Citation: Ye Hui, Xiao Cong, Lu Liangqiu. Photo-Induced Carbohydrate Synthesis and Modification[J]. Chinese Journal of Organic Chemistry, ;2018, 38(8): 1897-1906. doi: 10.6023/cjoc201804035 shu

Photo-Induced Carbohydrate Synthesis and Modification

  • Corresponding author: Lu Liangqiu, luliangqiu@mail.ccnu.edu.cn
  • These authors contributed equally to this work
  • Received Date: 18 April 2018
    Revised Date: 12 May 2018
    Available Online: 17 August 2018

    Fund Project: Project supported by Natural Science Foundation of Hubei Province (Nos. 2015CFC818, 2015CFA033), the Cultivation Fund Project of Huanggang Normal University (No. 201615503) and the Doctoral Fund Project of Huanggang Normal University (No. 2015001703)Natural Science Foundation of Hubei Province 2015CFC818the Cultivation Fund Project of Huanggang Normal University 201615503the Doctoral Fund Project of Huanggang Normal University 2015001703Natural Science Foundation of Hubei Province 2015CFA033

Figures(9)

  • The synthesis of carbohydrates through photoredox catalysis has achieved a great process in the past decade. This review highlights the latest advances in this research area, including the photo-induced O-glycosylation and C-glycosylation, and the functional group modification and thiol-ene coupling reactions of carbohydrates.
  • 加载中
    1. [1]

      (a) Kitamura, K. ; Ando, Y. ; Matsumoto, T. ; Suzuki, K. Chem. Rev. 2018, 118, 1495.
      (b) Wang, H. -Y. ; Blaszczyk, S. A. ; Xiao, G. ; Tang, W. Chem. Soc. Rev. 2018, 47, 681.

    2. [2]

      (a) Yang, Y. ; Zhang, X. ; Yu, B. Nat. Prod. Rep. 2015, 32, 1331.
      (b) Yang, Y. ; Yu, B. Chem. Rev. 2017, 117, 12281.
      (c) Zeng, J. ; Xu, Y. ; Wang, H. ; Meng, L. ; Wan, Q. Sci. China Chem. 2017, 60, 1162.

    3. [3]

      (a) Wu, Y. ; Xiong, D. -C. ; Chen, S. -C. ; Wang, Y. -S. ; Ye, X. -S. Nat. Commun. 2017, 8, 14851.
      (b) Yu, B. Acc. Chem. Res. 2018, 51, 507.
      (c) Gao, P. -P. ; Zhu, S. -Y. ; Cao, H. ; Yang, J. -S. J. Am. Chem. Soc. 2016, 138, 1684.
      (d) Qin, C. ; Schumann, B. ; Zou, X. ; Pereira, C. L. ; Tian, G. ; Hu, J. ; Seeberger, P. H. ; Yin, J. J. Am. Chem. Soc. 2018, 140, 3120.
      (e) Zhou, X. ; Wang, P. ; Zhang, L. ; Chen, P. ; Ma, M. ; Song, N. ; Ren, S. ; Li, M. J. Org. Chem. 2018, 83, 588.
      (f) Shu, P. ; Xiao, X. ; Zhao, Y. ; Tao, J. ; Wang, H. ; Lu, Z. ; Yao, G. ; Zeng, J. ; Wan, Q. Angew. Chem., Int. Ed. 2015, 54, 14432.
      (g) Xiao, X. ; Zhao, Y. ; Shu, P. ; Zhao, X. ; Liu, Y. ; Sun, J. ; Zhang, Q. ; Zeng, J. ; Wan, Q. J. Am. Chem. Soc. 2016, 138, 13402.

    4. [4]

    5. [5]

      Sangwan, R.; Mandal, P. K. RSC Adv. 2017, 7, 26256.  doi: 10.1039/C7RA01858D

    6. [6]

      Hashimoto, S.; Kurimoto, I; Fujii, Y.; Noyori, R. J. Am. Chem. Soc. 1985, 107, 1427.  doi: 10.1021/ja00291a062

    7. [7]

      Wen, P.; Crich, D. Org. Lett. 2017, 19, 2402.  doi: 10.1021/acs.orglett.7b00932

    8. [8]

      Iwata, R.; Uda, K.; Takahashi, D.; Toshima, K. Chem. Commun. 2014, 50, 10695.  doi: 10.1039/C4CC04753B

    9. [9]

      Kimura, T.; Eto, T.; Takahashi, D.; Toshima, K. Org. Lett. 2016, 18, 3190.  doi: 10.1021/acs.orglett.6b01404

    10. [10]

      Griffin, G. W.; Bandara, N. C.; Clarke, M. A.; Tsang, W.-S.; Garegg, P. J.; Oscarson, S.; Silwanis, B. A. Heterocycles 1990, 30, 939.  doi: 10.3987/COM-89-S89

    11. [11]

