Chemical (Semi-) Synthesis and Applications of Lysine Post-Translationally Modified Proteins
- Corresponding author: Wang Zhipeng, hipeng.wang@chem.tamu.edu Zheng Ji-Shen, jszheng@ustc.edu.cn
Citation:
Wang Zhipeng, Li Man, Li Hui, Liu Zhihua, Li Ying, Zheng Ji-Shen. Chemical (Semi-) Synthesis and Applications of Lysine Post-Translationally Modified Proteins[J]. Chinese Journal of Organic Chemistry,
;2018, 38(9): 2400-2411.
doi:
10.6023/cjoc201804046
Kouzarides, T. Cell 2007, 128, 693.
doi: 10.1016/j.cell.2007.02.005
Li, Y.; Barløse, C.; Jørgensen, J.; Carlsen, B. D. Jørgensen, K. A. Chem.-Eur. J. 2017, 23, 38.
doi: 10.1002/chem.201604310
Dann, G. P.; Liszczak, G. P.; Bagert, J. D.; Müller, M. M.; Nguyen, U. T.; Wojcik, F.; Brown, Z. Z.; Bos, J.; Panchenko, T.; Pihl, R.; Muir, T. W. Nature 2017, 548, 607.
doi: 10.1038/nature23671
Latham, J. A.; Dent, S. Y. Nat. Struct. Mol. Biol. 2007, 14, 1017.
doi: 10.1038/nsmb1307
Hamamoto, R.; Saloura, V.; Nakamura, Y. Nat. Rev. Cancer 2015, 15, 110.
doi: 10.1038/nrc3884
Wang, Z. A.; Cheng, N. Y.; Liang, Y. Y.; Ma, X. Y. Univ. Chem. 2017, 32, 41(in Chinese).
Chuikov, S.; Kurash, J. K.; Wilson, J. R.; Xiao, B.; Justin, N.; Ivanov, G. S.; McKinney, K.; Tempst, P.; Prives, C.; Gamblin, S. J. Nature 2004, 432, 353.
doi: 10.1038/nature03117
He, Q.; Li, J.; Qi, Y.; Wang, Z.; Huang, Y.; Liu, L. Sci. China Chem. 2017, 60, 621.
doi: 10.1007/s11426-016-0386-4
Xie, Z.; Dai, J.; Dai, L.; Tan, M.; Cheng, Z.; Wu, Y.; Boeke, J. D.; Zhao, Y. Mol. Cell. Proteomics 2012, 11, 100.
doi: 10.1074/mcp.M111.015875
Weinert, B. T.; Schölz, C.; Wagner, S. A.; Iesmantavicius, V.; Su, D.; Daniel, J. A.; Choudhary, C. Cell Rep. 2013, 4, 842.
doi: 10.1016/j.celrep.2013.07.024
Guan, C. J.; Wang, T.; Wang, J.; Yi, Y.-M. Chin. J. Org. Chem. 2016, 36, 2763(in Chinese).
Wang, Z.-P.; Wang, Y.-H.; Chu, G.-C.; Shi, J.; Li, Y.-M. Curr. Org. Synth. 2015, 12, 150.
doi: 10.2174/1570179411666141125215343
Chen, B.; Zang, W.; Wang, J.; Huang, Y.; He, Y.; Yan, L.; Liu, J.; Zheng, W. Chem. Soc. Rev. 2015, 44, 5246.
doi: 10.1039/C4CS00373J
Luo, J.; Li, M.; Tang, Y.; Laszkowska, M.; Roeder, R. G.; Gu, W. Proc. Natl. Acad. Sci. U. S. A. 2004, 101,
Martino, F.; Kueng, S.; Robinson, P.; Tsai-Pflugfelder, M.; van Leeuwen, F.; Ziegler, M.; Cubizolles, F.; Cockell, M. M.; Rhodes, D.; Gasser, S. M. Mol. Cell 2009, 33, 323.
doi: 10.1016/j.molcel.2009.01.009
Li, Y. M.; Li, Y. T.; Pan, M.; Kong, X. Q.; Huang, Y. C.; Hong, Z. Y.; Liu, L. Angew. Chem., Int. Ed. 2014, 53, 2198.
doi: 10.1002/anie.201310010
Tang, Y.; Zhao, W.; Chen, Y.; Zhao, Y.; Gu, W. Cell 2008, 133, 612.
