Citation: Wang Zhipeng, Li Man, Li Hui, Liu Zhihua, Li Ying, Zheng Ji-Shen. Chemical (Semi-) Synthesis and Applications of Lysine Post-Translationally Modified Proteins[J]. Chinese Journal of Organic Chemistry, ;2018, 38(9): 2400-2411. doi: 10.6023/cjoc201804046 shu

Chemical (Semi-) Synthesis and Applications of Lysine Post-Translationally Modified Proteins

  • Corresponding author: Wang Zhipeng, hipeng.wang@chem.tamu.edu Zheng Ji-Shen, jszheng@ustc.edu.cn
  • Received Date: 28 April 2018
    Revised Date: 19 May 2018
    Available Online: 7 September 2018

    Fund Project: Project supported by the National Natural Science Foundation of China (No. U1732161), the Science and Technological Fund of Anhui Province for Outstanding Youth (No. 1808085J04) and the Innovative Program Development Foundation of Hefei Center Physical Science and Technology (No. 2017FXCX002)the National Natural Science Foundation of China U1732161the Innovative Program Development Foundation of Hefei Center Physical Science and Technology 2017FXCX002the Science and Technological Fund of Anhui Province for Outstanding Youth 1808085J04

Figures(9)

  • The study of native proteins with post-translational modifications (PTMs) is one of the main fields of epigenetics. The discovery of novel PTM models and their vital regulatory role for chromatin structure and gene transcription have been one of the current research focuses drawing attention of biologists especially in recent years. However, we still lack efficient strategies for the preparation of sufficient amount of native proteins with certain PTMs. The currently existing chemical biology methods are reviewed, and their advantages and disadvantages are compared, including bioorthogonal reaction technique, non-canonical amino acid incorporation, etc. Furthermore, the draft will mainly focus on the application of bioorthogonal reactions on unnatural functional groups for the incorporation of lysine PTMs.
  • 加载中
    1. [1]

      Kouzarides, T. Cell 2007, 128, 693.  doi: 10.1016/j.cell.2007.02.005

    2. [2]

      Li, Y.; Barløse, C.; Jørgensen, J.; Carlsen, B. D. Jørgensen, K. A. Chem.-Eur. J. 2017, 23, 38.  doi: 10.1002/chem.201604310

    3. [3]

      Dann, G. P.; Liszczak, G. P.; Bagert, J. D.; Müller, M. M.; Nguyen, U. T.; Wojcik, F.; Brown, Z. Z.; Bos, J.; Panchenko, T.; Pihl, R.; Muir, T. W. Nature 2017, 548, 607.  doi: 10.1038/nature23671

    4. [4]

      Latham, J. A.; Dent, S. Y. Nat. Struct. Mol. Biol. 2007, 14, 1017.  doi: 10.1038/nsmb1307

    5. [5]

      Hamamoto, R.; Saloura, V.; Nakamura, Y. Nat. Rev. Cancer 2015, 15, 110.  doi: 10.1038/nrc3884

    6. [6]

      Greer, E. L.; Shi, Y. Nat. Rev. Genet. 2012, 13, 343.
       

    7. [7]

      Wang, Z. A.; Cheng, N. Y.; Liang, Y. Y.; Ma, X. Y. Univ. Chem. 2017, 32, 41(in Chinese).
       

    8. [8]

      Chuikov, S.; Kurash, J. K.; Wilson, J. R.; Xiao, B.; Justin, N.; Ivanov, G. S.; McKinney, K.; Tempst, P.; Prives, C.; Gamblin, S. J. Nature 2004, 432, 353.  doi: 10.1038/nature03117

    9. [9]

      He, Q.; Li, J.; Qi, Y.; Wang, Z.; Huang, Y.; Liu, L. Sci. China Chem. 2017, 60, 621.  doi: 10.1007/s11426-016-0386-4

    10. [10]

      Xie, Z.; Dai, J.; Dai, L.; Tan, M.; Cheng, Z.; Wu, Y.; Boeke, J. D.; Zhao, Y. Mol. Cell. Proteomics 2012, 11, 100.  doi: 10.1074/mcp.M111.015875

    11. [11]

      Weinert, B. T.; Schölz, C.; Wagner, S. A.; Iesmantavicius, V.; Su, D.; Daniel, J. A.; Choudhary, C. Cell Rep. 2013, 4, 842.  doi: 10.1016/j.celrep.2013.07.024

    12. [12]

      Guan, C. J.; Wang, T.; Wang, J.; Yi, Y.-M. Chin. J. Org. Chem. 2016, 36, 2763(in Chinese).
       

