Selective Synthesis of Quaternary Carbon Propargylamines from Amines, Alkynes, and Alkynes under Neat Condition
- Corresponding author: He Weimin, weiminhe2016@yeah.net
Citation:
Wang Zheng, Yang Liu, Liu Huilan, Bao Wenhu, Tan Yingzhi, Wang Ming, Tang Zilong, He Weimin. Selective Synthesis of Quaternary Carbon Propargylamines from Amines, Alkynes, and Alkynes under Neat Condition[J]. Chinese Journal of Organic Chemistry,
;2018, 38(10): 2639-2647.
doi:
10.6023/cjoc201805033
(a) Anastas, P. T.; Warner, J. C. Green Chemistry: Theory and Practice, Oxford University Press, New York, 2000.
(b) Trost, B. M. Science 1991, 254, 1471.
(c) Trost, B. M. Angew. Chem., Int. Ed. 1995, 34, 259.
(d) Trost, B. M. Acc. Chem. Res. 2002, 35, 695.
(a) Müller, T. E.; Beller, M. Chem. Rev. 1998, 98, 675.
(b) Hong, S.; Marks, T. J. Acc. Chem. Res. 2004, 37, 673.
(c) Doye, S. Synlett 2004, 1653.
(d) Roesky, P. W.; Müller, T. E. Angew. Chem., Int. Ed. 2003, 42, 2708.
(e) Pohlki, F.; Doye, S. Chem. Soc. Rev. 2003, 32, 104.
(f) Müller, T. E.; Hultzsch, K. C.; Yus, M.; Foubelo, F.; Tada, M. Chem. Rev. 2008, 108, 3795.
(a) Patil, N. T.; Yamamoto, Y. Chem. Rev. 2008, 108, 3395.
(b) Mizushima, E.; Hayashi, T.; Tanaka, M. Org. Lett. 2003, 5, 3349.
(c) Cui, H.; Wei, W.; Yang, D.; Zhang, J.; Xu, Z.; Wen, J.; Wang, H. RSC Adv. 2015, 5, 84657.
(d) Huang, C.; Zeng, Y.; Cheng, H.; Hu, A.; Liu, L.; Xiao, Y.; Zhang, J. Org. Lett, 2017, 19, 4968.
(e) Zhou, X.; Huang, C.; Zeng, Y.; Xiong, J.; Xiao, Y.; Zhang, J. Chem. Commun. 2017, 53, 1084.
(a) Liu, X. Y.; Che, C.-M. Angew. Chem., Int. Ed. 2008, 47, 3805.
(b) Liu, X.-Y.; Che, C.-M. Angew. Chem., Int. Ed. 2009, 48, 2367.
(a) Zhou, L.; Shuai, Q.; Jiang, H. F.; Li, C.-J. Chem.-Eur. J. 2009, 15, 11668.
(b) Zhou, L.; Bohle, D. S.; Jiang, H. F.; Li, C.-J. Synlett 2009, 937.
Han, J. B.; Xu, B.; Hammond, G. B. J. Am. Chem. Soc. 2010, 132, 916.
(a) Xie, L.; Wu, Y.; Yi, W.; Zhu, L.; Xiang, J.; He, W. J. Org. Chem. 2013, 78, 9190.
(b) Li, L.; Xie, L.; Wang, F.; He, W.; Xiang, J. Chin. J. Org. Chem. 2014, 34, 1864.
(c) Xie, L.; Yuan, R.; Wang, R.; Peng, Z.; Xiang, J.; He, W. Eur. J. Org. Chem. 2014, 2668.
(d) Xiang, J.; Yuan, R.; Wang, R.; Yi, N.; Lu, L.; Zou, H.; He, W. J. Org. Chem. 2014, 79, 11378.
(e) Xiang, J.; Yi, N.; Wang, R.; Lu, L.; Zou, H.; Pan, Y.; He, W. Tetrahedron 2015, 71, 694.
