Citation: Chen Zhitao, Xiao Tao, Song Hao, Qin Yong. Asymmetric Synthesis of the Tetracyclic Skeleton of Natural Product Arborisidine[J]. Chinese Journal of Organic Chemistry, ;2018, 38(9): 2427-2434. doi: 10.6023/cjoc201805025 shu

Asymmetric Synthesis of the Tetracyclic Skeleton of Natural Product Arborisidine

  • Corresponding author: Song Hao, songhao@scu.edu.cn Qin Yong, yongqin@scu.edu.cn
  • Received Date: 10 May 2018
    Revised Date: 4 June 2018
    Available Online: 15 September 2018

    Fund Project: the National Natural Science Foundation of China 21732005Project supported by the National Natural Science Foundation of China (Nos. 21572140, 21732005)the National Natural Science Foundation of China 21572140

Figures(5)

  • Asymmetric synthesis of the tetracyclic skeleton of arborisidine is reported. Starting from the enantiomerically pure compound 10, 9-di-tert-butyl5-ethyl(4S, 8R)-6-hydroxy-7, 8-dihydro-9H-8a, 4b-(epiminoethano)carbazole-5, 9, 10-tricar-boxylate (11) which was reported earlier by our group, a Krapcho decarboxylation reaction was used to afford the ketone, and then a reductive ring-opening method was applied to open the pyrrolidine ring of the substrate. The C(15)-C(16) double bond and the methyl group at C(16) of A/B/D tricyclic skeleton were introduced via Saegusa oxidation and Michael reaction, respectively. Finally, an intramolecular aza-Michael addition reaction was used as a key reaction to construct the C-ring and C(16) quaternary center, which led to the efficiently asymmetric synthesis of A/B/C/D tetracyclic skeleton of arborisidine.
  • 加载中
    1. [1]

      Wong, S.-P.; Chong, K.-W.; Lim, K.-H.; Lim, S.-H.; Low, Y.-Y.; Kam, T.-S. Org. Lett. 2016, 18, 1618.
       

    2. [2]

      Wong, S.-P.; Gan, C.-Y.; Lim, K.-H.; Ting, K.-N.; Low, Y.-Y.; Kam, T.-S. Org. Lett. 2015, 17, 3628.  doi: 10.1021/acs.orglett.5b01757

    3. [3]

      Subramaniam, G.; Hiraku, O.; Hayashi, M.; Koyano, T.; Komiyama, K.; Kam, T.-S. J. Nat. Prod. 2007, 70, 1783.  doi: 10.1021/np0703747

    4. [4]

      Schnoes, H. K.; Biemann, K.; Mokry, J.; Kompis, L.; Chatterjee, A.; Ganguli, G. J. Org. Chem. 1966, 31, 1641.  doi: 10.1021/jo01343a507

    5. [5]

      Li, L.; Yang, T.; Liu, Y.; Liu, J.; Li, M.; Wang, Y.; Yang, S.; Zou, Q.; Li, G. Org. Lett. 2012, 14, 3450.  doi: 10.1021/ol301400e

    6. [6]

      Gan, P.; Pitzen, J.; Qu, P.; Snyder, S. A. J. Am. Chem. Soc. 2018, 140, 919.  doi: 10.1021/jacs.7b07724

    7. [7]

      (a) Zu, L.; Boal, B. W.; Garg, N. K. J. Am. Chem. Soc. 2011, 133, 8877.
      (b) Ren, W.; Wang, Q.; Zhu, J. Angew. Chem., Int. Ed. 2014, 53, 1818.
      (c) Teng, M.; Zi, W.; Ma, D. Angew. Chem., Int. Ed. 2014, 53, 1814.