    13. [13]

      Wang, Z.-P.; Wang, Y.-H.; Chu, G.-C.; Shi, J.; Li, Y.-M. Curr. Org. Synth. 2015, 12, 150.  doi: 10.2174/1570179411666141125215343

    14. [14]

      Chen, B.; Zang, W.; Wang, J.; Huang, Y.; He, Y.; Yan, L.; Liu, J.; Zheng, W. Chem. Soc. Rev. 2015, 44, 5246.  doi: 10.1039/C4CS00373J

    15. [15]

      Luo, J.; Li, M.; Tang, Y.; Laszkowska, M.; Roeder, R. G.; Gu, W. Proc. Natl. Acad. Sci. U. S. A. 2004, 101,
       

    16. [16]

      Martino, F.; Kueng, S.; Robinson, P.; Tsai-Pflugfelder, M.; van Leeuwen, F.; Ziegler, M.; Cubizolles, F.; Cockell, M. M.; Rhodes, D.; Gasser, S. M. Mol. Cell 2009, 33, 323.  doi: 10.1016/j.molcel.2009.01.009

    17. [17]

      Li, Y. M.; Li, Y. T.; Pan, M.; Kong, X. Q.; Huang, Y. C.; Hong, Z. Y.; Liu, L. Angew. Chem., Int. Ed. 2014, 53, 2198.  doi: 10.1002/anie.201310010

    18. [18]

      Tang, Y.; Zhao, W.; Chen, Y.; Zhao, Y.; Gu, W. Cell 2008, 133, 612.  doi: 10.1016/j.cell.2008.03.025

    19. [19]

      Li, F.; Zhang, H.; Sun, Y.; Pan, Y.; Zhou, J.; Wang, J. Angew. Chem., Int. Ed. 2013, 52, 9700.  doi: 10.1002/anie.201303477

    20. [20]

      Zhang, G.; Zheng, S.; Liu, H.; Chen, P. R. Chem. Soc. Rev. 2015, 44, 3405.  doi: 10.1039/C4CS00393D

    21. [21]

      Chalker, J. M.; Bernardes, G. a. J.; Davis, B. G. Acc. Chem. Res. 2011, 44, 730.  doi: 10.1021/ar200056q

    22. [22]

      Chen, J.; Fu, H.; Chen, Y.; Zhao, Y. F. Chin. J. Org. Chem. 2002, 22, 81(in Chinese).  doi: 10.3321/j.issn:0253-2786.2002.02.001
       

    23. [23]

      Chatterjee, C.; McGinty, R. K.; Fierz, B.; Muir, T. W. Nat. Chem. Biol. 2010, 6, 267.  doi: 10.1038/nchembio.315

    24. [24]

      Fang, G. M.; Li, Y. M.; Shen, F.; Huang, Y. C.; Li, J. B.; Lin, Y.; Cui, H. K.; Liu, L. Angew. Chem., Int. Ed. 2011, 50, 7645.  doi: 10.1002/anie.201100996

    25. [25]

      Zheng, J.-S.; Tang, S.; Qi, Y.-K.; Wang, Z.-P.; Liu, L. Nat. Protoc. 2013, 8, 2483.  doi: 10.1038/nprot.2013.152

    26. [26]

      Zheng, J.-S.; Yu, M.; Qi, Y.-K.; Tang, S.; Shen, F.; Wang, Z.-P.; Xiao, L.; Zhang, L.; Tian, C.-L.; Liu, L. J. Am. Chem. Soc. 2014, 136, 3695.  doi: 10.1021/ja500222u

    27. [27]

      Tang, S.; Si, Y. Y.; Wang, Z. P.; Mei, K. R.; Chen, X.; Cheng, J. Y.; Zheng, J. S.; Liu, L. Angew. Chem., Int. Ed. 2015, 127, 5805.  doi: 10.1002/ange.201500051

    28. [28]

