Citation: Liu Baoyou, Zhang Peiwen. Progress of Ionic Liquids-Green Preparation and Application Research in Environmental Remediation[J]. Chinese Journal of Organic Chemistry, ;2018, 38(12): 3176-3188. doi: 10.6023/cjoc201805010 shu

Progress of Ionic Liquids-Green Preparation and Application Research in Environmental Remediation

  • Corresponding author: Liu Baoyou, liuzhang544@163.com; lby7150@sina.com
  • Received Date: 3 May 2018
    Revised Date: 15 June 2018
    Available Online: 14 December 2018

    Fund Project: Project supported by the Natural Science Foundation of Hebei Province (No. 2015208122)the Natural Science Foundation of Hebei Province 2015208122

Figures(8)

  • In recent years, ionic liquids have been extensively studied in the laboratory and industrial fields due to their unique properties and have shown good application prospects. At the same time, a series of ionic liquids green preparation technologies have been developed and designed, which has greatly changed the research aspect of ionic liquids. In this paper, the green preparation of ionic liquids and their application in environmental remediation are reviewed. The synthesis processes of ionic liquids, including atoms economic reaction, green raw materials reaction, green solvents reaction, chemical process intensification and computer-aided design are emphasized with reference to their advantages of high synthesis efficiency, good product quality, low waste generation, low energy consumption, mild conditions and etc. Moreover, the green preparation of ionic liquids not only makes the ionic liquid more abundant, but also makes it absolutely a green solvent and green functional material. The typical characteristics that reflect the unique advantages of ionic liquids in environmental restoration are as follows. In terms of water body restoration, it has the characteristics of high separation efficiency, elimination of secondary pollution and less consumables. In the soil remediation, it can effectively reduce the toxicity of pollutants in soil. In the atmospheric remediation, it eliminates pollutants and sometimes achieves the resource utilization. Furthermore, the future development trend of ionic liquids in green preparation and environmental remediation is also prospected.
  • 加载中
    1. [1]

      Olivier-Bourbigou, H.; Magna, L.; Morvan, D. Appl. Catal., A 2010, 373, 1.  doi: 10.1016/j.apcata.2009.10.008

    2. [2]

      Clark, K. D.; Emaus, M. N.; Varona, M.; Bowers, A. N.; Anderson, J. L. J. Sep. Sci. 2018, 41, 209.  doi: 10.1002/jssc.v41.1

    3. [3]

      Zhang, X. C.; Zhang, S. J.; Zuo, Y.; Zhao, G. Y.; Zhang, X. P. Prog. Chem. (Beijing, China) 2010, 22, 1499(in Chinese).
       

    4. [4]

      Xie, X. X.; Li, L. H.; Wu, X.; Ma, C.; Zhang, J. S. Heterocycles 2016, 92, 1171.  doi: 10.3987/REV-16-841

    5. [5]

      Liu, B. Y.; Jin, N. X. Curr. Org. Chem. 2016, 20, 2109.  doi: 10.2174/1385272820666160527101844

    6. [6]

      Gong, A.; Gu, S. S.; Wang, J.; Sheng, S.; Wu, F. A. Bioresour. Technol. 2015, 193, 498.  doi: 10.1016/j.biortech.2015.06.143

    7. [7]

      Liu, B. Y.; Han, J.; Dong, J. F.; Wei, F. X.; Cheng, Y. H. Chin. J. Org. Chem. 2007, 27, 1236(in Chinese).
       

    8. [8]

      Kapoor, U.; Shah, J. K. J. Phys. Chem. B 2018, 122, 213.  doi: 10.1021/acs.jpcb.7b08397

    9. [9]

      Zhang, G. P.; Zhu, H. X.; Chen, M. J.; Li, H. G.; Yuan, Y.; Ma, T. T.; Hao, J. C. Chem.-Eur. J. 2017, 23, 7278.  doi: 10.1002/chem.201605651

    10. [10]

      Wang, Y. L.; Shah, F. U.; Glavatskih, S.; Antzutkin, O. N.; Laaksonen, A. J. Phys. Chem. B 2014, 118, 8711.  doi: 10.1021/jp503029d

    11. [11]

      Zhang, Y. F.; Lee, H. K. J. Chromatogr. A 2013, 1271, 56.  doi: 10.1016/j.chroma.2012.11.047

    12. [12]

      Wang, S. J.; Liu, J. Z.; Yuan, L. Y.; Cui, Z. P.; Peng, J.; Li, J. Q.; Zhai, M. L.; Liu, W. J. Phys. Chem. Chem. Phys. 2014, 16, 18729.  doi: 10.1039/C4CP01905A

    13. [13]

      Lancaster, M. Green Chemistry:An Introductory Text, RSC Publishing, UK, 2010.