    8. [8]

      (a) Moreno, J.; Picazo, E.; Morrill, L. A.; Smith, J. M.; Garg, N. K. J. Am. Chem. Soc. 2016, 138, 1162.
      (b) Jiang, S.-Z.; Zeng, X.-Y.; Liang, X.; Lei, T.; Wei, K.; Yang, Y.-R. Angew. Chem., Int. Ed. 2016, 55, 4044.
      (c) Wang, T.; Duan, X.; Zhao, H.; Zhai, S.; Tao, C.; Wang, H.; Li, Y.; Cheng, B.; Zhai, H. Org. Lett. 2017, 19, 1650.

    9. [9]

      Moreno, J.; Picazo, E.; Morrill, L. A.; Smith, J. M.; Garg, N. K. J. Am. Chem. Soc. 2016, 138, 1162.  doi: 10.1021/jacs.5b12880

    10. [10]

      Ren, W.; Wang, Q.; Zhu, J. Angew. Chem., Int. Ed. 2016, 55, 3500.  doi: 10.1002/anie.201511638

    11. [11]

      (a) Xie, X.; Wei, B.; Li, G.; Zu, L. Org. Lett. 2017, 19, 5430.
      (b) Li, G.; Xie, X.; Zu, L. Angew. Chem., Int. Ed. 2016, 55, 10483.

    12. [12]

      Nishiyama, D.; Ohara, A.; Chiba, H.; Kumagai, H.; Oishi, S.; Fujii, N.; Ohno, H. Org. Lett. 2016, 18, 1670.  doi: 10.1021/acs.orglett.6b00536

    13. [13]

      (a) Eckermann, R.; Breunig, M.; Gaich, T. Chem. Commun. 2016, 52, 11363.
      (b) Eckermann, R.; Breunig, M.; Gaich, T. Chem.-Eur. J. 2017, 23, 3938.

    14. [14]

      Smith, M. W.; Zhou, Z.; Gao, A. X.; Shimbayashi, T.; Snyder, S. A. Org. Lett. 2017, 19, 1004.  doi: 10.1021/acs.orglett.6b03839

    15. [15]

      (a) Xiao, T.; Chen, Z.-T.; Deng, L.-F.; Zhang, D.; Liu, X.-Y.; Song, H.; Qin, Y. Chem. Commun. 2017, 53, 12665.
      (b) Chen, Z.-T.; Xiao, T.; Tang, P.; Zhang, D.; Qin, Y. Tetrahedron 2018, 74, 1129.

    16. [16]

      Zhang, D.; Song, H.; Qin, Y. Acc. Chem. Res. 2011, 44, 447  doi: 10.1021/ar200004w

    17. [17]

      Shen, L.; Zhang, M.; Wu, Y.; Qin, Y. Angew. Chem., Int. Ed. 2008, 47, 3618.

    18. [18]

      Zhang, M.; Huang, X.; Shen, L.; Qin, Y. J. Am. Chem. Soc. 2009, 131, 6013.  doi: 10.1021/ja901219v

    19. [19]

      (a) Eckermann, R.; Gaich, T. Synthesis 2013, 45, 2813.
      (b) Smith, J. M.; Moreno, J.; Boal, B. W.; Garg, N. K. Angew. Chem., Int. Ed. 2015, 54, 400.
      (c) Adams, G, L; Smith, A. B. The Alkaloids. Chemistry and Biology, Elsevier, New York, 2016, 76, 171.

  • 加载中
    1. [1]

      Renxiao Liang Zhe Zhong Zhangling Jin Lijuan Shi Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024

    2. [2]

      Yurong Tang Yunren Shi Yi Xu Bo Qin Yanqin Xu Yunfei Cai . Innovative Experiment and Course Transformation Practice of Visible-Light-Mediated Photocatalytic Synthesis of Isoquinolinone. University Chemistry, 2024, 39(5): 296-306. doi: 10.3866/PKU.DXHX202311087

    3. [3]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    4. [4]

      Qianwen Han Tenglong Zhu Qiuqiu Lü Mahong Yu Qin Zhong . 氢电极支撑可逆固体氧化物电池性能及电化学不对称性优化. Acta Physico-Chimica Sinica, 2025, 41(1): 2309037-. doi: 10.3866/PKU.WHXB202309037