doi: 10.1016/j.cell.2008.03.025
Li, F.; Zhang, H.; Sun, Y.; Pan, Y.; Zhou, J.; Wang, J. Angew. Chem., Int. Ed. 2013, 52, 9700.
doi: 10.1002/anie.201303477
Zhang, G.; Zheng, S.; Liu, H.; Chen, P. R. Chem. Soc. Rev. 2015, 44, 3405.
doi: 10.1039/C4CS00393D
Chalker, J. M.; Bernardes, G. a. J.; Davis, B. G. Acc. Chem. Res. 2011, 44, 730.
doi: 10.1021/ar200056q
Chen, J.; Fu, H.; Chen, Y.; Zhao, Y. F. Chin. J. Org. Chem. 2002, 22, 81(in Chinese).
doi: 10.3321/j.issn:0253-2786.2002.02.001
Chatterjee, C.; McGinty, R. K.; Fierz, B.; Muir, T. W. Nat. Chem. Biol. 2010, 6, 267.
doi: 10.1038/nchembio.315
Fang, G. M.; Li, Y. M.; Shen, F.; Huang, Y. C.; Li, J. B.; Lin, Y.; Cui, H. K.; Liu, L. Angew. Chem., Int. Ed. 2011, 50, 7645.
doi: 10.1002/anie.201100996
Zheng, J.-S.; Tang, S.; Qi, Y.-K.; Wang, Z.-P.; Liu, L. Nat. Protoc. 2013, 8, 2483.
doi: 10.1038/nprot.2013.152
Zheng, J.-S.; Yu, M.; Qi, Y.-K.; Tang, S.; Shen, F.; Wang, Z.-P.; Xiao, L.; Zhang, L.; Tian, C.-L.; Liu, L. J. Am. Chem. Soc. 2014, 136, 3695.
doi: 10.1021/ja500222u
Tang, S.; Si, Y. Y.; Wang, Z. P.; Mei, K. R.; Chen, X.; Cheng, J. Y.; Zheng, J. S.; Liu, L. Angew. Chem., Int. Ed. 2015, 127, 5805.
doi: 10.1002/ange.201500051
Fang, G. M.; Wang, J. X.; Liu, L. Angew. Chem., Int. Ed. 2012, 51, 10347.
doi: 10.1002/anie.201203843
Tang, S.; Liang, L. J.; Si, Y. Y.; Gao, S.; Wang, J. X.; Liang, J.; Mei, Z.; Zheng, J. S.; Liu, L. Angew. Chem., Int. Ed. 2017, 56, 13333.
doi: 10.1002/anie.201708067
Shimko, J. C.; North, J. A.; Bruns, A. N.; Poirier, M. G.; Ottesen, J. J. J. Mol. Boil. 2011, 408, 187.
doi: 10.1016/j.jmb.2011.01.003
Li, J.; Li, Y.; He, Q.; Li, Y.; Li, H.; Liu, L. Org. Biomol. Chem. 2014, 12, 5435.
doi: 10.1039/C4OB00715H
Howard, C. J.; Ruixuan, R. Y.; Gardner, M. L.; Shimko, J. C.; Ottesen, J. J. Top. Curr. Chem. 2015, 363, 193.
doi: 10.1007/978-3-319-19189-8
Zhang, W.; Wang, Y. Q.; Wang, J. Y. Prog. Biochem. Biophys. 2012, 39, 378(in Chinese).
Wang, L.; Xie, J.; Schultz, P. G. Annu. Rev. Biophys. Biomol. Struct. 2006, 35, 225.
doi: 10.1146/annurev.biophys.35.101105.121507
Dumas, A.; Lercher, L.; Spicer, C. D.; Davis, B. G. Chem. Sci. 2015, 6, 50.
doi: 10.1039/C4SC01534G
Neumann, H.; Hancock, S. M.; Buning, R.; Routh, A.; Chapman, L.; Somers, J.; Owen-Hughes, T.; van Noort, J.; Rhodes, D.; Chin, J. W. Mol. Cell 2009, 36, 153.
doi: 10.1016/j.molcel.2009.07.027
Lee, Y.-J.; Wu, B.; Raymond, J. E.; Zeng, Y.; Fang, X.; Wooley, K. L.; Liu, W. R. ACS Chem. Biol. 2013, 8, 1664.
doi: 10.1021/cb400267m
Kim, C. H.; Kang, M.; Kim, H. J.; Chatterjee, A.; Schultz, P. G. Angew. Chem., Int. Ed. 2012, 51, 7246.
doi: 10.1002/anie.201203349
Thinon, E.; Serwa, R. A.; Broncel, M.; Brannigan, J. A.; Brassat, U.; Wright, M. H.; Heal, W. P.; Wilkinson, A. J.; Mann, D. J.; Tate, E. W. Nat. Commun. 2014, 5, 1.