      Fang, G. M.; Wang, J. X.; Liu, L. Angew. Chem., Int. Ed. 2012, 51, 10347.  doi: 10.1002/anie.201203843

    29. [29]

      Tang, S.; Liang, L. J.; Si, Y. Y.; Gao, S.; Wang, J. X.; Liang, J.; Mei, Z.; Zheng, J. S.; Liu, L. Angew. Chem., Int. Ed. 2017, 56, 13333.  doi: 10.1002/anie.201708067

    30. [30]

      Shimko, J. C.; North, J. A.; Bruns, A. N.; Poirier, M. G.; Ottesen, J. J. J. Mol. Boil. 2011, 408, 187.  doi: 10.1016/j.jmb.2011.01.003

    31. [31]

      Li, J.; Li, Y.; He, Q.; Li, Y.; Li, H.; Liu, L. Org. Biomol. Chem. 2014, 12, 5435.  doi: 10.1039/C4OB00715H

    32. [32]

      Howard, C. J.; Ruixuan, R. Y.; Gardner, M. L.; Shimko, J. C.; Ottesen, J. J. Top. Curr. Chem. 2015, 363, 193.  doi: 10.1007/978-3-319-19189-8

    33. [33]

      Zhang, W.; Wang, Y. Q.; Wang, J. Y. Prog. Biochem. Biophys. 2012, 39, 378(in Chinese).
       

    34. [34]

      Wang, L.; Xie, J.; Schultz, P. G. Annu. Rev. Biophys. Biomol. Struct. 2006, 35, 225.  doi: 10.1146/annurev.biophys.35.101105.121507

    35. [35]

      Dumas, A.; Lercher, L.; Spicer, C. D.; Davis, B. G. Chem. Sci. 2015, 6, 50.  doi: 10.1039/C4SC01534G

    36. [36]

      Neumann, H.; Hancock, S. M.; Buning, R.; Routh, A.; Chapman, L.; Somers, J.; Owen-Hughes, T.; van Noort, J.; Rhodes, D.; Chin, J. W. Mol. Cell 2009, 36, 153.  doi: 10.1016/j.molcel.2009.07.027

    37. [37]

      Lee, Y.-J.; Wu, B.; Raymond, J. E.; Zeng, Y.; Fang, X.; Wooley, K. L.; Liu, W. R. ACS Chem. Biol. 2013, 8, 1664.  doi: 10.1021/cb400267m

    38. [38]

      Kim, C. H.; Kang, M.; Kim, H. J.; Chatterjee, A.; Schultz, P. G. Angew. Chem., Int. Ed. 2012, 51, 7246.  doi: 10.1002/anie.201203349

    39. [39]

      Thinon, E.; Serwa, R. A.; Broncel, M.; Brannigan, J. A.; Brassat, U.; Wright, M. H.; Heal, W. P.; Wilkinson, A. J.; Mann, D. J.; Tate, E. W. Nat. Commun. 2014, 5, 1.

    40. [40]

      Simon, M. D.; Chu, F.; Racki, L. R.; Cecile, C.; Burlingame, A. L.; Panning, B.; Narlikar, G. J.; Shokat, K. M. Cell 2007, 128, 1003.  doi: 10.1016/j.cell.2006.12.041

    41. [41]

      Li, J.; Chen, P. R. Nat. Chem. Biol. 2016, 12, 129.  doi: 10.1038/nchembio.2024

    42. [42]

      Nguyen, D. P.; Garcia Alai, M. M.; Kapadnis, P. B.; Neumann, H.; Chin, J. W. J. Am. Chem. Soc. 2009, 131, 14194.  doi: 10.1021/ja906603s

    43. [43]

      Ai, H. W.; Lee, J. W.; Schultz, P. G. Chem. Commun. 2010, 46, 5506.  doi: 10.1039/c0cc00108b

    44. [44]

      Wang, Y.-S.; Wu, B.; Wang, Z.; Huang, Y.; Wan, W.; Russell, W. K.; Pai, P.-J.; Moe, Y. N.; Russell, D. H.; Liu, W. R. Mol. BioSyst. 2010, 6, 1557.  doi: 10.1039/c002155e

    45. [45]

      Gautier, A.; Deiters, A.; Chin, J. W. J. Am. Chem. Soc. 2011, 133, 2124.  doi: 10.1021/ja1109979