    5. [5]

      Hong Lu Yidie Zhai Xingxing Cheng Yujia Gao Qing Wei Hao Wei . Advancements and Expansions in the Proline-Catalyzed Asymmetric Aldol Reaction. University Chemistry, 2024, 39(5): 154-162. doi: 10.3866/PKU.DXHX202310074

    6. [6]

      Chi Li Jichao Wan Qiyu Long Hui Lv Ying XiongN-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016

    7. [7]

      Ke QIAOYanlin LIShengli HUANGGuoyu YANG . Advancements in asymmetric catalysis employing chiral iridium (ruthenium) complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2091-2104. doi: 10.11862/CJIC.20240265

    8. [8]

      Fei Liu Dong-Yang Zhao Kai Sun Ting-Ting Yu Xin Wang . Comprehensive Experimental Design for Photochemical Synthesis, Analysis, and Characterization of Seleno-Containing Medium-Sized N-Heterocycles. University Chemistry, 2024, 39(3): 369-375. doi: 10.3866/PKU.DXHX202309047

    9. [9]

      Hong RAOYang HUYicong MAChunxin LÜWei ZHONGLihua DU . Synthesis and in vitro anticancer activity of phenanthroline-functionalized nitrogen heterocyclic carbene homo- and heterobimetallic silver/gold complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2429-2437. doi: 10.11862/CJIC.20240275

    10. [10]

      Wei HEJing XITianpei HENa CHENQuan YUAN . Application of solar-driven inorganic semiconductor-microbe hybrids in carbon dioxide fixation and biomanufacturing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 35-44. doi: 10.11862/CJIC.20240364

    11. [11]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    12. [12]

      Minna Ma Yujin Ouyang Yuan Wu Mingwei Yuan Lijuan Yang . Green Synthesis of Medical Chemiluminescence Reagents by Photocatalytic Oxidation. University Chemistry, 2024, 39(5): 134-143. doi: 10.3866/PKU.DXHX202310093

    13. [13]

      Kaihui Huang Dejun Chen Xin Zhang Rongchen Shen Peng Zhang Difa Xu Xin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-. doi: 10.3866/PKU.WHXB202407020

    14. [14]

      Zhuoya WANGLe HEZhiquan LINYingxi WANGLing LI . Multifunctional nanozyme Prussian blue modified copper peroxide: Synthesis and photothermal enhanced catalytic therapy of self-provided hydrogen peroxide. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2445-2454. doi: 10.11862/CJIC.20240194

    15. [15]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    16. [16]

      Jinlong YANWeina WUYuan WANG . A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1653-1660. doi: 10.11862/CJIC.20240154

    17. [17]

      Yongpo Zhang Xinfeng Li Yafei Song Mengyao Sun Congcong Yin Chunyan Gao Jinzhong Zhao . Synthesis of Chlorine-Bridged Binuclear Cu(I) Complexes Based on Conjugation-Driven Cu(II) Oxidized Secondary Amines. University Chemistry, 2024, 39(5): 44-51. doi: 10.3866/PKU.DXHX202309092

    18. [18]

      Zhilian Liu Wengui Wang Hongxiao Yang Yu Cui Shoufeng Wang . Ideological and Political Education Design for the Synthesis of Irinotecan Drug Intermediate 7-Ethyl Camptothecin. University Chemistry, 2024, 39(2): 89-93. doi: 10.3866/PKU.DXHX202306012

    19. [19]

      Jing WUPuzhen HUIHuilin ZHENGPingchuan YUANChunfei WANGHui WANGXiaoxia GU . Synthesis, crystal structures, and antitumor activities of transition metal complexes incorporating a naphthol-aldehyde Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2422-2428. doi: 10.11862/CJIC.20240278

    20. [20]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

Metrics
  • PDF Downloads(45)
  • Abstract views(2491)
  • HTML views(646)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return