    14. [14]

      Costa, S. P. F.; Azevedo, A. M. O.; Pinto, P. C. A. G.; Saraiva, M. L. M. F. S. ChemSusChem 2017, 10, 2321.  doi: 10.1002/cssc.201700261

    15. [15]

      Ma, J. Y.; Hong, X. P. J. Environ. Manage. 2012, 99, 104.  doi: 10.1016/j.jenvman.2012.01.013

    16. [16]

      Zhang, X. Z.; Zhao, D. S.; Liu, B. Y. Ionic Liquid-From Theoretical Basis to Research Progress, Chemical Industry Press, Beijing, 2009.

    17. [17]

      Liu, B. Y.; Xu, D. Q.; Dong, J. F.; Yang, H. L.; Zhao, D. S.; Luo, S. P.; Xu, Z. Y. Synth. Commun. 2007, 37, 3003.  doi: 10.1080/00397910601163976

    18. [18]

      Liu, B. Y.; Wei, F. X.; Zhao, J. J.; Wang, Y. Y. RSC Adv. 2013, 7, 2470.

    19. [19]

      Liu, B. Y.; Zhao, J. J.; Wei, F. X. J. Mol. Liq. 2013, 180, 19.  doi: 10.1016/j.molliq.2012.12.024

    20. [20]

      Liu, B. Y.; Zhao, J. J.; Wei, F. X. J. Mol. Liq. 2013, 187, 309.  doi: 10.1016/j.molliq.2013.08.011

    21. [21]

      Liu, B. Y.; Liu, Y. R. J. Chem. Thermodyn. 2016, 92, 1.  doi: 10.1016/j.jct.2015.08.036

    22. [22]

      Liu, B. Y.; Liu, Y. R. Environ. Eng. Sci. 2016, 33, 384.  doi: 10.1089/ees.2015.0503

    23. [23]

      Kurnia, K. A.; Sintra, T. E.; Danten, Y.; Cabaco, M. L.; Besnard, M.; Coutinho, J. A. P. New J. Chem. 2017, 41, 47.  doi: 10.1039/C6NJ02575G

    24. [24]

      Wasserscheid, P.; Drieben-Holscher, B.; Hal, R. V.; Steffens, H. C.; Zimmermann, J. Chem. Commun. (Cambridge, U. K.) 2003, 2038.

    25. [25]

      Gunaratne, H. Q. N.; McCarron, P.; Seddon, K. R. Green Chem. 2017, 19, 614.  doi: 10.1039/C6GC02708C

    26. [26]

      Smith, M. B.; March, J. March's Advanced Organic Chemistry, John Wiley & Sons, New York, 2001.

    27. [27]

      Nawshed, M.; Zakaria, M.; Yasir, A. E.; Azmi, B. M.; Mutalib, M. I. A. J. Chem. Eng. Data 2014, 59, 579.  doi: 10.1021/je400243j

    28. [28]

      Tanmoy, P.; Salahuddin, A.; Sreedevi, U. Appl. Catal., A 2015, 506, 228.  doi: 10.1016/j.apcata.2015.08.031

    29. [29]

      Wu, F.; Xiang, J.; Chen, R. J.; Li, L.; Chen, J. Z.; Chen, S. J. Phys. Chem. C 2010, 114, 20007.  doi: 10.1021/jp104905p

    30. [30]

      Pinkert, A.; Marsh, K. N.; Pang, S. S. Ind. Eng. Chem. Res. 2010, 49, 11809.  doi: 10.1021/ie101250v

    31. [31]

      Lv, Y. Q.; Guo, Y.; Luo, X. Y.; Li, H. Sci. Sin.:Chim. 2012, 55, 1688(in Chinese).