(f) Yi, N.; Wang, R.; Zou, H.; He, W.; Fu, W.; He, W. J. Org. Chem. 2015, 80, 5023.
(g) Zou, H.; He, W.; Dong, Q.; Wang, R.; Yi, N.; Jiang, J.; Pen, D.; He, W. Eur. J. Org. Chem. 2016, 116.
(h) Li, W.; Yin, G.; Huang, L.; Xiao, Y.; Fu, Z.; Xin, X.; Liu, F.; Li, Z.; He, W. Green Chem. 2016, 18, 4879.
(i) Wu, C.; Yang, P.; Fu, Z.; Peng, Y.; Wang, X.; Zhang, Z.; Liu, F.; Li, W.; Li, Z.; He, W. J. Org. Chem. 2016, 81, 10664.
(j) Wu, C.; Xin, X.; Fu, Z.-M.; Xie, L.-Y.; Liu, K.-J.; Wang, Z.; Li, W.; Yuan, Z.-H.; He, W.-M. Green Chem. 2017, 19, 1983.
(k) Wu, C.; Wang, Z.; Hu, Z.; Zeng, F.; Zhang, X.-Y.; Cao, Z.; Tang, Z.; He, W.-M.; Xu, X.-H., Org. Biomol. Chem. 2018, 16, 3177.
(l) Wu, C.; Lu, L.-H.; Peng, A.-Z.; Jia, G.-K.; Peng, C.; Cao, Z.; Tang, Z.; He, W.-M.; Xu, X. Green Chem. 2018, 3683.
(a) Xie, L.-Y.; Duan, Y.; Lu, L.-H.; Li, Y.-J.; Peng, S.; Wu, C.; Liu, K.-J.; Wang, Z.; He, W.-M. ACS Sustainable Chem. Eng. 2017, 5, 10407.
(b) Xie, L.-Y.; Peng, S.; Lu, L.-H.; Hu, J.; Bao, W.-H.; Zeng, F.; Tang, Z.; Xu, X.; He, W.-M. ACS Sustainable Chem. Eng. 2018, 6, 7989.
(c) Liu, K.-J.; Fu, Y.-L.; Xie, L.-Y.; Wu, C.; He, W.-B.; Peng, S.; Wang, Z.; Bao, W.-H.; Cao, Z.; Xu, X.; He, W.-M. ACS Sustainable Chem. Eng. 2018, 6, 4916.
(d) Tan, J.-X.; Guo, Y.; Zeng, F.; Chen, G.-R.; Xie, L.-Y.; He, W.-M. Chin. J. Org. Chem. 2018, 38, 1740.
(e) Xie, L.-Y.; Li, Y.-J.; Qu, J.; Duan, Y.; Hu, J.; Liu, K.-J.; Cao, Z.; He, W.-M. Green Chem. 2017, 19, 5642.
(f) Liu, K.-J.; Jiang, S.; Lu, L.-H.; Tang, L.-L.; Tang, S.-S.; Tang, H.-S.; Tang, Z.; He, W.-M.; Xu, X. Green Chem. 2018, 3038.
(g) Xie, L.-Y.; Qu, J.; Peng, S.; Liu, K.-J.; Wang, Z.; Ding, M.-H.; Wang, Y.; Cao, Z.; He, W.-M. Green Chem. 2018, 20, 760.
(h) Wu, C.; Wang, J.; Zhang, X.-Y.; Jia, G.-K.; Cao, Z.; Tang, Z.; Yu, X., Xu, X.-H.; He, W.-M. Org. Biomol. Chem. 2018, 5050.
(a) Kauffman, G. S.; Harris, G. D.; Dorow, R. L.; Stone, B. R. P.; Parsons, R. L. Jr., Pesti, J. A.; Magnus, N. A.; Fortunak, J. M.; Confalone, P. N.; Nugent, W. A. Org. Lett. 2000, 2, 3119.