Simon, M. D.; Chu, F.; Racki, L. R.; Cecile, C.; Burlingame, A. L.; Panning, B.; Narlikar, G. J.; Shokat, K. M. Cell 2007, 128, 1003.
doi: 10.1016/j.cell.2006.12.041
Li, J.; Chen, P. R. Nat. Chem. Biol. 2016, 12, 129.
doi: 10.1038/nchembio.2024
Nguyen, D. P.; Garcia Alai, M. M.; Kapadnis, P. B.; Neumann, H.; Chin, J. W. J. Am. Chem. Soc. 2009, 131, 14194.
doi: 10.1021/ja906603s
Ai, H. W.; Lee, J. W.; Schultz, P. G. Chem. Commun. 2010, 46, 5506.
doi: 10.1039/c0cc00108b
Wang, Y.-S.; Wu, B.; Wang, Z.; Huang, Y.; Wan, W.; Russell, W. K.; Pai, P.-J.; Moe, Y. N.; Russell, D. H.; Liu, W. R. Mol. BioSyst. 2010, 6, 1557.
doi: 10.1039/c002155e
Gautier, A.; Deiters, A.; Chin, J. W. J. Am. Chem. Soc. 2011, 133, 2124.
doi: 10.1021/ja1109979
Hemphill, J.; Chou, C.; Chin, J. W.; Deiters, A. J. Am. Chem. Soc. 2013, 135, 13433.
doi: 10.1021/ja4051026
Nguyen, D. P.; Alai, M. M. G.; Virdee, S.; Chin, J. W. Chem. Biol. 2010, 17, 1072.
doi: 10.1016/j.chembiol.2010.07.013
Virdee, S.; Ye, Y.; Nguyen, D. P.; Komander, D.; Chin, J. W. Nat. Chem. Biol. 2010, 6, 750.
doi: 10.1038/nchembio.426
Wang, Z. A.; Li, J.; Li, Y. M. Chin. J. Org. Chem. 2013, 33, 1874(in Chinese).
Li, J. W.; Jie Chen, P. R. Acta Chim. Sinica 2012, 70, 1439(in Chinese).
doi: 10.3866/PKU.WHXB201203142
Bertozzi, C. R. Acc. Chem. Res. 2011, 44, 651.
doi: 10.1021/ar200193f
Yang, M. Y.; Chen, P. R. Acta Chim. Sinica 2015, 73, 783(in Chinese).
doi: 10.3866/PKU.WHXB201502062
Seeliger, D.; Soeroes, S.; Klingberg, R.; Schwarzer, D.; Grubmüller, H.; Fischle, W. ACS Chem. Biol. 2011, 7, 150.
Yang, A.; Ha, S.; Ahn, J.; Kim, R.; Kim, S.; Lee, Y.; Kim, J.; Söll, D.; Lee, H.-Y.; Park, H.-S. Science 2016, 354, 623.
doi: 10.1126/science.aah4428
Wright, T. H.; Bower, B. J.; Chalker, J. M.; Bernardes, G. J.; Wiewiora, R.; Ng, W.-L.; Raj, R.; Faulkner, S.; Vallée, M. R. J.; Phanumartwiwath, A.; Davis, B. G. Science 2016, 354, 1465.
doi: 10.1126/science.aag1465
Wang, Z. A.; Liu, W. R. Chem. Eur. J. 2017, 23, 11732.
doi: 10.1002/chem.201701655
Prescher, J. A.; Bertozzi, C. R. Nat. Chem. Biol. 2005, 1, 13.
doi: 10.1038/nchembio0605-13
Zhang, G.; Zheng, S.; Liu, H.; Chen, P. R. Chem. Soc. Rev. 2015, 44, 3405.
doi: 10.1039/C4CS00393D
Chin, J. W.; Santoro, S. W.; Martin, A. B.; King, D. S.; Wang, L.; Schultz, P. G. J. Am. Chem. Soc. 2002, 124, 9026.
doi: 10.1021/ja027007w
Wang, Z. A.; Zeng, Y.; Kurra, Y.; Wang, X.; Tharp, J. M.; Vatansever, E. C.; Hsu, W. W.; Dai, S.; Fang, X.; Liu, W. R. Angew. Chem., Int. Ed. 2017, 56, 212.
doi: 10.1002/anie.201609452
Wu, N.; Deiters, A.; Cropp, T. A.; King, D.; Schultz, P. G. J. Am. Chem. Soc. 2004, 126, 14306.
doi: 10.1021/ja040175z
Zhang, G.; Li, J.; Xie, R.; Fan, X.; Liu, Y.; Zheng, S.; Ge, Y.; Chen, P. R. ACS Cent. Sci. 2016, 2, 325.
doi: 10.1021/acscentsci.6b00024
Spicer, C. D.; Davis, B. G. Nat. Commun. 2014, 5, 1.
