Citation: Gao Honglei, Yang Xiaodi, Xin Hanshen, Gao Tiezhen, Gong Hegui, Gao Xike. Design, Synthesis and Properties of 2/6-Aryl Substituted Azulene Derivatives[J]. Chinese Journal of Organic Chemistry, ;2018, 38(10): 2680-2692. doi: 10.6023/cjoc201805004 shu

Design, Synthesis and Properties of 2/6-Aryl Substituted Azulene Derivatives

  • Corresponding author: Yang Xiaodi, yangxiaodi@shutcm.edu.cn Gong Hegui, hegui_gong@shu.edu.cn Gao Xike, gaoxk@mail.sioc.ac.cn
  • Received Date: 2 May 2018
    Revised Date: 3 June 2018
    Available Online: 5 October 2018

    Fund Project: the National Natural Science Foundation of China 21522209the Strategic Priority Research Program XDB12010100Project supported by the National Natural Science Foundation of China (No. 21522209) and the Strategic Priority Research Program (No. XDB12010100)

Figures(12)

  • Six 2/6-aryl substituted azulene derivatives 1~6 were designed and synthesised. Compounds 1~3 and 4~6 are 2-and 6-substituted derivatives, respectively, where the arly substituents were pentafluorobenzene, benzene and α-thiophene. The UV-Vis spectra, fluorescence spectra, electrochemical properties and proton-responsive properties of 1~6 were studied. To investigate the molecular sturcture, absorption spectra and energy levels of compounds 1~6, density functional theory (DFT) calculations were carried out. In comparison with the UV-Vis spectra of azulene, the absorption of S0→S2 transition of 1~6 showed red-shift (Δλ=6~68 nm). Owing to the strong electron-donating ability of α-thiophene group, remarkable bathochromic shifts of 3 and 6λ=68 and 48 nm, respectively) were obseved. The fluorescence spectra revealed that 4 (ϕF=0.082) has the highest fluorescence quantum yield of 1~6, while 1-H+ (ϕF=0.359) has the highest fluorescence quantum yield of the protonated compounds 1-H+~6-H+, benefiting from the electron-withdrawing pentafluorophenyl group of 1 and 1-H+. Moreover, the electrochemical analysis and DFT calculations demonstated that the introduction of electron-withdrawing pentafluorophenyl unit in the 2/6-positon of azulene can significantly lower the energy levels of the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO). In comparison with the HOMO/LUMO energy levels of azulene, those of 1 and 4 shift downward with ΔEHOMOELUMO of -0.23/-0.18 and -0.20/-0.15 eV, respectively. The investigations of physical/chemical properties of 2/6-aryl substituted azulene derivatives will provide valuable insights for developing azulene-based organic functional molecules.
  • 加载中
    1. [1]

      Lemal, D. M.; Goldman, G. D. J. Chem. Educ. 1988, 65, 923.  doi: 10.1021/ed065p923

    2. [2]

    3. [3]

      (a) Rekka, E.; Chrysselis, M.; Siskou, I.; Kourounakis, A. Chem. Pharm. Bull. 2002, 50, 904.
      (b) Ishihara, M.; Wakabayashi, H.; Motohashi, N.; Sakagami, H. Anticancer Res. 2011, 31, 515.

    4. [4]

      Saka, M.; Tsuchikawa, H. JP 04020312, 1992.

    5. [5]

      Kitamura, Y.; Nakaguchi, T. JP 11125497, 1999.

    6. [6]

      Yasushige, N.; Shinichi, Y.; Yoshimichi, K.; Seijiro, I.; Satoshi, T. US 20030129516, 2003

    7. [7]

      (a) Wang, X.; Ng, J. K.-P.; Jia, P.; Lin, T.; Cho, C. M.; Xu, J.; Lu, X.; He, C. Macromolecules 2009, 42, 5534.
      (b) Amir, E.; Amir, R. J.; Campos, L. M.; Hawker, C. J. J. Am. Chem. Soc. 2011, 133, 10046.
      (c) Koch, M.; Blacque, O.; Venkatesan, K. Org. Lett. 2012, 14, 1580.
      (d) Murai, M.; Amir, E.; Amir, R. J.; Hawker, C. J. Chem. Sci. 2012, 3, 2721.
      (e) Ghazvini Zadeh, E. H.; Tang, S.; Woodward, A. W.; Liu, T.; Bondar, M. V.; Belfield, K. D. J. Mater. Chem. C 2015, 3, 8495.
      (f) Murai, M.; Takami, K.; Takeshima, H.; Takai, K. Org. Lett. 2015, 17, 1798.

