Joseph, J.; Jagirdar, B. R. Energ. Environ. Sci. 2009, 2, 1274. 

    7. [7]

      (a) Alcaraz, G.; Sabo-Etienne, S. Angew. Chem., Int. Ed. 2010, 49, 7170.
      (b) Staubitz, A.; Robertson, A. P. M.; Sloan, M. E.; Manners, I. Chem. Rev. 2010, 110, 4023.
      (c) Rossin, A.; Peruzzini, M. Chem. Rev. 2016, 116, 8848. 

    8. [8]

      (a) Esteruelas, M. A.; López, A. M.; Mora, M. ACS Catal. 2015, 5, 187; (b) Esteruelas, M. A.; Fernández, I.; López, A. M. Organometallics 2014, 33, 1104. 

    9. [9]

      (a) Kolb, H. C.; VanNieuwenhze, M. S.; Sharpless, K. B. Chem. Rev. 1994, 94, 2483.
      (b) Döbler, C.; Mehltretter, G. M.; Sundermeier, U.; Beller, M. J. Am. Chem. Soc. 2000, 122, 10289.
      (c) Döbler, C.; Mehltretter, G. M.; Sundermeier, U.; Beller, M. J. Organomet. Chem. 2001, 621, 70. (d) Heravi, M. M.; Zadsirjan, V.; Esfandyari, M.; Lashaki, T. B. Tetrahedron: Asymmetry 2017, 28, 987. 

    10. [10]

      (a) Esteruelas, M. A.; Honczek, N.; Oliván, M.; Onate, E.; Valencia, M. Organometallics 2011, 30, 2468.
      (b) Bertoli, M.; Choualeb, A.; Lough, A. J.; Moore, B.; Spasyuk, D.; Gusev, D. G. Organometallics 2011, 30, 3479.
      (c) Buil, M. L.; Esteruelas, M. A.; Herrero, J.; Izquierdo, S.; Pastor, I. M.; Yus, M. ACS Catal. 2013, 3, 2072.
      (d) Chelucci, G.; Baldino, S.; Baratta, W. Acc. Chem. Res. 2015, 48, 363.
      (e) Bolaño, T.; Esteruelas, M. A.; Gay, M. P.; Oñate, E.; Pastor, I. M.; Yus, M. Organometallics 2015, 34, 3902.
      (f) Barbato, C.; Baldino, S.; Ballico, M.; Figliolia, M.; Magnolia, S.; Siega, K.; Herdtweck, E.; Strazzolini, P.; Chelucci, G.; Baratta, W. Organometallics 2018, 37, 65.. 

    11. [11]

      Spasyuk, D.; Vicent, C.; Gusev, D. G. J. Am. Chem. Soc. 2015, 137, 3743.  doi: 10.1021/ja512389y

    12. [12]

      Buil, M. L.; Esteruelas, M. A.; Gay, M. P. Organometallics 2018, 37, 603.  doi: 10.1021/acs.organomet.7b00906

    13. [13]

      (a) Baratta, W.; Bossi, G.; Putignano, E.; Rigo, P. Chem.-Eur. J. 2011, 17, 3474.
      (b) Chelucci, G.; Baldino, S.; Baratta, W. Coord. Chem. Rev. 2015, 300, 29. 

    14. [14]

      Baker, R. T.; Gordon, J. C.; Hamilton, C. W. J. Am. Chem. Soc. 2012, 134, 5598.  doi: 10.1021/ja210542r

    15. [15]

      When the article was prepared, a similar synthetic method for complex 2 was reported by Baratta. Please see Ref.[10f] for details.

    16. [16]

      Nascimento, R. D.; Silva, A. K.; Lião, L. M. J. Mol. Struct. 2018, 1151, 277.  doi: 10.1016/j.molstruc.2017.09.044

    17. [17]

      Hoffman, P. R.; Caulton, K. G. J. Am. Chem. Soc. 1975, 97, 4221.  doi: 10.1021/ja00848a012

    18. [18]

      (a) Lay, P. A.; Sargeson, A. M.; Skelton, B, W. J. Am. Chem. Soc. 1982, 104, 6161.
      (b) Clapham, S. E.; Morris, R. H. Organometallics 2005, 24, 479.
      (c) McQueen, J. S.; Nagao, N.; Eberspacher, T. Inorg. Chem. 2003, 42, 3815.
      (d) Ettner, N.; Hillen, W.; Ellestad, G. A. J. Am. Chem. Soc. 1993, 115, 2546.
      (e) Peacock, A. F. A.; Habtemariam, A.; Moggach, S. A. Inorg. Chem. 2007, 46, 4049.
      (f) Gong, L.; Lin, Y.; Wen, T. B. Organometallics 2009, 28, 1101.
      (g) Martínez-Peña, F.; Pizarro, A. M. Chem.-Eur. J. 2017, 23, 16231. 