    46. [46]

      Hemphill, J.; Chou, C.; Chin, J. W.; Deiters, A. J. Am. Chem. Soc. 2013, 135, 13433.  doi: 10.1021/ja4051026

    47. [47]

      Nguyen, D. P.; Alai, M. M. G.; Virdee, S.; Chin, J. W. Chem. Biol. 2010, 17, 1072.  doi: 10.1016/j.chembiol.2010.07.013

    48. [48]

      Virdee, S.; Ye, Y.; Nguyen, D. P.; Komander, D.; Chin, J. W. Nat. Chem. Biol. 2010, 6, 750.  doi: 10.1038/nchembio.426

    49. [49]

      Wang, Z. A.; Li, J.; Li, Y. M. Chin. J. Org. Chem. 2013, 33, 1874(in Chinese).
       

    50. [50]

      Li, J. W.; Jie Chen, P. R. Acta Chim. Sinica 2012, 70, 1439(in Chinese).  doi: 10.3866/PKU.WHXB201203142

    51. [51]

      Bertozzi, C. R. Acc. Chem. Res. 2011, 44, 651.  doi: 10.1021/ar200193f

    52. [52]

      Yang, M. Y.; Chen, P. R. Acta Chim. Sinica 2015, 73, 783(in Chinese).  doi: 10.3866/PKU.WHXB201502062

    53. [53]

      Seeliger, D.; Soeroes, S.; Klingberg, R.; Schwarzer, D.; Grubmüller, H.; Fischle, W. ACS Chem. Biol. 2011, 7, 150.

    54. [54]

      Yang, A.; Ha, S.; Ahn, J.; Kim, R.; Kim, S.; Lee, Y.; Kim, J.; Söll, D.; Lee, H.-Y.; Park, H.-S. Science 2016, 354, 623.  doi: 10.1126/science.aah4428

    55. [55]

      Wright, T. H.; Bower, B. J.; Chalker, J. M.; Bernardes, G. J.; Wiewiora, R.; Ng, W.-L.; Raj, R.; Faulkner, S.; Vallée, M. R. J.; Phanumartwiwath, A.; Davis, B. G. Science 2016, 354, 1465.  doi: 10.1126/science.aag1465

    56. [56]

      Wang, Z. A.; Liu, W. R. Chem. Eur. J. 2017, 23, 11732.  doi: 10.1002/chem.201701655

    57. [57]

      Prescher, J. A.; Bertozzi, C. R. Nat. Chem. Biol. 2005, 1, 13.  doi: 10.1038/nchembio0605-13

    58. [58]

      Zhang, G.; Zheng, S.; Liu, H.; Chen, P. R. Chem. Soc. Rev. 2015, 44, 3405.  doi: 10.1039/C4CS00393D

    59. [59]

      Chin, J. W.; Santoro, S. W.; Martin, A. B.; King, D. S.; Wang, L.; Schultz, P. G. J. Am. Chem. Soc. 2002, 124, 9026.  doi: 10.1021/ja027007w

    60. [60]

      Wang, Z. A.; Zeng, Y.; Kurra, Y.; Wang, X.; Tharp, J. M.; Vatansever, E. C.; Hsu, W. W.; Dai, S.; Fang, X.; Liu, W. R. Angew. Chem., Int. Ed. 2017, 56, 212.  doi: 10.1002/anie.201609452

    61. [61]

      Wu, N.; Deiters, A.; Cropp, T. A.; King, D.; Schultz, P. G. J. Am. Chem. Soc. 2004, 126, 14306.  doi: 10.1021/ja040175z

    62. [62]

      Zhang, G.; Li, J.; Xie, R.; Fan, X.; Liu, Y.; Zheng, S.; Ge, Y.; Chen, P. R. ACS Cent. Sci. 2016, 2, 325.  doi: 10.1021/acscentsci.6b00024

    63. [63]

      Spicer, C. D.; Davis, B. G. Nat. Commun. 2014, 5, 1.