    8. [8]

      Ito, S.; Inabe, H.; Morita, N.; Ohta, K.; Kitamura, T.; Imafuku, K. J. Am. Chem. Soc. 2003, 125, 1669.  doi: 10.1021/ja0209262

    9. [9]

      (a) Salman, H.; Abraham, Y.; Tal, S.; Meltzman, S.; Kapon, M.; Tessler, N.; Speiser, S.; Eichen, Y. Eur. J. Org. Chem. 2005, 2207.
      (b) Zielinski, T.; Kedziorek, M. J.; Jurczak, J. Chem.-Eur. J. 2008, 14, 838.

    10. [10]

      Cristian, L.; Sasaki, I.; Lacroix, P. G.; Donnadieu, B.; Asselberghs, I.; Clays, K.; Razus, A. C. Chem. Mater. 2004, 16, 3543.  doi: 10.1021/cm0492989

    11. [11]

      (a) Kurotobi, K.; Kim, K. S.; Noh, S. B.; Kim, D.; Osuka, A. Angew. Chem., Int. Ed. 2006, 45, 3944.
      (b) Wang, F. K.; Lin, T. T.; He, C. B.; Chi, H.; Tang, T.; Lai, Y. H. J. Mater. Chem. 2012, 22, 10448.
      (c) Ince, M.; Bartelmess, J.; Kiessling, D.; Dirian, K.; Martinez-Diaz, M. V.; Torres, T.; Guldi, D. M. Chem. Sci. 2012, 3, 1472.

    12. [12]

      (a) Xin, H.; Ge, C.; Gao, H.; Yang, X.; Gao, X. Chem. Sci. 2016, 7, 6701.
      (b) Xin, H.; Ge, C.; Jiao, X.; Yang, X.; Rundel, K.; McNeill, C. R.; Gao, X. Angew. Chem., Int. Ed. 2018, 57, 1322.
      (c) Xin, H.; Li, J.; Ge, C.; Yang, X.; Xue, T.; Gao, X. Mater. Chem. Front. 2018, 2, 975.

    13. [13]

      (a) Dutta, S.; Lakshmi, S.; Pati, S. K. Bull. Mater. Sci. 2008, 31, 353.
      (b) Dias, J. R. J. Phys. Org. Chem. 2007, 20, 395.

    14. [14]

      (a) Nozoe, T.; Asao, T.; Oda, M. Bull. Chem. Soc. Jpn. 1974, 47, 681.
      (b) Nozoe, T.; Takase, K.; Shimazaki, N., Bull. Chem. Soc. Jpn. 1964, 37, 1644.

    15. [15]

      (a) Xin, H.; Gao, X. ChemPlusChem 2017, 82, 945.
      (b) Koch, M.; Blacque, O.; Venkatesan, K. J. Mater. Chem. C 2013, 1, 7400.

    16. [16]

      Kim, H.; Schulte, N.; Zhou, G.; Müllen, K.; Laquai, F. Adv. Mater. 2011, 23, 894.  doi: 10.1002/adma.v23.7

    17. [17]

    18. [18]

      Robert, S. H. Liu, J. Chem. Educ. 2002, 79, 183.  doi: 10.1021/ed079p183

    19. [19]

    20. [20]

      Han, L.; Wu, L.; Tong, Y.; Zu, X.; Jiang, S. Chin. J. Org. Chem. 2017, 37, 2940(in Chinese).
       

    21. [21]

      Lin, D.; Song, S.; Chen, Z.; Guo, P.; Chen, J.; Shi, H.; Mai, Y.; Song, H. Chin. J. Org. Chem. 2018, 38, 103(in Chinese).
       

    22. [22]

      (a) Shoji, T.; Maruyama, A.; Ito, S.; Okujima, T; ; Yasunami, M.; Higashi, J.; Moritae, N. Heterocyles 2014, 89, 2588.
      (b) Shoji, T.; Kikuchi, S.; Ito, S.; Morita, N. Heterocyles 2005, 1, 91.
      (c) Chen, A.; Chiu, S.; Kuo, Y. Synth. Commun. 2003, 15, 2701.
      (d) Kurotobi, K.; Tabata, H.; Miyauchi, M.; Murafuji, T.; Sugihara, Y. Synthesis 2002, 1013.
      (e) Jutz, C.; Schweiger, E. Chem. Ber. 1974, 107, 2383.
      (f) Shoji, T.; Ito, S.; Toyota, K.; Iwamoto, T.; Yasunami, M.; Morita, N. Eur. J. Org. Chem. 2009, 25, 4307.