    32. [32]

      Kirchhec ker, S.; Esposito, D. Curr. Opin. Green Sustainable Chem. 2016, 2, 28.  doi: 10.1016/j.cogsc.2016.09.001

    33. [33]

      Kalb, R. S.; Damma, M.; Verevkinbc, S. P. React. Chem. Eng. 2017, 2, 432.  doi: 10.1039/C7RE00028F

    34. [34]

      Maton, C.; Hecke, K. V.; Stevens, C. V. New J. Chem. 2015, 39, 461.  doi: 10.1039/C4NJ01301H

    35. [35]

      Zhang, S. A.; Ma, L.; Wen, P.; Ye, X. Y.; Sun, W. J.; Fan, M. J.; Yang, D. S.; Zhou, F.; Liu, W. M. Tribol. Int. 2018, 121, 435.  doi: 10.1016/j.triboint.2018.01.063

    36. [36]

      Chen, Z. G.; Zong, M. H.; Gu, Z. X. Chin. J. Org. Chem. 2009, 29, 672(in Chinese).
       

    37. [37]

      Fukaya, Y.; Iizuka, Y.; Sekikawa, K.; Ohno, H. Green Chem. 2007, 9, 1155.  doi: 10.1039/b706571j

    38. [38]

      Hu. S. Q.; Zhang, X. D.; Xu, M.; Sun, L. Prog. Chem. (Beijing, China) 2011, 23, 731(in Chinese).
       

    39. [39]

      Gouveiaa, W.; Jorgea, T. F.; Martinsa, S.; Meirelesa, M.; Carolinob, M.; Cruzb, C.; Almeida, T. V.; Araujo, M. E. M. Chemosphere 2014, 104, 51.  doi: 10.1016/j.chemosphere.2013.10.055

    40. [40]

      Hu, S. Q.; Jiang, T.; Zhang, Z. F.; Zhu, A. L.; Han, B. X.; Song, J. L.; Xie, Y.; Li, W. J. Tetrahedron Lett. 2007, 48, 5613.  doi: 10.1016/j.tetlet.2007.06.051

    41. [41]

      Zhang, L.; Hong, B. C.; Qin, S.; Tao, G. H. Green Chem. 2015, 17, 5154.  doi: 10.1039/C5GC01913C

    42. [42]

      Marco, C.; Andrea, L. D.; Maddalena, D.; Lorenzo, G.; Stefano, L.; Enrico, B.; Francesca, L. J. Phys. Chem. B 2018, 122, 2635.  doi: 10.1021/acs.jpcb.7b12455

    43. [43]

      Javier, G.; Christian, O. G.; Roberto, G. D.; Rafael, M. P. Chem. Eng. Technol. 2017, 40, 2339.  doi: 10.1002/ceat.201600593

    44. [44]

      Yusuke, U.; Davood, K.; Nader, M. Energy Fuels 2018, 32, 5345.  doi: 10.1021/acs.energyfuels.8b00190

    45. [45]

      Rao, S. S.; Bartolotti, L. J.; Gejji, S. P. Phys. Chem. Chem. Phys. 2017, 19, 29561.  doi: 10.1039/C7CP04323F

    46. [46]

      Tao, G.; He, L.; Sun, N.; Kou, Y. Chem. Commun. (Cambridge, U. K.) 2005, 3562.
       

    47. [47]

      Zhang, L.; He, L.; Hong, C. B.; Qin, S.; Tao, G. H. Green Chem. 2015, 17, 5154.  doi: 10.1039/C5GC01913C

    48. [48]

      Zhang, Z. S.; Kang, N.; Wang, J. Y.; Sui, H.; He, L.; Li, X. G. Chem. Eng. Sci. 2018, 181, 264.  doi: 10.1016/j.ces.2018.02.023

    49. [49]

      Mjalli, F. S.; Al-Hashid, R.; Al-Muhtaseb, A.; Omar, A.; Mad-dela, N. Asia-Pac. J. Chem. Eng. 2016, 11, 683.  doi: 10.1002/apj.v11.5

    50. [50]

      Xu, D. Q.; Liu, B. Y.; Luo, S. P.; Xu, Z. Y.; Shen, Y. C. Synthesis 2003, 17, 2626.
       