    19. [19]

      Luman, C. R.; Castellano, F. N. In Comprehensive Coordination Chemistry Ⅱ, 2nd ed., Vol. 1, Eds.: Meyer, T. J.; McCleverty, J. A., Elsevier Ltd., Pergamon, 2003, p. 25. 

    20. [20]

      (a) Akerboom, S.; van den Elshout, J. J. M. H.; Mutikainen, I. Eur. J. Inorg. Chem. 2013, 2013, 6137.
      (b) Nakagawa, A.; Ito, A.; Sakuda, E. Eur. J. Inorg. Chem. 2017, 3794.
      (c) Glazer, E. C.; Magde, D.; Tor, Y. J. Am. Chem. Soc. 2007, 129, 8544. 

    21. [21]

      Sjögren, M. P. T.; Frisell, H. B. Organometallics 1997, 16, 942.  doi: 10.1021/om960260i

    22. [22]

      (a) Zheng, A.-X.; Si, J.; Tang, X.-Y.; Miao, L.-L.; Yu, M.; Hou, K.-P.; Wang, F.; Li, H.-X.; Lang, J.-P. Inorg. Chem. 2012, 51, 10262.
      (b) Zheng, A.-X.; Wang, H.-F.; Lü, C.-N.; Ren, Z.-G.; Li, H.-X.; Lang, J.-P. Dalton Trans. 2012, 41, 558.
      (c) Li, F.-L.; Yang, S.-P.; Zhang, W.-H.; Liu, Q.; Yu, H.; Chen, J.-X.; Lang, J.-P. ChemistrySelect 2016, 1, 2979. 

    23. [23]

      (a) Liu, B.; Zhao, Q.; Wang, H. Chin. J. Chem. 2012, 30, 2158.
      (b) Nakamura, A.; Sato, T.; Kuroda, R. Chem. Commun. 2004, 2858.
      (c) Carlson, B.; Phelan, G. D.; Kaminsky, W. J. Am. Chem. Soc. 2002, 124, 14162.
      (d) Cheng, Y. K.; Cheung, J.; Che, K.-K.; Chi, M. Chem. Commun. 1997, 623.
      (e) Carlson, B.; Phelan, G. D.; Benedict, J. B. Inorg. Chim. Acta 2006, 359, 1093. 

    24. [24]

      Bhattacharya, P.; Krause, J. A.; Guan, H. J. Am. Chem. Soc. 2014, 136, 11153.  doi: 10.1021/ja5058423

    25. [25]

      Duman, S.; Özkar, S. Int. J. Hydrogen Energy 2013, 38, 180.  doi: 10.1016/j.ijhydene.2012.10.041

    26. [26]

      (a) Rossin, A.; Rossi, A.; Peruzzini, M. ChemPlusChem 2014, 79, 1316.
      (b) Metters, O. J.; Chapman, A. M.; Robertson, A. P. M.; Woodall, C. H.; Gates, P. J.; Wass, D. F.; Manners, I. Chem. Commun. 2014, 50, 12146.
      (c) Robertson, A. P. M.; Leitao, E. M.; Jurca, T.; Haddow, M. F.; Helten, H.; Lloyd-Jones, G. C.; Manners, I. J. Am. Chem. Soc. 2013, 135, 12670.
      (d) Pons, V.; Baker, R. T. Angew. Chem., Int. Ed. 2008, 47, 9600.
      (e) Staubitz, A.; Presa Soto, A.; Manners, I. Angew. Chem., Int. Ed. 2008, 47, 6212. 

    27. [27]

      (a) Kalviri, H. A.; Gärtner, F.; Ye, G. Chem. Sci. 2015, 6, 618. (b) Shaw, W. J.; Linehan, J. C.; Szymczak, N. K. Angew. Chem., Int. Ed. 2008, 47, 7493. 

    28. [28]

      Sayalero, S.; Pericas, M. A. Synlett 2006, 2585.
       