(b) Huffman, M. A.; Yasuda, N.; DeCamp, A. E.; Grabowski, E. J. J. J. Org. Chem. 1995, 60, 1590.
(c) Nakamura, H.; Kamakura, T.; Ishikura, M.; Biellmann, J.-F. J. Am. Chem. Soc. 2004, 126, 5958.
(d) Wen, J.; Wei, W.; Xue, S.; Yang, D.; Lou, Y.; Gao, C.; Wang, H. J. Org. Chem. 2015, 80, 4966.
(e) Wei, W.; Cui, H.; Yang, D.; Yue, H.; He, C.; Zhang, Y.; Wang, H. Green Chem. 2017, 19, 5608.
(a) Kopka, I. E.; Fataftah, Z. A.; Rathke, M. W. J. Org. Chem. 1980, 45, 4616.
(b) Imada, Y.; Yuassa, M.; Nakamura, I.; Murahashi, S. I.; J. Org. Chem. 1994, 59, 2282.
(c) Czernecki, S.; Valery, J. M. J. Carbohydr. Chem. 1990, 9, 767.
(d) Tubery, F.; Grierson, D. S.; Husson, H. P. Tetrahedron Lett. 1987, 28, 6457.
(e) Jung, M. E.; Huang, A. Org. Lett. 2000, 2, 2659.
(a) Wei, C. M.; Li, C.-J. J. Am. Chem. Soc. 2002, 124, 5638.
(b) Wei, C. M.; Li, C.-J. J. Am. Chem. Soc. 2003, 125, 9584.
(c) Wei, C. M.; Li, Z. G.; Li, C.-J. Org. Lett. 2003, 5, 4473.
(d) Wei, C. M.; Mague, J. T.; Li, C.-J. Proc. Natl. Acad. Sci. U. S. A. 2004, 101, 5749.
(e) Gommermann, N.; Knochel, P. Chem.-Eur. J. 2006, 12, 4380.
(f) Li, Z. P.; Li, C.-J. J. Am. Chem. Soc. 2004, 126, 11810.
(a) Liu, X.-Y.; Che, C.-M. Angew. Chem., Int. Ed. 2008, 47, 3805.
(b) Pereshivko, O. P.; Peshkov, V. A.; Van der Eycken, E. V. Org. Lett. 2010, 12, 2638.
(c) Aliaga, M. J.; Ramón, D. J.; Yus, M. Org. Biomol. Chem. 2010, 8, 43.
(d) Biyikal, M.; Porta, M.; Roesky, P. W.; Blechert, S. Adv. Synth. Catal. 2010, 352, 1870.
(e) Pierce, C. J.; Yoo, H.; Larsen C. H. Adv. Synth. Catal. 2013, 355, 3586.
(f) Palchark, Z. L.; Lussier, D. J.; Pierce, C. J.; Yoo, H.; Larsen, C. H. Adv. Synth. Catal. 2015, 357, 539.
(a) Uchimaru, Y. Chem. Commun. 1999, 1133.
(b) Pohlki, F.; Doye, S. Chem. Soc. Rev. 2003, 32, 104.
(c) Müller, T. E.; Hultzsch, K. C.; Yus, M.; Foubelo, F.; Tada, M.; Chem. Rev. 2008, 108, 3795.
(a) Koradin, C.; Polborn, K.; Knochel, P. Angew. Chem. Int. Ed. 2002, 41, 2535.
(b) Koradin, C.; Gommermann, N.; Polborn, K.; Knochel, P. Chem.-Eur. J. 2003, 9, 2797.
(c) Li, Y.; Cao, X.; Liu, Y.; Wan, J-P. Org. Biomol. Chem. 2017, 15, 9585.
(d) Shen, W-B.; Sun, Q.; Li, L.; Liu, X.; Zhou, B.; Yan, J-Z.; Lu, X.; Ye, L-W. Nat. Commun. 2017, 8, 1748.