    51. [51]

      Chiappe, C.; Mezzetta, A.; Pomelli, C. S.; Puccini, M.; Seggiani, M. Org. Process Res. Dev. 2016, 20, 2080.  doi: 10.1021/acs.oprd.6b00302

    52. [52]

      Zhou, H. C.; Yang, J.; Ye, L. M.; Lin, H. Q.; Yuan, Y. Z. Green Chem. 2010, 12, 661.  doi: 10.1039/b921081d

    53. [53]

      Kuruppathparambil, R. R.; Tharun, J.; Dongwoo, K.; Kathalikkattil, A. C.; Dae, W. P. Catal. Sci. Technol. 2014, 4, 963.  doi: 10.1039/C3CY00769C

    54. [54]

      Ranjan, P.; Kitawat, B. S.; Singh, M. RSC Adv. 2014, 4, 53634.  doi: 10.1039/C4RA08370A

    55. [55]

      Sabbaghan, M.; Shahvelayati, A. S.; Banihashem, S. Ceram. Interfaces 2016, 42, 3820.  doi: 10.1016/j.ceramint.2015.11.046

    56. [56]

      Abbott, A. P.; Barron, J. C.; Ryder, K. S.; Wilson, D. Chem.-Eur. J. 2007, 13, 6495.  doi: 10.1002/(ISSN)1521-3765

    57. [57]

      Xiong, X. Q.; Han, Q.; Shi, L.; Xiao, S. Y.; Bi, C. Chin. J. Org. Chem. 2016, 36, 480(in Chinese).
       

    58. [58]

      Varma, R. S.; Namboodiri, V. V. Chem. Commun. (Cambridge, U. K.) 2001, 643.
       

    59. [59]

      Namboodiri, V. V.; Varma, R. S. Tetrahedron Lett. 2002, 43, 5381.  doi: 10.1016/S0040-4039(02)01075-4

    60. [60]

      Deetlefs, M.; Seddon, K. R. Green Chem. 2003, 5, 181.  doi: 10.1039/b300071k

    61. [61]

      Horikoshi, S.; Hamamura, T.; Kajitani, M.; Yoshizawafujita, M.; Serpone, N. Org. Process Res. Dev. 2008, 12, 1089.  doi: 10.1021/op800135t

    62. [62]

      Zhai, L.; Zhong, Q.; He, C.; Wang, J. J. Hazard. Mater. 2010, 177, 807.  doi: 10.1016/j.jhazmat.2009.12.105

    63. [63]

      Leveque, J. M.; Luche, J. L.; Petrier, C.; Roux, R.; Bonrath, W. Green Chem. 2002, 4, 357.  doi: 10.1039/B203530H

    64. [64]

      Zhao, S. H.; Zhao, E. L.; Shen, P.; Zhao, M.; Sun, J. Ultrason. Sonochem. 2008, 15, 955.  doi: 10.1016/j.ultsonch.2008.02.011

    65. [65]

      Cravotto, G.; Boffa, L.; Estager, C.; Draye, M.; Bonrath, W. Aust. J. Chem. 2007, 60, 946.  doi: 10.1071/CH07309

    66. [66]

      Ciszewski, J. T.; Gonzalez, M. A. 231st ACS National Meeting, Atlanta, 2006, p. 319.

    67. [67]

      Waterkamp, D. A.; Thöming, J.; Heiland, M.; Sauvageau, J. C.; Schlueter, M.; Beyersdorff, T. Chem. Ing. Tech. 2007, 79, 1482.