    64. [64]

      Kamadurai, H. B.; Souphron, J.; Scott, D. C.; Duda, D. M.; Miller, D. J.; Stringer, D.; Piper, R. C.; Schulman, B. A. Mol. Cell 2009, 36, 1095.  doi: 10.1016/j.molcel.2009.11.010

    65. [65]

      Mali, S. M.; Singh, S. K.; Eid, E.; Brik, A. J. Am. Chem. Soc. 2017, 139, 4971.  doi: 10.1021/jacs.7b00089

    66. [66]

      Chatterjee, C.; McGinty, R. K.; Fierz, B.; Muir, T. W. Nat. Chem. Biol. 2010, 6, 267.  doi: 10.1038/nchembio.315

    67. [67]

      Mali, S. M.; Singh, S. K.; Eid, E.; Brik, A. J. Am. Chem. Soc. 2017, 139, 4971.  doi: 10.1021/jacs.7b00089

    68. [68]

      Li, X.; Fekner, T.; Ottesen, J. J.; Chan, M. K. Angew. Chem., Int. Ed. 2009, 121, 9348.  doi: 10.1002/ange.v121:48

    69. [69]

      Nguyen, D. P.; Elliott, T.; Holt, M.; Muir, T. W.; Chin, J. W. J. Am. Chem. Soc. 2011, 133(30), 11418.  doi: 10.1021/ja203111c

    70. [70]

      Virdee, S.; Kapadnis, P. B.; Elliott, T.; Lang, K.; Madrzak, J.; Nguyen, D. P.; Riechmann, L.; Chin, J. W. J. Am. Chem. Soc. 2011, 133, 10708.  doi: 10.1021/ja202799r

    71. [71]

      Amamoto, Y.; Aoi, Y.; Nagashima, N.; Suto, H.; Yoshidome, D.; Arimura, Y.; Osakabe, A.; Kato, D.; Kurumizaka, H.; Kawashima, S. A. J. Am. Chem. Soc. 2017, 139, 7568.  doi: 10.1021/jacs.7b02138

    72. [72]

      Chatterjee, C.; McGinty, R. K.; Pellois, J. P.; Muir, T. W. Angew. Chem., Int. Ed. 2007, 119(16), 2872.  doi: 10.1002/(ISSN)1521-3757

    73. [73]

      Weller, C. E.; Huang, W.; Chatterjee, C. ChemBioChem 2014, 15(9), 1263.  doi: 10.1002/cbic.v15.9

    74. [74]

      Weller, C. E.; Dhall, A.; Ding, F.; Linares, E.; Whedon, S. D.; Senger, N. A.; Tyson, E. L.; Bagert, J. D.; Li, X.; Augusto, O.; Chatterjee, C. Nat. Commun. 2016, 7, 12979.  doi: 10.1038/ncomms12979

    75. [75]

      Wu, J.; Ruiz-Rodríguez, J.; Comstock, J. M.; Dong, J. Z.; Bode, J. W. Chem. Sci. 2011, 2, 1976.  doi: 10.1039/c1sc00398d

    76. [76]

      Noda, H.; Erös, G. b.; Bode, J. W. J. Am. Chem. Soc. 2014, 136, 5611.  doi: 10.1021/ja5018442

    77. [77]

      Wan, W.; Huang, Y.; Wang, Z.; Russell, W. K.; Pai, P. J.; Russell, D. H.; Liu, W. R. Angew. Chem., Int. Ed. 2010, 49, 3211.  doi: 10.1002/anie.v49:18

    78. [78]

      Jing, H.; Lin, H. Chem. Rev. 2015, 115, 2350.  doi: 10.1021/cr500457h

    79. [79]

      Du, J.; Zhou, Y.; Su, X.; Yu, J. J.; Khan, S.; Jiang, H.; Kim, J.; Woo, J.; Kim, J. H.; Choi, B. H.; Lin, H. Science 2011, 334, 806.  doi: 10.1126/science.1207861

    80. [80]

      Weinert, B. T.; Schölz, C.; Wagner, S. A.; Iesmantavicius, V.; Su, D.; Daniel, J. A.; Choudhary, C. Cell Rep. 2013, 4, 842.  doi: 10.1016/j.celrep.2013.07.024

    81. [81]

      Ngo, J. T.; Schuman, E. M.; Tirrell, D. A. Proc. Natl. Acad. Sci. U. S. A. 2013, 110, 4992.  doi: 10.1073/pnas.1216375110

    82. [82]

      Mahdavi, A.; Segall-Shapiro, T. H.; Kou, S.; Jindal, G. A.; Hoff, K. G.; Liu, S.; Chitsaz, M.; Ismagilov, R. F.; Silberg, J. J.; Tirrell, D. A. J. Am. Chem. Soc. 2013, 135(8), 2979.
       