(e) Li, L.; Tan, T-D.; Zhang, Y-Q.; Liu, X.; Ye, L-W. Org. Biomol. Chem. 2017, 15, 8483.
(a) Alex, K.; Tillack, A.; Schwarz, N.; Beller, M. ChemSusChem 2008, 1, 333.
(b) Biyikal, M.; Porta, M.; Roesky, P. W.; Blechert, S. Adv. Synth. Catal. 2010, 352, 1870.
(a) Aschwanden, P.; Frantz, D. E.; Carreira, E. M. Org. Lett. 2000, 2, 2331.
(b) Lang, H.; Mansilla, N.; Rheinwald, G. Organometallics 2001, 20, 1592.
Zhi-Peng Bao , Hefei Yang , Ru-Han A , Yuanrui Wang , Xiao-Feng Wu . Carbonylative five-component synthesis of amides and esters with α-quaternary carbon center. Chinese Chemical Letters, 2025, 36(11): 111150-. doi: 10.1016/j.cclet.2025.111150
Xiaochun Liu , Gaoyan Chen , Xiaodong Yue , Chaoyue Wang , Xue-Xin Zhang , Xuecheng Ran , Yingxiao Zong , Junke Wang , Xicun Wang . A novel N-stable Co2P nano-catalyst for the synthesis of quinoxalines by annulation of alkynes and 1,2-diaminobenzenes. Chinese Chemical Letters, 2025, 36(8): 110707-. doi: 10.1016/j.cclet.2024.110707
Yu Yao , Jinqiang Zhang , Yantao Wang , Kunsheng Hu , Yangyang Yang , Zhongshuai Zhu , Shuang Zhong , Huayang Zhang , Shaobin Wang , Xiaoguang Duan . Nitrogen-rich carbon for catalytic activation of peroxymonosulfate towards green synthesis. Chinese Chemical Letters, 2024, 35(11): 109633-. doi: 10.1016/j.cclet.2024.109633
Rui Cheng , Tingting Zhang , Xin Huang , Jian Yu . Facile synthesis of high-brightness green-emitting carbon dots with narrow bandwidth towards backlight display. Chinese Chemical Letters, 2024, 35(5): 108763-. doi: 10.1016/j.cclet.2023.108763
Sadia Rani , Najoua Sbei , Seyfeddine Rahali , Samina Aslam , Tomas Hardwick , Nisar Ahmed . Electrochemical synthesis: A green & powerful approach to modern organic synthesis and future directions. Chinese Chemical Letters, 2025, 36(11): 111216-. doi: 10.1016/j.cclet.2025.111216
Xiang Huang , Dongzhen Xu , Yang Liu , Xia Huang , Yangfan Wu , Dongmei Fang , Bing Xia , Wei Jiao , Jian Liao , Min Wang . Asymmetric synthesis of difluorinated α-quaternary amino acids (DFAAs) via Cu-catalyzed difluorobenzylation of aldimine esters. Chinese Chemical Letters, 2024, 35(12): 109665-. doi: 10.1016/j.cclet.2024.109665
Jing LIANG , Qian WANG , Junfeng BAI . Synthesis and structures of cdq-topological quaternary and (4, 4, 8)-c topological quinary Zn-MOFs with both oxalic acid and triazole ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2186-2192. doi: 10.11862/CJIC.20240177
Jialin Huang , Liying Fu , Zhanyong Tang , Xiaoqiang Ma , Xingda Zhao , Depeng Zhao . Cross-coupling of trifluoromethylarenes with alkynes C(sp)-H bonds and azoles C(sp2)-H bonds via photoredox/copper dual catalysis. Chinese Chemical Letters, 2025, 36(7): 110505-. doi: 10.1016/j.cclet.2024.110505
Tengteng Wang , Yiming Ju , Yao Cheng , Haiyang Wang , Dejin Zang . Recent advances in polyoxometalates based strategies for green synthesis of drugs. Chinese Chemical Letters, 2025, 36(5): 109871-. doi: 10.1016/j.cclet.2024.109871