    68. [68]

      Waterkamp, D. A.; Heiland, M.; Schluter, M.; Sauvageau, J. C.; Beyersdorff, T.; Thoming, J. Green Chem. 2007, 9, 1084.  doi: 10.1039/b616882e

    69. [69]

      NirvikSena, V.; Kolib, K. K.; Singha, S.; Mukhopadhyaya, K. T.; Shenoy. Chem. Eng. Process. 2017, 121, 180.  doi: 10.1016/j.cep.2017.08.002

    70. [70]

      Abdelhamid, M. E.; Murdoch, T.; Greaves, T. L.; O'Mullane, A. P.; Snook, G. A. Phys. Chem. Chem. Phys. 2015, 17, 17967.  doi: 10.1039/C5CP02294K

    71. [71]

      Greaves, T. L.; Ha, K.; Muir, B. W.; Howard, S. C.; Weerawar-dena, A.; Kirby, N.; Drummond, C. J. Phys. Chem. Chem. Phys. 2015, 17, 2357.  doi: 10.1039/C4CP04241G

    72. [72]

      Weis, D. C.; Macfarlane, D. R. Aust. J. Chem. 2012, 65, 1478.  doi: 10.1071/CH12344

    73. [73]

      Lee, B. S.; Lin, S. T. Chem. Eng. Sci. 2015, 121, 157.  doi: 10.1016/j.ces.2014.08.017

    74. [74]

      Peng, D. L.; Zhang, J. N.; Cheng, H. Y.; Chen, L. F.; Qi, Z. W. Chem. Eng. Sci. 2017, 159, 58.  doi: 10.1016/j.ces.2016.05.027

    75. [75]

      Wei, G. T.; Yang, Z.; Chen, C. J. Anal. Chim. Acta 2003, 488, 183.  doi: 10.1016/S0003-2670(03)00660-3

    76. [76]

      Luo, H. M.; Dai, S.; Bonnesen, P. V.; Buchanan, A. C. J. Alloys Compd. 2006, 418, 195.  doi: 10.1016/j.jallcom.2005.10.054

    77. [77]

      Mancini, M. V.; Spreti, N.; Di Profio, P.; Germani, R. Sep. Purif. Technol. 2013, 116, 294.  doi: 10.1016/j.seppur.2013.06.006

    78. [78]

      Santhana Krishna Kumar, A.; Rajesh, N. RSC Adv. 2013, 3, 2697.  doi: 10.1039/c2ra22627h

    79. [79]

      Elhamifar, D.; Shojaeipoor, F.; Yari, O. RSC Adv. 2016, 6, 58658.  doi: 10.1039/C6RA08523G

    80. [80]

      Deng, N.; Li, M.; Zhao, L. J.; Lu, C. F.; De Rooy, S. L.; Isiah, M.; Warne, I. M. J. Hazard. Mater. 2011, 192, 1350.  doi: 10.1016/j.jhazmat.2011.06.053

    81. [81]

      Lawal, I. A.; Moodley, B. J. Chem. Technol. Biotechnol. 2017, 92, 808.  doi: 10.1002/jctb.2017.92.issue-4

    82. [82]

      Marullo, S.; Rizzo, C.; Dintcheva, N. T.; Giannici, F.; D'Anna, F. J. Colloid Interface Sci. 2018, 517, 182.  doi: 10.1016/j.jcis.2018.01.111

    83. [83]

      Huang, H. L.; Wei, Y. J. Chemosphere 2018, 194, 390.  doi: 10.1016/j.chemosphere.2017.11.160

    84. [84]

      Huang, H. L.; Huang, H. H.; Wei, Y. J. Spectrochim. Acta, Part B 2017, 133, 9.  doi: 10.1016/j.sab.2017.04.007

    85. [85]

      Soumyadeep, M.; Sumona, M.; Adeeb, H.; Maan, H.; Ali, H. M.; Bhaskar, S. G. J. Contam. Hydrol. 2016, 194, 17.  doi: 10.1016/j.jconhyd.2016.09.007

    86. [86]

      Soumyadeep, M.; Sumona, M.; Nor Farihah, A.; Adeeb, H.; Maan, H.; Mohd Ali, H.; Bhaskar, S. G. Chem. Eng. J. (Amsterdam, Neth.) 2016, 294, 316.