    83. [83]

      Yang, R.; Bi, X.; Li, F.; Cao, Y.; Liu, C.-F. Chem. Commun. 2014, 50, 7971.  doi: 10.1039/C4CC03721A

    84. [84]

      Gong, Y.; Pan, L. Tetrahedron Lett. 2015, 56, 2123.  doi: 10.1016/j.tetlet.2015.03.065

    85. [85]

      Huang, H.; Lin, S.; Garcia, B. A.; Zhao, Y. Chem. Rev. 2015, 115, 2376.  doi: 10.1021/cr500491u

    86. [86]

      Pattabiraman, V. R.; Bode, J. W. Nature 2011, 480, 471.  doi: 10.1038/nature10702

    87. [87]

      Fang, X.; Fu, Y.; Long, M. J. C.; Haegele, J. A.; Ge, E. J.; Parvez, S.; Aye, Y. J. Am. Chem. Soc. 2013, 135, 14496.  doi: 10.1021/ja405400k

    88. [88]

      Wang, L. New Biotechnol. 2017, 38, 16.  doi: 10.1016/j.nbt.2016.10.003

    89. [89]

      Wan, W.; Tharp, J. M.; Liu, W. R. Biochim. Biophys. Acta, Proteins Proteomics 2014, 1844, 1059.  doi: 10.1016/j.bbapap.2014.03.002

    90. [90]

      Müller, M. M.; Muir, T. W. Chem. Rev. 2014, 115, 2296.
       

    91. [91]

      Cigler, M.; Müller, T. G.; Horn-Ghetko, D.; von Wrisberg, M. K.; Fottner, M.; Goody, R. S.; Itzen, A.; Müller, M. P.; Lang, K. Angew. Chem., Int. Ed. 2017, 56, 15737.  doi: 10.1002/anie.v56.49

    92. [92]

      Hoppmann, C.; Wong, A.; Yang, B.; Li, S.; Hunter, T.; Shokat, K. M.; Wang, L. Nat. Chem. Biol. 2017, 13, 842.  doi: 10.1038/nchembio.2406

    93. [93]

      Wang, Z. A.; Feng, T. S.; Cui, L. J.; Shi, Y. J.; Sha, Y. W. Sci. China:Life Sci. 2013, 43, 778(in Chinese).
       

    94. [94]

      Pan, M.; Gao, S.; Zheng, Y.; Tan, X.; Lan, H.; Tan, X.; Sun, D.; Lu, L.; Wang, T.; Zheng, Q.; Liu, L. J. Am. Chem. Soc. 2016, 138, 7429.  doi: 10.1021/jacs.6b04031

    95. [95]

      Wang, Z.; Xu, W.; Liu, L.; Zhu, T. F. Nat. Chem. 2016, 8, 698.  doi: 10.1038/nchem.2517

  • 加载中
    1. [1]

      Xinyi Hong Tailing Xue Zhou Xu Enrong Xie Mingkai Wu Qingqing Wang Lina Wu . Non-Site-Specific Fluorescent Labeling of Proteins as a Chemical Biology Experiment. University Chemistry, 2024, 39(4): 351-360. doi: 10.3866/PKU.DXHX202310010

    2. [2]

      Hong CAIJiewen WUJingyun LILixian CHENSiqi XIAODan LI . Synthesis of a zinc-cobalt bimetallic adenine metal-organic framework for the recognition of sulfur-containing amino acids. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 114-122. doi: 10.11862/CJIC.20240382

    3. [3]

      Zihan Lin Wanzhen Lin Fa-Jie Chen . Electrochemical Modifications of Native Peptides. University Chemistry, 2025, 40(3): 318-327. doi: 10.12461/PKU.DXHX202406089

    4. [4]

      Ruiying WANGHui WANGFenglan CHAIZhinan ZUOBenlai WU . Three-dimensional homochiral Eu(Ⅲ) coordination polymer and its amino acid configuration recognition. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 877-884. doi: 10.11862/CJIC.20250052

