Citation: Wu Yao, Dou Zhengjie, Wu Caimei, Chen Huabao, Zhang Zumin, Wang Xianxiang, Yin Zhongqiong, Song Xu, He Changliang, Yue Guizhou. Application of Mesitylboronic Acid and Its Esters in Coupling Reactions[J]. Chinese Journal of Organic Chemistry, ;2018, 38(11): 2896-2926. doi: 10.6023/cjoc201804027 shu

Application of Mesitylboronic Acid and Its Esters in Coupling Reactions

  • Corresponding author: Yue Guizhou, yueguizhou@sicau.edu.cn
  • Received Date: 15 April 2018
    Revised Date: 19 June 2018
    Available Online: 5 November 2018

    Fund Project: Project supported by the Science & Technology Department of Sichuan Province (No. 2012JY0118) and the Sichuan Agricultural Universitythe Science & Technology Department of Sichuan Province 2012JY0118

Figures(31)

  • Organic boronic reagents have played a critical role in the field of organic synthesis, especially Suzuki coupling, since they were founded. In return, all kinds of transition metal (Pd, Ni, Rh, Au etc.)-catalyzed coupling reactions have given a big push for the development and application of organic boronic reagents. 2, 4, 6-Mesitylboronic acid was used widely in various coupling reactions, including Suzuiki reaction, aromatic C-H activation, oxidative Heck reaction, carbonlation, decarboxylation, photoredox reaction and other C-X (C-N, C-S, C-Se) bonding reaction, which was used to synthesize functional materials, ligands and drug molecules. This paper includes two aspects:(1) reviewing the application of mesityl boronic acid and its ester in coupling reaction, and (2) making our points and respecting for this field.
  • 加载中
    1. [1]

      Miyaura, N.; Yamada, K.; Suzuki, A. Tetrahedron Lett. 1979, 20, 3437.  doi: 10.1016/S0040-4039(01)95429-2

    2. [2]

      Fagnou, K.; Lautens, M. Chem. Rev. 2003, 103, 169.  doi: 10.1021/cr020007u

    3. [3]

      Usui, K.; Tanoue, K.; Yamamoto, K.; Shimizu, T.; Suemune, H. Org. Lett. 2014, 16, 4662.  doi: 10.1021/ol502270q

    4. [4]

      Wipf, P.; Jung, J.-K. J. Org. Chem. 2000, 65, 6319.  doi: 10.1021/jo000684t

    5. [5]

      Morgan, J.; Pinhey, J. T. J. Chem. Soc., Perkin Trans. 1 1990, 715.
       

    6. [6]

      Ishiyama, T.; Murata, M.; Miyaura, N. J. Org. Chem. 1995, 60, 7508.  doi: 10.1021/jo00128a024

    7. [7]

      Miyaura, N.; Suzuki, A. Chem. Rev. 1995, 95, 2457.  doi: 10.1021/cr00039a007

    8. [8]

      Suzuki, A.; Brown, H. C. Organic Syntheses via Boranes: Suzuki Coupling, Aldrich Chemical Company, Milwaukee, WI, 2003.

    9. [9]

      Kaufmann, D. E.; Koester, M. Sci. Synth. 2004, 6, 1217.

    10. [10]

      Bai, L.; Wang, J.-X. Curr. Org. Chem. 2005, 9, 535.  doi: 10.2174/1385272053544407

    11. [11]

      Gracias, V.; Iyengar, R. Chemtracts 2005, 18, 339.

    12. [12]

      Humphrey, G. R.; Kuethe, J. T. Chem. Rev. 2006, 106, 2875.  doi: 10.1021/cr0505270

    13. [13]

      Molander, G. A.; Ellis, N. Acc. Chem. Res. 2007, 40, 275.  doi: 10.1021/ar050199q

    14. [14]

      Weng, Z.; Teo, S.; Hor, T. A. Acc. Chem. Res. 2007, 40, 676.  doi: 10.1021/ar600003h

    15. [15]

      Martin, R.; Buchwald, S. L. Acc. Chem. Res. 2008, 41, 1461.  doi: 10.1021/ar800036s

    16. [16]

      Fihri, A.; Bouhrara, M.; Nekoueishahraki, B.; Basset, J.-M.; Polshettiwar, V. Chem. Soc. Rev. 2011, 40, 5181.  doi: 10.1039/c1cs15079k

    17. [17]