    87. [87]

      Liao, C. Y.; Peng, C. Y.; Wang, H. C.; Kang, H. Y.; Wang, H. P. Nucl. Instrum. Methods Phys. Res., Sect. A 2011, 652, 925.  doi: 10.1016/j.nima.2010.09.096

    88. [88]

      Keskin, S.; Akman, U.; Hortacsu, O. Chem. Eng. Process. 2008, 47, 1693.  doi: 10.1016/j.cep.2007.09.013

    89. [89]

      Pernak, J.; Syguda, A.; Janiszewska, D.; Materna, K.; Praczyk, T. Tetrahedron 2011, 67, 4838.  doi: 10.1016/j.tet.2011.05.016

    90. [90]

      Khodadoust, A. P.; Chandrasekaran, S.; Dionysiou, D. D. Environ. Sci. Technol. 2006, 40, 2339.  doi: 10.1021/es051563j

    91. [91]

      Bates, E. D.; Mayton, R. D.; Ntai, L.; Davis, J. H. J. Am. Chem. Soc. 2002, 124, 926.  doi: 10.1021/ja017593d

    92. [92]

      Wu, W. Z.; Han, B. X.; Gao, H. X.; Liu, Z. M.; Jiang, T.; Huang, J. Angew. Chem., Int. Ed. 2004, 43, 2415.  doi: 10.1002/(ISSN)1521-3773

    93. [93]

      Severa, G.; Head, J.; Bethune, K.; Higgins, S.; Fujise, A. J. Environ. Chem. Eng. 2018, 6, 718.  doi: 10.1016/j.jece.2017.12.020

    94. [94]

      Zhou, X. M.; Gao, B. B.; Liu, S. Y.; Sun. X. J.; Zhu, X.; Fu, H. J. Mol. Graphics Modell. 2016, 68, 87.  doi: 10.1016/j.jmgm.2016.06.013

    95. [95]

      Huang, K.; Zhang, X. M.; Zhou, L. S.; Tao, D. J.; Fan, J. P. Chem. Eng. Sci. 2017, 173, 253.  doi: 10.1016/j.ces.2017.07.048

    96. [96]

      Wang, Y.; Wang, C. M.; Zhang, L. Q.; Li, H. R. Phys. Chem. Chem. Phys. 2008, 10, 5976.  doi: 10.1039/b806747c

    97. [97]

      Wang, W. L.; Ma, X. L.; Grimes, S.; Cai, H. F.; Zhang, M. Chem. Eng. J. (Amsterdam, Neth.) 2017, 328, 353.

    98. [98]

      Milota, M.; Mosher, P.; Li, K. C. For. Prod. J. 2007, 57, 73.
       

    99. [99]

      Delaunay, F.; Rodriguez-Castillo, A. S.; Couvert, A.; Amrane, A.; Biard, P. F.; Szymczyk, A.; Malfreyt, P.; Ghoufi, A. J. Phys. Chem. C 2015, 119, 9966.  doi: 10.1021/acs.jpcc.5b02081

    100. [100]

      Quijano, G.; Couvert, A.; Amrane, A.; Darracq, G.; Couriol, C.; Le Cloirec, P.; Paquin, L.; Carrie, D. Chem. Eng. Sci. 2011, 66, 2707.  doi: 10.1016/j.ces.2011.01.047

    101. [101]

      Quijano, G.; Couvert, A.; Amrane, A.; Darracq, G.; Couriol, C.; Le Cloirec, P.; Paquin, L.; Carrie, D. Water, Air, Soil Pollut. 2013, 224, 1.
       

  • 加载中
    1. [1]

      Gaofeng Zeng Shuyu Liu Manle Jiang Yu Wang Ping Xu Lei Wang . Micro/Nanorobots for Pollution Detection and Toxic Removal. University Chemistry, 2024, 39(9): 229-234. doi: 10.12461/PKU.DXHX202311055

    2. [2]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    3. [3]

      Tiantian Zheng Huiyi Wang Huimin Li Xuanhe Liu Hong Shang . Anti-Counterfeiting National Salvation Chronicle of 006. University Chemistry, 2024, 39(9): 254-258. doi: 10.3866/PKU.DXHX202307032

    4. [4]

      Wenli FENGLu ZHAOYunfeng BAIFeng FENG . Research progress on ultralong room temperature phosphorescent carbon dots. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 833-846. doi: 10.11862/CJIC.20240308

    5. [5]