  • 加载中
    1. [1]

      Qilu DULi ZHAOPeng NIEBo XU . Synthesis and characterization of osmium-germyl complexes stabilized by triphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1088-1094. doi: 10.11862/CJIC.20240006

    2. [2]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    3. [3]

      Jiaming Xu Yu Xiang Weisheng Lin Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093

    4. [4]

      Jing WUPuzhen HUIHuilin ZHENGPingchuan YUANChunfei WANGHui WANGXiaoxia GU . Synthesis, crystal structures, and antitumor activities of transition metal complexes incorporating a naphthol-aldehyde Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2422-2428. doi: 10.11862/CJIC.20240278

    5. [5]

      Xuejie Wang Guoqing Cui Congkai Wang Yang Yang Guiyuan Jiang Chunming Xu . 碳基催化剂催化有机液体氢载体脱氢研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-. doi: 10.1016/j.actphy.2024.100044

    6. [6]

      Zuozhong Liang Lingling Wei Yiwen Cao Yunhan Wei Haimei Shi Haoquan Zheng Shengli Gao . Exploring the Development of Undergraduate Scientific Research Ability in Basic Course Instruction: A Case Study of Alkali and Alkaline Earth Metal Complexes in Inorganic Chemistry. University Chemistry, 2024, 39(7): 247-263. doi: 10.3866/PKU.DXHX202310103

    7. [7]

      Linjie ZHUXufeng LIU . Synthesis, characterization and electrocatalytic hydrogen evolution of two di-iron complexes containing a phosphine ligand with a pendant amine. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 939-947. doi: 10.11862/CJIC.20240416

    8. [8]

      Tingyu Zhu Hui Zhang Wenwei Zhang . Exploration and Practice of Ideological and Political Education in the Course of Experiments on Chemical Functional Molecules: Synthesis and Catalytic Performance Study of Chiral Mn(III)Cl-Salen Complex. University Chemistry, 2024, 39(4): 75-80. doi: 10.3866/PKU.DXHX202311011

    9. [9]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    10. [10]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    11. [11]

      Liang TANGJingfei NIKang XIAOXiangmei LIU . Synthesis and X-ray imaging application of lanthanide-organic complex-based scintillators. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1892-1902. doi: 10.11862/CJIC.20240139

    12. [12]

      Yongpo Zhang Xinfeng Li Yafei Song Mengyao Sun Congcong Yin Chunyan Gao Jinzhong Zhao . Synthesis of Chlorine-Bridged Binuclear Cu(I) Complexes Based on Conjugation-Driven Cu(II) Oxidized Secondary Amines. University Chemistry, 2024, 39(5): 44-51. doi: 10.3866/PKU.DXHX202309092

    13. [13]

      Qiaowen CHANGKe ZHANGGuangying HUANGNuonan LIWeiping LIUFuquan BAICaixian YANYangyang FENGChuan ZUO . Syntheses, structures, and photo-physical properties of iridium phosphorescent complexes with phenylpyridine derivatives bearing different substituting groups. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 235-244. doi: 10.11862/CJIC.20240311

    14. [14]

      Hongjie SHENHaozhe MIAOYuhe YANGYinghua LIDeguang HUANGXiaofeng ZHANG . Synthesis, crystal structure, and fluorescence properties of two Cu(Ⅰ) complexes based on pyridyl ligand. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 855-863. doi: 10.11862/CJIC.20250009

    15. [15]

      Linjie ZHUXufeng LIU . Electrocatalytic hydrogen evolution performance of tetra-iron complexes with bridging diphosphine ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 321-328. doi: 10.11862/CJIC.20240207

    16. [16]

      Chi Li Jichao Wan Qiyu Long Hui Lv Ying XiongN-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016

    17. [17]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

    18. [18]

      Kaimin WANGXiong GUNa DENGHongmei YUYanqin YEYulu MA . Synthesis, structure, fluorescence properties, and Hirshfeld surface analysis of three Zn(Ⅱ)/Cu(Ⅱ) complexes based on 5-(dimethylamino) isophthalic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1397-1408. doi: 10.11862/CJIC.20240009

    19. [19]

      Hong RAOYang HUYicong MAChunxin LÜWei ZHONGLihua DU . Synthesis and in vitro anticancer activity of phenanthroline-functionalized nitrogen heterocyclic carbene homo- and heterobimetallic silver/gold complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2429-2437. doi: 10.11862/CJIC.20240275

    20. [20]

      Hexing SONGZan SUN . Synthesis, crystal structure, Hirshfeld surface analysis, and fluorescent sensing for Fe3+ of an Mn(Ⅱ) complex based on 1-naphthalic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 885-892. doi: 10.11862/CJIC.20240402

Metrics
  • PDF Downloads(1)
  • Abstract views(1096)
  • HTML views(132)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return