      Suzuki, A. Angew. Chem., Int. Ed. 2011, 50, 6722.  doi: 10.1002/anie.201101379

    18. [18]

      Heravi, M M.; Hashemi, E. Monatsh. Chem. C 2012, 143, 861.  doi: 10.1007/s00706-012-0746-0

    19. [19]

      Mora, M.; Jimenez-Sanchidrian, C.; Rafael Ruiz, J. Curr. Org. Chem. 2012, 16, 1128.  doi: 10.2174/138527212800564358

    20. [20]

      Blangetti, M.; Rosso, H.; Prandi, C.; Deagostino, A.; Venturello, P. Molecules 2013, 18, 1188.  doi: 10.3390/molecules18011188

    21. [21]

      García-Melchor, M.; Braga, A. A.; Lledós, A.; Ujaque, G.; Maseras, F. Acc. Chem. Res. 2013, 46, 2626.  doi: 10.1021/ar400080r

    22. [22]

      Han, F.-S. Chem. Soc. Rev. 2013, 42, 5270.  doi: 10.1039/c3cs35521g

    23. [23]

      Kumar, A.; Rao, G. K.; Kumar, S.; Singh, A. K. Dalton Trans. 2013, 42, 5200.  doi: 10.1039/c2dt32432f

    24. [24]

      Lennox, A. J.; Lloyd-Jones, G. C. Angew. Chem., Int. Ed. 2013, 52, 7362.  doi: 10.1002/anie.201301737

    25. [25]

      Chamoin, S.; Houldsworth, S.; Snieckus, V. Tetrahedron Lett. 1998, 39, 4175.  doi: 10.1016/S0040-4039(98)00778-3

    26. [26]

      Henry, N.; Enguehard-Gueiffier, C.; Thery, I.; Gueiffier, A. Eur. J. Org. Chem. 2008, 4824.
       

    27. [27]

      Guo, J.; Harling, J. D.; Steel, P. G.; Woods, T. M. Org. Biomol. Chem. 2008, 6, 4053.  doi: 10.1039/b809577a

    28. [28]

      Bandgar, B. P.; Patil, A. V. Tetrahedron Lett. 2005, 46, 7627.  doi: 10.1016/j.tetlet.2005.08.111

    29. [29]

      Korolev, D. N.; Bumagin, N. A. Tetrahedron Lett. 2006, 47, 4225.  doi: 10.1016/j.tetlet.2006.04.039

    30. [30]

      Prediger, P.; Moro, A. V.; Nogueira, C. W.; Savegnago, L.; Menezes, P. H.; Rocha, J. B. T.; Zeni, G. J. Org. Chem. 2006, 71, 3786.  doi: 10.1021/jo0601056

    31. [31]

      Barancelli, D. A.; Alves, D.; Prediger, P.; Stangherlin, E. C.; Nogueira, C. W.; Zeni, G. Synlett 2008, 119.

    32. [32]

      Jansa, J.; Řezníček, T.; Jambor, R.; Bureš, F.; Lyčka, A. Adv. Synth. Catal. 2017, 359, 339.  doi: 10.1002/adsc.v359.2

    33. [33]

      Watanabe, T.; Miyaura, N.; Suzuki, A. Synlett 1992, 207.
       

    34. [34]

      Anderson, J C.; Namli, H. Synlett 1995, 765.

    35. [35]

      Chamoin, S.; Houldsworth, S.; Kruse, C. G.; Bakker, W. I.; Snieckus, V. Tetrahedron Lett. 1998, 39, 4179.  doi: 10.1016/S0040-4039(98)00779-5

    36. [36]

      Macklin, T. K.; Snieckus, V. Org. Lett. 2005, 7, 2519.  doi: 10.1021/ol050393c

    37. [37]

      Haddach, M.; McCarthy, J. R. Tetrahedron Lett. 1999, 40, 3109.  doi: 10.1016/S0040-4039(99)00476-1

    38. [38]

      Chaumeil, H.; Signorella, S.; Le Drian, C. Tetrahedron 2000, 56, 9655.  doi: 10.1016/S0040-4020(00)00928-5

    39. [39]

      Carreno, M. C.; Gonzalez-Lopez, M.; Latorre, A.; Urbano, A. J. Org. Chem. 2006, 71, 4956.  doi: 10.1021/jo060688j

    40. [40]

      Joseph, J. T.; Sajith, A. M.; Ningegowda, R. C.; Nagaraj, A.; Rangappa, K. S.; Shashikanth, S. Tetrahedron Lett. 2015, 56, 5106.  doi: 10.1016/j.tetlet.2015.07.033

    41. [41]

      Henry, N.; Enguehard-Gueiffier, C.; Thery, I.; Gueiffier, A. Eur. J. Org. Chem. 2008, 4824.