      Nakanishi, M.; Takahashi, D.; Toshima, K. Org. Biomol. Chem. 2013, 11, 5079.  doi: 10.1039/c3ob41143e

    12. [12]

      Wever, W. J.; Cinelli, M. A.; Bowers, A. B. Org. Lett. 2013, 15, 30.  doi: 10.1021/ol302941q

    13. [13]

      Mao, R.-Z.; Guo, F.; Xiong, D.-C.; Li, Q.; Duan, J.; Ye, X.-S. Org. Lett. 2015, 17, 5606.  doi: 10.1021/acs.orglett.5b02823

    14. [14]

      Mao, R.-Z.; Xiong, D.-C.; Guo, F.; Li, Q.; Duan, J.; Ye, X.-S. Org. Chem. Front. 2016, 3, 737.  doi: 10.1039/C6QO00021E

    15. [15]

      Yu, Y.; Xiong, D.-C.; Mao, R.-Z.; Ye, X.-S. J. Org. Chem. 2016, 81, 7134.  doi: 10.1021/acs.joc.6b00999

    16. [16]

      Spell, M. L.; Deveaux, K.; Bresnahan, C. G.; Bernard, B. L.; Sheffield, W.; Kumar, R.; Ragains, J. R. Angew. Chem., Int. Ed. 2016, 55, 6515.  doi: 10.1002/anie.201601566

    17. [17]

      Furuta, T.; Takeuchi, K.; Iwamura, M. Chem. Commun. 1996, 157.

    18. [18]

      Cumpstey, I.; Crich, D. J. Carbohydr. Chem. 2011, 30, 469.  doi: 10.1080/07328303.2011.601533

    19. [19]

      Spell, M.; Wang, X.; Wahba, A. E.; Conner, E.; Ragains, J. Carbohydr. Res. 2013, 369, 42.  doi: 10.1016/j.carres.2013.01.004

    20. [20]

      Andrews, R. S.; Becker, J. J.; Gagné, M. R. Angew. Chem., Int. Ed. 2010, 49, 7274.  doi: 10.1002/anie.v49:40

    21. [21]

      Andrews, R. S.; Becker, J. J.; Gagné, M. R. Angew. Chem., Int. Ed. 2012, 51, 4140.  doi: 10.1002/anie.201200593

    22. [22]

      Andrews, R. S.; Becker, J. J.; Gagné, M. R. Org. Lett. 2011, 13, 2406.  doi: 10.1021/ol200644w

    23. [23]

      Wang, H.; Tao, J.; Cai, X.; Chen, W.; Zhao, Y.; Xu, Y.; Yao, W.; Zeng, J.; Wan, Q. Chem.-Eur. J. 2014, 20, 17319.  doi: 10.1002/chem.201405516

    24. [24]

      Xue, W.; Yuan, X.; Cheng, S.; Shi, Y. Synthesis 2014, 46, 331.  doi: 10.1055/s-00000084

    25. [25]

      Dai, C.; Narayanam, J. M.; Stephenson, C. R. Nat. Chem. 2011, 3, 140.  doi: 10.1038/nchem.949

    26. [26]

      Wang, B.; Xiong, D.-C.; Ye, X.-S. Org. Lett. 2015, 17, 5698.  doi: 10.1021/acs.orglett.5b03016

    27. [27]

      Rasool, F.; Bhat, A. H.; Hussain, N.; Mukherjee, D. Chemis-trySelect 2016, 1, 6553.  doi: 10.1002/slct.201601849

    28. [28]

      Gao, X.-F.; Du, J.-J.; Liu, Z.; Guo, J. Org. Lett. 2016, 18, 1166.  doi: 10.1021/acs.orglett.6b00292

    29. [29]

      (a) Wittrock, S. ; Becker, T. ; Kunz, H. Angew. Chem., Int. Ed. 2007, 46, 5226.
      (b) Dondoni, A. Angew. Chem., Int. Ed. 2008, 47, 8995.
      (c) Floyd, N. ; Vijayakrishnan, B. ; Koeppe, J. R. ; Davis, B. G. Angew. Chem., Int. Ed. 2009, 48, 7798.
      (d) Kramer, J. R. ; Deming, T. J. J. Am. Chem. Soc. 2010, 132, 15068.
      (e) Tucker-Schwartz, A. K. ; Farrell, R. A. ; Garrell, R. L. J. Am. Chem. Soc. 2011, 133, 11026.
      (f) Wojcik, F. ; O'Brien, A. G. ; Goetze, S. ; Seeberger, P. H. Chem. Eur. J. 2013, 19, 3090.