Kamadurai, H. B.; Souphron, J.; Scott, D. C.; Duda, D. M.; Miller, D. J.; Stringer, D.; Piper, R. C.; Schulman, B. A. Mol. Cell 2009, 36, 1095.
doi: 10.1016/j.molcel.2009.11.010
Mali, S. M.; Singh, S. K.; Eid, E.; Brik, A. J. Am. Chem. Soc. 2017, 139, 4971.
doi: 10.1021/jacs.7b00089
Chatterjee, C.; McGinty, R. K.; Fierz, B.; Muir, T. W. Nat. Chem. Biol. 2010, 6, 267.
doi: 10.1038/nchembio.315
Mali, S. M.; Singh, S. K.; Eid, E.; Brik, A. J. Am. Chem. Soc. 2017, 139, 4971.
doi: 10.1021/jacs.7b00089
Li, X.; Fekner, T.; Ottesen, J. J.; Chan, M. K. Angew. Chem., Int. Ed. 2009, 121, 9348.
doi: 10.1002/ange.v121:48
Nguyen, D. P.; Elliott, T.; Holt, M.; Muir, T. W.; Chin, J. W. J. Am. Chem. Soc. 2011, 133(30), 11418.
doi: 10.1021/ja203111c
Virdee, S.; Kapadnis, P. B.; Elliott, T.; Lang, K.; Madrzak, J.; Nguyen, D. P.; Riechmann, L.; Chin, J. W. J. Am. Chem. Soc. 2011, 133, 10708.
doi: 10.1021/ja202799r
Amamoto, Y.; Aoi, Y.; Nagashima, N.; Suto, H.; Yoshidome, D.; Arimura, Y.; Osakabe, A.; Kato, D.; Kurumizaka, H.; Kawashima, S. A. J. Am. Chem. Soc. 2017, 139, 7568.
doi: 10.1021/jacs.7b02138
Chatterjee, C.; McGinty, R. K.; Pellois, J. P.; Muir, T. W. Angew. Chem., Int. Ed. 2007, 119(16), 2872.
doi: 10.1002/(ISSN)1521-3757
Weller, C. E.; Huang, W.; Chatterjee, C. ChemBioChem 2014, 15(9), 1263.
doi: 10.1002/cbic.v15.9
Weller, C. E.; Dhall, A.; Ding, F.; Linares, E.; Whedon, S. D.; Senger, N. A.; Tyson, E. L.; Bagert, J. D.; Li, X.; Augusto, O.; Chatterjee, C. Nat. Commun. 2016, 7, 12979.
doi: 10.1038/ncomms12979
Wu, J.; Ruiz-Rodríguez, J.; Comstock, J. M.; Dong, J. Z.; Bode, J. W. Chem. Sci. 2011, 2, 1976.
doi: 10.1039/c1sc00398d
Noda, H.; Erös, G. b.; Bode, J. W. J. Am. Chem. Soc. 2014, 136, 5611.
doi: 10.1021/ja5018442
Wan, W.; Huang, Y.; Wang, Z.; Russell, W. K.; Pai, P. J.; Russell, D. H.; Liu, W. R. Angew. Chem., Int. Ed. 2010, 49, 3211.
doi: 10.1002/anie.v49:18
Jing, H.; Lin, H. Chem. Rev. 2015, 115, 2350.
doi: 10.1021/cr500457h
Du, J.; Zhou, Y.; Su, X.; Yu, J. J.; Khan, S.; Jiang, H.; Kim, J.; Woo, J.; Kim, J. H.; Choi, B. H.; Lin, H. Science 2011, 334, 806.
doi: 10.1126/science.1207861
Weinert, B. T.; Schölz, C.; Wagner, S. A.; Iesmantavicius, V.; Su, D.; Daniel, J. A.; Choudhary, C. Cell Rep. 2013, 4, 842.
doi: 10.1016/j.celrep.2013.07.024
Ngo, J. T.; Schuman, E. M.; Tirrell, D. A. Proc. Natl. Acad. Sci. U. S. A. 2013, 110, 4992.
doi: 10.1073/pnas.1216375110
Mahdavi, A.; Segall-Shapiro, T. H.; Kou, S.; Jindal, G. A.; Hoff, K. G.; Liu, S.; Chitsaz, M.; Ismagilov, R. F.; Silberg, J. J.; Tirrell, D. A. J. Am. Chem. Soc. 2013, 135(8), 2979.