Weidan Meng , Yanbo Zhou , Yi Zhou . Green innovation unleashed: Harnessing tungsten-based nanomaterials for catalyzing solar-driven carbon dioxide conversion. Chinese Chemical Letters, 2025, 36(2): 109961-. doi: 10.1016/j.cclet.2024.109961
Huihui LIU , Baichuan ZHAO , Chuanhui WANG , Zhi WANG , Congyun ZHANG . Green synthesis of MIL-101/Au composite particles and their sensitivity to Raman detection of thiram. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 2021-2030. doi: 10.11862/CJIC.20240059
Cong-Bin Ji , Ding-Xiong Xie , Mei Chen , Ye-Ying Lan , Bao-Hua Zhang , Ji-Ying Yang , Zheng-Hui Kang , Shu-Jie Chen , Yu-Wei Zhang , Yun-Lin Liu . Green synthesis of 2-trifluoromethylquinoline skeletons via organocatalytic N-[(α-trifluoromethyl)vinyl]isatins CN bond activation. Chinese Chemical Letters, 2025, 36(7): 110598-. doi: 10.1016/j.cclet.2024.110598
Xia-Lin Dai , Yu-Hang Yao , Jian-Feng Zhen , Wei Gao , Jia-Mei Chen , Tong-Bu Lu . Reaction crystallization method based on deep eutectic solvents: A novel, green and efficient cocrystal synthesis approach. Chinese Chemical Letters, 2025, 36(11): 110413-. doi: 10.1016/j.cclet.2024.110413
Uttam Pandurang Patil . Porous carbon catalysis in sustainable synthesis of functional heterocycles: An overview. Chinese Chemical Letters, 2024, 35(8): 109472-. doi: 10.1016/j.cclet.2023.109472
Ping Wang , Chunmao Chen , Hongwei Ren , Erhong Duan . A review of carbon dots in synthesis strategies, photoluminescence mechanisms, and applications in wastewater treatment. Chinese Chemical Letters, 2025, 36(9): 110725-. doi: 10.1016/j.cclet.2024.110725
Jinjie Lu , Qikai Liu , Yuting Zhang , Yi Zhou , Yanbo Zhou . Antibacterial performance of cationic quaternary phosphonium-modified chitosan polymer in water. Chinese Chemical Letters, 2024, 35(9): 109406-. doi: 10.1016/j.cclet.2023.109406
Quan Zhang , Shunjie Xing , Jingqian Han , Li Feng , Jianchun Li , Zhaosheng Qian , Jin Zhou . Organic pollutant sensing for human health based on carbon dots. Chinese Chemical Letters, 2025, 36(1): 110117-. doi: 10.1016/j.cclet.2024.110117
Zixuan Zhu , Xianjin Shi , Yongfang Rao , Yu Huang . Recent progress of MgO-based materials in CO2 adsorption and conversion: Modification methods, reaction condition, and CO2 hydrogenation. Chinese Chemical Letters, 2024, 35(5): 108954-. doi: 10.1016/j.cclet.2023.108954
Fabrice Nelly Habarugira , Ducheng Yao , Wei Miao , Chengcheng Chu , Zhong Chen , Shun Mao . Synergy of sodium doping and nitrogen defects in carbon nitride for promoted photocatalytic synthesis of hydrogen peroxide. Chinese Chemical Letters, 2024, 35(8): 109886-. doi: 10.1016/j.cclet.2024.109886
Bohan Zhang , Bingzhe Wang , Guichuan Xing , Zikang Tang , Songnan Qu . Regulation of the multi-emission centers in carbon dots via a bottom-up synthesis approach. Chinese Chemical Letters, 2024, 35(9): 109358-. doi: 10.1016/j.cclet.2023.109358