    30. [30]

      Limnios, D.; Kokotos, C. G. Adv. Synth. Catal. 2017, 359, 323.  doi: 10.1002/adsc.v359.2

    31. [31]

      Zhao, G.; Kaur, S.; Wang, T. Org. Lett. 2017, 19, 3291.  doi: 10.1021/acs.orglett.7b01441

  • 加载中
    1. [1]

      Qi Zhang Ziyu Liu Hongxia Tan Jun Tong Dazhen Xu . Research Progress on Direct Synthesis of β-Hydroxy Sulfones via Difunctionalization of Olefins. University Chemistry, 2025, 40(11): 199-209. doi: 10.12461/PKU.DXHX202412064

    2. [2]

      Lili Jiang Shaoyu Zheng Xuejiao Liu Xiaomin Xie . Copper-Catalyzed Oxidative Coupling Reactions for the Synthesis of Aryl Sulfones: A Fundamental and Exploratory Experiment for Undergraduate Teaching. University Chemistry, 2025, 40(7): 267-276. doi: 10.12461/PKU.DXHX202408004

    3. [3]

      Shengwen XULonglong YANGHouji CAODeshuang TUXing WEIChangsheng LUHong YAN . Research progress on light-induced functionalization of polyhedral carborane clusters. Chinese Journal of Inorganic Chemistry, 2025, 41(11): 2187-2200. doi: 10.11862/CJIC.20250192

    4. [4]

      Yuanyuan Ping Wangqing Kong . 光催化碳氢键官能团化合成1-苯基-1,2-乙二醇. University Chemistry, 2025, 40(6): 238-247. doi: 10.12461/PKU.DXHX202408092

    5. [5]

      Geyang Song Dong Xue Gang Li . Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides. University Chemistry, 2024, 39(2): 321-329. doi: 10.3866/PKU.DXHX202308030

    6. [6]

      Feng Han Fuxian Wan Ying Li Congcong Zhang Yuanhong Zhang Chengxia Miao . Comprehensive Organic Chemistry Experiment: Phosphotungstic Acid-Catalyzed Direct Conversion of Triphenylmethanol for the Synthesis of Oxime Ethers. University Chemistry, 2025, 40(3): 342-348. doi: 10.12461/PKU.DXHX202405181

    7. [7]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    8. [8]

      Yan KongWei WeiLekai XuChen Chen . Electrochemical Synthesis of Organonitrogen Compounds from N-integrated CO2 Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2307049-0. doi: 10.3866/PKU.WHXB202307049

    9. [9]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    10. [10]

      Hanxue LIUShijie LIMeng RENXuling XUEHongke LIU . Design and antitumor properties of dehydroabietic acid functionalized cyclometalated iridium(Ⅲ) complex. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1483-1494. doi: 10.11862/CJIC.20250031

    11. [11]

      Aidang Lu Yunting Liu Yanjun Jiang . Comprehensive Organic Chemistry Experiment: Synthesis and Characterization of Triazolopyrimidine Compounds. University Chemistry, 2024, 39(8): 241-246. doi: 10.3866/PKU.DXHX202401029

    12. [12]

      Yanhui Zhong Ran Wang Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017

    13. [13]

      Xiaofeng ZhuBingbing XiaoJiaxin SuShuai WangQingran ZhangJun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-0. doi: 10.3866/PKU.WHXB202407005

    14. [14]

      Xinyu Zhu Meili Pang . Application of Functional Group Addition Strategy in Organic Synthesis. University Chemistry, 2024, 39(3): 218-230. doi: 10.3866/PKU.DXHX202308106

    15. [15]

      Wen Jiang Jieli Lin Zhongshu Li . 低配位含磷官能团的研究进展. University Chemistry, 2025, 40(8): 138-151. doi: 10.12461/PKU.DXHX202409144

    16. [16]

      Lina GuoRuizhe LiChuang SunXiaoli LuoYiqiu ShiHong YuanShuxin OuyangTierui Zhang . Effect of Interlayer Anions in Layered Double Hydroxides on the Photothermocatalytic CO2 Methanation of Derived Ni-Al2O3 Catalysts. Acta Physico-Chimica Sinica, 2025, 41(1): 100002-0. doi: 10.3866/PKU.WHXB202309002

    17. [17]

      Yanan Liu Yufei He Dianqing Li . Preparation of Highly Dispersed LDHs-based Catalysts and Testing of Nitro Compound Reduction Performance: A Comprehensive Chemical Experiment for Research Transformation. University Chemistry, 2024, 39(8): 306-313. doi: 10.3866/PKU.DXHX202401081

    18. [18]

      Chi Li Jichao Wan Qiyu Long Hui Lv Ying XiongN-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016

    19. [19]

      Jiaming Xu Yu Xiang Weisheng Lin Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093

    20. [20]

      Xudong LvTao ShaoJunyan LiuMeng YeShengwei Liu . Paired Electrochemical CO2 Reduction and HCHO Oxidation for the Cost-Effective Production of Value-Added Chemicals. Acta Physico-Chimica Sinica, 2024, 40(5): 2305028-0. doi: 10.3866/PKU.WHXB202305028

Metrics
  • PDF Downloads(54)
  • Abstract views(2281)
  • HTML views(405)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return