Yang, R.; Bi, X.; Li, F.; Cao, Y.; Liu, C.-F. Chem. Commun. 2014, 50, 7971.
doi: 10.1039/C4CC03721A
Gong, Y.; Pan, L. Tetrahedron Lett. 2015, 56, 2123.
doi: 10.1016/j.tetlet.2015.03.065
Huang, H.; Lin, S.; Garcia, B. A.; Zhao, Y. Chem. Rev. 2015, 115, 2376.
doi: 10.1021/cr500491u
Pattabiraman, V. R.; Bode, J. W. Nature 2011, 480, 471.
doi: 10.1038/nature10702
Fang, X.; Fu, Y.; Long, M. J. C.; Haegele, J. A.; Ge, E. J.; Parvez, S.; Aye, Y. J. Am. Chem. Soc. 2013, 135, 14496.
doi: 10.1021/ja405400k
Wang, L. New Biotechnol. 2017, 38, 16.
doi: 10.1016/j.nbt.2016.10.003
Wan, W.; Tharp, J. M.; Liu, W. R. Biochim. Biophys. Acta, Proteins Proteomics 2014, 1844, 1059.
doi: 10.1016/j.bbapap.2014.03.002
Cigler, M.; Müller, T. G.; Horn-Ghetko, D.; von Wrisberg, M. K.; Fottner, M.; Goody, R. S.; Itzen, A.; Müller, M. P.; Lang, K. Angew. Chem., Int. Ed. 2017, 56, 15737.
doi: 10.1002/anie.v56.49
Hoppmann, C.; Wong, A.; Yang, B.; Li, S.; Hunter, T.; Shokat, K. M.; Wang, L. Nat. Chem. Biol. 2017, 13, 842.
doi: 10.1038/nchembio.2406
Wang, Z. A.; Feng, T. S.; Cui, L. J.; Shi, Y. J.; Sha, Y. W. Sci. China:Life Sci. 2013, 43, 778(in Chinese).
Pan, M.; Gao, S.; Zheng, Y.; Tan, X.; Lan, H.; Tan, X.; Sun, D.; Lu, L.; Wang, T.; Zheng, Q.; Liu, L. J. Am. Chem. Soc. 2016, 138, 7429.
doi: 10.1021/jacs.6b04031
Wang, Z.; Xu, W.; Liu, L.; Zhu, T. F. Nat. Chem. 2016, 8, 698.
doi: 10.1038/nchem.2517
Xinyi Hong , Tailing Xue , Zhou Xu , Enrong Xie , Mingkai Wu , Qingqing Wang , Lina Wu . Non-Site-Specific Fluorescent Labeling of Proteins as a Chemical Biology Experiment. University Chemistry, 2024, 39(4): 351-360. doi: 10.3866/PKU.DXHX202310010
Hong CAI , Jiewen WU , Jingyun LI , Lixian CHEN , Siqi XIAO , Dan LI . Synthesis of a zinc-cobalt bimetallic adenine metal-organic framework for the recognition of sulfur-containing amino acids. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 114-122. doi: 10.11862/CJIC.20240382
Zihan Lin , Wanzhen Lin , Fa-Jie Chen . Electrochemical Modifications of Native Peptides. University Chemistry, 2025, 40(3): 318-327. doi: 10.12461/PKU.DXHX202406089
Ruiying WANG , Hui WANG , Fenglan CHAI , Zhinan ZUO , Benlai WU . Three-dimensional homochiral Eu(Ⅲ) coordination polymer and its amino acid configuration recognition. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 877-884. doi: 10.11862/CJIC.20250052
Yang Liu , Peng Chen , Lei Liu . Chemistry “101 Plan”: Design and Construction of Chemical Biology Textbook. University Chemistry, 2024, 39(10): 45-51. doi: 10.12461/PKU.DXHX202407085
Tianyu Feng , Guifang Jia , Peng Zou , Jun Huang , Zhanxia Lü , Zhen Gao , Chu Wang . Construction of the Chemistry Biology Experiment Course in the Chemistry “101 Program”. University Chemistry, 2024, 39(10): 69-77. doi: 10.12461/PKU.DXHX202409002
Lu XU , Chengyu ZHANG , Wenjuan JI , Haiying YANG , Yunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431
Tianlong Zhang , Rongling Zhang , Hongsheng Tang , Yan Li , Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006