      Miaomiao He Zhiqing Ge Qiang Zhou Jiaqing He Hong Gong Lingling Li Pingping Zhu Wei Shao . Exploring the Fascinating Realm of Quantum Dots. University Chemistry, 2024, 39(6): 231-237. doi: 10.3866/PKU.DXHX202310040

    6. [6]

      Laiying Zhang Yaxian Zhu . Exploring the Silver Family. University Chemistry, 2024, 39(9): 1-4. doi: 10.12461/PKU.DXHX202409015

    7. [7]

      Wenjun Zheng . Application in Inorganic Synthesis of Ionic Liquids. University Chemistry, 2024, 39(8): 163-168. doi: 10.3866/PKU.DXHX202401020

    8. [8]

      Simin Fang Wei Huang Guanghua Yu Cong Wei Mingli Gao Guangshui Li Hongjun Tian Wan Li . Integrating Science and Education in a Comprehensive Chemistry Design Experiment: The Preparation of Copper(I) Oxide Nanoparticles and Its Application in Dye Water Remediation. University Chemistry, 2024, 39(8): 282-289. doi: 10.3866/PKU.DXHX202401023

    9. [9]

      Yingran Liang Fei WangJiabao Sun Hongtao Zheng Zhenli Zhu . Construction and Application of a New Experimental Device for Determination of Alkaline Metal Elements by Plasma Atomic Emission Spectrometry Based on Solution Cathode Glow Discharge: An Alternative Approach for Fundamental Teaching Experiments in Emission Spectroscopy. University Chemistry, 2024, 39(5): 380-387. doi: 10.3866/PKU.DXHX202312024

    10. [10]

      Yu SUXinlian FANYao YINLin WANG . From synthesis to application: Development and prospects of InP quantum dots. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2105-2123. doi: 10.11862/CJIC.20240126

    11. [11]

      Xiaochen Zhang Fei Yu Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026

    12. [12]

      Li'na ZHONGJingling CHENQinghua ZHAO . Synthesis of multi-responsive carbon quantum dots from green carbon sources for detection of iron ions and L-ascorbic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 709-718. doi: 10.11862/CJIC.20240280

    13. [13]

      Yongming Guo Jie Li Chaoyong Liu . Green Improvement and Educational Design in the Synthesis and Characterization of Silver Nanoparticles. University Chemistry, 2024, 39(3): 258-265. doi: 10.3866/PKU.DXHX202309057

    14. [14]

      Siyu Zhang Kunhong Gu Bing'an Lu Junwei Han Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028

    15. [15]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    16. [16]

      Zhaoxuan ZHULixin WANGXiaoning TANGLong LIYan SHIJiaojing SHAO . Application of poly(vinyl alcohol) conductive hydrogel electrolytes in zinc ion batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 893-902. doi: 10.11862/CJIC.20240368

    17. [17]

      Tao Wen Tao Zhang Changguo Sun Jinyu Liu . Preparation of Dess-Martin Reagent and Its Application in Oxidizing Cyclohexanol. University Chemistry, 2024, 39(5): 20-26. doi: 10.3866/PKU.DXHX202309055

    18. [18]

      Lan Ma Cailu He Ziqi Liu Yaohan Yang Qingxia Ming Xue Luo Tianfeng He Liyun Zhang . Magical Surface Chemistry: Fabrication and Application of Oil-Water Separation Membranes. University Chemistry, 2024, 39(5): 218-227. doi: 10.3866/PKU.DXHX202311046

    19. [19]

      Zijian Zhao Yanxin Shi Shicheng Li Wenhong Ruan Fang Zhu Jijun Jiang . A New Exploration of the Preparation of Polyacrylic Acid by Free Radical Polymerization Based on the Concept of Green Chemistry. University Chemistry, 2024, 39(5): 315-324. doi: 10.3866/PKU.DXHX202311094

    20. [20]

      Jihua Deng Xinshi Wu Dichang Zhong . Exploration of Green Teaching and Ideological and Political Education in Chemical Experiment of “Preparation of Ammonium Ferrous Sulfate”. University Chemistry, 2024, 39(10): 325-329. doi: 10.12461/PKU.DXHX202405046

Metrics
  • PDF Downloads(40)
  • Abstract views(2328)
  • HTML views(559)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return