    5. [5]

      Yang Liu Peng Chen Lei Liu . Chemistry “101 Plan”: Design and Construction of Chemical Biology Textbook. University Chemistry, 2024, 39(10): 45-51. doi: 10.12461/PKU.DXHX202407085

    6. [6]

      Tianyu Feng Guifang Jia Peng Zou Jun Huang Zhanxia Lü Zhen Gao Chu Wang . Construction of the Chemistry Biology Experiment Course in the Chemistry “101 Program”. University Chemistry, 2024, 39(10): 69-77. doi: 10.12461/PKU.DXHX202409002

    7. [7]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    8. [8]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006

    9. [9]

      Yongjie ZHANGBintong HUANGYueming ZHAI . Research progress of formation mechanism and characterization techniques of protein corona on the surface of nanoparticles. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2318-2334. doi: 10.11862/CJIC.20240247

    10. [10]

      Liangzhen Hu Li Ni Ziyi Liu Xiaohui Zhang Bo Qin Yan Xiong . A Green Chemistry Experiment on Electrochemical Synthesis of Benzophenone. University Chemistry, 2024, 39(6): 350-356. doi: 10.3866/PKU.DXHX202312001

    11. [11]

      Renxiu Zhang Xin Zhao Yunfei Zhang . Application of Electrochemical Synthesis in the Teaching of Organic Chemistry. University Chemistry, 2025, 40(4): 174-180. doi: 10.12461/PKU.DXHX202406116

    12. [12]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    13. [13]

      Fei Liu Dong-Yang Zhao Kai Sun Ting-Ting Yu Xin Wang . Comprehensive Experimental Design for Photochemical Synthesis, Analysis, and Characterization of Seleno-Containing Medium-Sized N-Heterocycles. University Chemistry, 2024, 39(3): 369-375. doi: 10.3866/PKU.DXHX202309047

    14. [14]

      Tingting Yu Si Chen Lianglong Sun Tongtong Shi Kai Sun Xin Wang . Comprehensive Experimental Design for the Photochemical Synthesis, Analysis, and Characterization of Difluoropyrroles. University Chemistry, 2024, 39(11): 196-203. doi: 10.3866/PKU.DXHX202401022

    15. [15]

      Li Jiang Changzheng Chen Yang Su Hao Song Yanmao Dong Yan Yuan Li Li . Electrochemical Synthesis of Polyaniline and Its Anticorrosive Application: Improvement and Innovative Design of the “Chemical Synthesis of Polyaniline” Experiment. University Chemistry, 2024, 39(3): 336-344. doi: 10.3866/PKU.DXHX202309002

    16. [16]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    17. [17]

      Yikai Wang Xiaolin Jiang Haoming Song Nan Wei Yifan Wang Xinjun Xu Cuihong Li Hao Lu Yahui Liu Zhishan Bo . 氰基修饰的苝二酰亚胺衍生物作为膜厚不敏感型阴极界面材料用于高效有机太阳能电池. Acta Physico-Chimica Sinica, 2025, 41(3): 2406007-. doi: 10.3866/PKU.WHXB202406007

    18. [18]

      Zhongyan Cao Shengnan Jin Yuxia Wang Yiyi Chen Xianqiang Kong Yuanqing Xu . Advances in Highly Selective Reactions Involving Phenol Derivatives as Aryl Radical Precursors. University Chemistry, 2025, 40(4): 245-252. doi: 10.12461/PKU.DXHX202405186

    19. [19]

      Qiaowen CHANGKe ZHANGGuangying HUANGNuonan LIWeiping LIUFuquan BAICaixian YANYangyang FENGChuan ZUO . Syntheses, structures, and photo-physical properties of iridium phosphorescent complexes with phenylpyridine derivatives bearing different substituting groups. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 235-244. doi: 10.11862/CJIC.20240311

    20. [20]

      Jingzhao Cheng Shiyu Gao Bei Cheng Kai Yang Wang Wang Shaowen Cao . 4-氨基-1H-咪唑-5-甲腈修饰供体-受体型氮化碳光催化剂的构建及其高效光催化产氢研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406026-. doi: 10.3866/PKU.WHXB202406026

Metrics
  • PDF Downloads(31)
  • Abstract views(2725)
  • HTML views(672)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return