Yongjie ZHANG , Bintong HUANG , Yueming ZHAI . Research progress of formation mechanism and characterization techniques of protein corona on the surface of nanoparticles. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2318-2334. doi: 10.11862/CJIC.20240247
Liangzhen Hu , Li Ni , Ziyi Liu , Xiaohui Zhang , Bo Qin , Yan Xiong . A Green Chemistry Experiment on Electrochemical Synthesis of Benzophenone. University Chemistry, 2024, 39(6): 350-356. doi: 10.3866/PKU.DXHX202312001
Renxiu Zhang , Xin Zhao , Yunfei Zhang . Application of Electrochemical Synthesis in the Teaching of Organic Chemistry. University Chemistry, 2025, 40(4): 174-180. doi: 10.12461/PKU.DXHX202406116
Zeyu XU , Anlei DANG , Bihua DENG , Xiaoxin ZUO , Yu LU , Ping YANG , Wenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099
Fei Liu , Dong-Yang Zhao , Kai Sun , Ting-Ting Yu , Xin Wang . Comprehensive Experimental Design for Photochemical Synthesis, Analysis, and Characterization of Seleno-Containing Medium-Sized N-Heterocycles. University Chemistry, 2024, 39(3): 369-375. doi: 10.3866/PKU.DXHX202309047
Tingting Yu , Si Chen , Lianglong Sun , Tongtong Shi , Kai Sun , Xin Wang . Comprehensive Experimental Design for the Photochemical Synthesis, Analysis, and Characterization of Difluoropyrroles. University Chemistry, 2024, 39(11): 196-203. doi: 10.3866/PKU.DXHX202401022
Li Jiang , Changzheng Chen , Yang Su , Hao Song , Yanmao Dong , Yan Yuan , Li Li . Electrochemical Synthesis of Polyaniline and Its Anticorrosive Application: Improvement and Innovative Design of the “Chemical Synthesis of Polyaniline” Experiment. University Chemistry, 2024, 39(3): 336-344. doi: 10.3866/PKU.DXHX202309002
Caixia Lin , Zhaojiang Shi , Yi Yu , Jianfeng Yan , Keyin Ye , Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005
Yikai Wang , Xiaolin Jiang , Haoming Song , Nan Wei , Yifan Wang , Xinjun Xu , Cuihong Li , Hao Lu , Yahui Liu , Zhishan Bo . 氰基修饰的苝二酰亚胺衍生物作为膜厚不敏感型阴极界面材料用于高效有机太阳能电池. Acta Physico-Chimica Sinica, 2025, 41(3): 2406007-. doi: 10.3866/PKU.WHXB202406007
Zhongyan Cao , Shengnan Jin , Yuxia Wang , Yiyi Chen , Xianqiang Kong , Yuanqing Xu . Advances in Highly Selective Reactions Involving Phenol Derivatives as Aryl Radical Precursors. University Chemistry, 2025, 40(4): 245-252. doi: 10.12461/PKU.DXHX202405186
Qiaowen CHANG , Ke ZHANG , Guangying HUANG , Nuonan LI , Weiping LIU , Fuquan BAI , Caixian YAN , Yangyang FENG , Chuan ZUO . Syntheses, structures, and photo-physical properties of iridium phosphorescent complexes with phenylpyridine derivatives bearing different substituting groups. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 235-244. doi: 10.11862/CJIC.20240311
Jingzhao Cheng , Shiyu Gao , Bei Cheng , Kai Yang , Wang Wang , Shaowen Cao . 4-氨基-1H-咪唑-5-甲腈修饰供体-受体型氮化碳光催化剂的构建及其高效光催化产氢研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406026-. doi: 10.3866/PKU.WHXB202406026
(a) Lys methylation as example of alkylation; (b) Lys acylation
(a) The site-specific installation of di-methyllysine; (b) the site-specific installation of ubiquitinated Lys
(a) The synthesis of modified Lys mimic via Cys alkylation; (b) the direct incorporation of modified Lys via metal catalyzed cross-coupling reaction on Dha