  • 加载中
    1. [1]

      Minghui WuMarkus MühlinghausXuechao LiChaojie XuQiang ChenHaiming ZhangKlaus MüllenLifeng Chi . On-Surface Synthesis of Chevron-Shaped Conjugated Ladder Polymers Consisting of Benzo[a]azulene Units. Acta Physico-Chimica Sinica, 2024, 40(8): 2307024-0. doi: 10.3866/PKU.WHXB202307024

    2. [2]

      Nan Xiao Fang Sun . 二芳基硫醚化合物的构建及应用. University Chemistry, 2025, 40(6): 360-363. doi: 10.12461/PKU.DXHX202407099

    3. [3]

      Yaqin Zheng Lian Zhuo Meng Li Chunying Rong . Enhancing Understanding of the Electronic Effect of Substituents on Benzene Rings Using Quantum Chemistry Calculations. University Chemistry, 2025, 40(3): 193-198. doi: 10.12461/PKU.DXHX202406119

    4. [4]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

    5. [5]

      Zhongyan Cao Shengnan Jin Yuxia Wang Yiyi Chen Xianqiang Kong Yuanqing Xu . Advances in Highly Selective Reactions Involving Phenol Derivatives as Aryl Radical Precursors. University Chemistry, 2025, 40(4): 245-252. doi: 10.12461/PKU.DXHX202405186

    6. [6]

      Lili Jiang Shaoyu Zheng Xuejiao Liu Xiaomin Xie . Copper-Catalyzed Oxidative Coupling Reactions for the Synthesis of Aryl Sulfones: A Fundamental and Exploratory Experiment for Undergraduate Teaching. University Chemistry, 2025, 40(7): 267-276. doi: 10.12461/PKU.DXHX202408004

    7. [7]

      Yi DINGPeiyu LIAOJianhua JIAMingliang TONG . Structure and photoluminescence modulation of silver(Ⅰ)-tetra(pyridin-4-yl)ethene metal-organic frameworks by substituted benzoates. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 141-148. doi: 10.11862/CJIC.20240393

    8. [8]

      Xiyuan Su Zhenlin Hu Ye Fan Xianyuan Liu Xianyong Lu . Change as You Want: Multi-Responsive Superhydrophobic Intelligent Actuation Material. University Chemistry, 2024, 39(5): 228-237. doi: 10.3866/PKU.DXHX202311059

    9. [9]

      Zhongrui Wang Yuwen Meng Xu Wang . 双层水凝胶的制备及其pH响应变形实验. University Chemistry, 2025, 40(8): 255-264. doi: 10.12461/PKU.DXHX202410038

    10. [10]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    11. [11]

      Wentao Lin Wenfeng Wang Yaofeng Yuan Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095

    12. [12]

      Di WURuimeng SHIZhaoyang WANGYuehua SHIFan YANGLeyong ZENG . Construction of pH/photothermal dual-responsive delivery nanosystem for combination therapy of drug-resistant bladder cancer cell. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1679-1688. doi: 10.11862/CJIC.20240135

    13. [13]

      Baohua LÜYuzhen LI . Anisotropic photoresponse of two-dimensional layered α-In2Se3(2H) ferroelectric materials. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1911-1918. doi: 10.11862/CJIC.20240105

    14. [14]

      Xinzhe HUANGLihui XUYue YANGLiming WANGZhangyong LIUZhongjian WANG . Preparation and visible light responsive photocatalytic properties of BiSbO4/BiOBr. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 284-292. doi: 10.11862/CJIC.20240212

    15. [15]

      Li'na ZHONGJingling CHENQinghua ZHAO . Synthesis of multi-responsive carbon quantum dots from green carbon sources for detection of iron ions and L-ascorbic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 709-718. doi: 10.11862/CJIC.20240280

    16. [16]

      Xiaojing TianZhichun HuangQingsong ZhangXu WangNing YangNanping Deng . PNIPAm Thermo-Responsive Nanofibers Mats: Morphological Stability and Response Behavior under Cross-Linking. Acta Physico-Chimica Sinica, 2024, 40(4): 2304037-0. doi: 10.3866/PKU.WHXB202304037

    17. [17]

      Jianding LIJunyang FENGHuimin RENGang LI . Proton conductive properties of a Hf(Ⅳ)-based metal-organic framework built by 2,5-dibromophenyl-4,6-dicarboxylic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1094-1100. doi: 10.11862/CJIC.20240464

    18. [18]

      Bolin Sun Jie Chen Ling Zhou . 乙烯型卤代烃的亲核取代反应. University Chemistry, 2025, 40(8): 152-157. doi: 10.12461/PKU.DXHX202410032

    19. [19]

      Rui Gao Ying Zhou Yifan Hu Siyuan Chen Shouhong Xu Qianfu Luo Wenqing Zhang . Design, Synthesis and Performance Experiment of Novel Photoswitchable Hybrid Tetraarylethenes. University Chemistry, 2024, 39(5): 125-133. doi: 10.3866/PKU.DXHX202310050

    20. [20]

      Yanglin JiangMingqing ChenMin LiangYige YaoYan ZhangPeng WangJianping Zhang . Experimental and Theoretical Investigations of Solvent Polarity Effect on ESIPT Mechanism in 4′-N,N-diethylamino-3-hydroxybenzoflavone. Acta Physico-Chimica Sinica, 2025, 41(2): 2309027-0. doi: 10.3866/PKU.WHXB202309027

Metrics
  • PDF Downloads(10)
  • Abstract views(1711)
  • HTML views(310)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return