    42. [42]

      Castanet, A.-S.; Colobert, F.; Broutin, P.-E.; Obringer, M. Tetrahedron Asymm. 2002, 13, 659.  doi: 10.1016/S0957-4166(02)00169-6

    43. [43]

      Grimaud, L.; Jutand, A. Synthesis 2017, 49.

    44. [44]

      Thathong, Y.; Jitchati, R.; Wongkhan, K. APCBEE Proc. 2012, 3, 154.  doi: 10.1016/j.apcbee.2012.06.062

    45. [45]

      Zhang, Z.; Ji, H. Y.; Fu, X. L.; Yang, Y.; Xue, Y. R.; Gao, G. H. Chin. Chem. Lett. 2009, 20, 927.  doi: 10.1016/j.cclet.2009.03.034

    46. [46]

      Lando, V. R.; Monteiro, A. L. Org. Lett. 2003, 5, 2891.  doi: 10.1021/ol034948k

    47. [47]

      Limberger, J.; Claudino, T. S.; Monteiro, A. L. RSC Adv. 2014, 4, 45558.  doi: 10.1039/C4RA08036J

    48. [48]

      Joseph, J. T.; Sajith, A. M.; Ningegowda, R. C.; Nagaraj, A.; Rangappa, K. S.; Shashikanth, S. Tetrahedron Lett. 2015, 56, 5106.  doi: 10.1016/j.tetlet.2015.07.033

    49. [49]

      Forbes, A. M.; Meier, G. P.; Jones-Mensah, E.; Magolan, J. Eur. J. Org. Chem. 2016, 2983.

    50. [50]

      Qiao, K.; Wan, L.; Sun, X.; Zhang, K.; Zhu, N.; Li, X.; Guo, K. Eur. J. Org. Chem. 2016, 1606.

    51. [51]

      Zhang, D.; Qiao, K.; Yuan, X.; Zheng, M.; Fang, Z.; Wan, L.; Guo, K. Tetrahedron Lett. 2018, 59, 1752.  doi: 10.1016/j.tetlet.2018.03.071

    52. [52]

      Guo, J.; Harling, J. D.; Steel, P. G.; Woods, T. M. Org. Biomol. Chem. 2008, 6, 4053.  doi: 10.1039/b809577a

    53. [53]

      Steel, P. G.; Woods, T. M. Synthesis 2009, 3897.

    54. [54]

      Qiu, S.; Zhang, Y.; Huang, X.; Bao, L.; Hong, Y.; Zeng, Z.; Wu, J. Org. Lett. 2016, 18, 6018.  doi: 10.1021/acs.orglett.6b02904

    55. [55]

      Jordán, S.; Pajtás, D.; Patonay, T.; Langer, P.; Kónya, K. Synthesis 2017, 49, 1983.  doi: 10.1055/s-0036-1588376

    56. [56]

      Ezquerra, J.; Lamas, C.; Pastor, A.; Garcia-Navio, J. L.; Vaquero, J. J. Tetrahedron 1997, 53, 12755.  doi: 10.1016/S0040-4020(97)00795-3

    57. [57]

      Parrot, I.; Rival, Y.; Wermuth, C. G. Synthesis 1999, 1163.

    58. [58]

      Paal, M.; Ruehter, G.; Schotten, T. WO 0078726, 2000.

    59. [59]

      McKenna, J. M.; Moliterni, J.; Qiao, Y. Tetrahedron Lett. 2001, 42, 5797.  doi: 10.1016/S0040-4039(01)01132-7

    60. [60]

      Semko, C. M.; Chen, L.; Dressen, D. B.; Dreyer, M. L.; Dunn, W.; Farouz, F. S.; Freedman, S. B.; Holsztynska, E. J.; Jefferies, M.; Konradi, A. W.; Liao, A.; Lugar, J.; Mutter, L.; Pleiss, M. A.; Quinn, K. P.; Thompson, T.; Thorsett, E. D.; Vandevert, C.; Xu, Y.-Z.; Yednock, T. A. Bioorg. Med. Chem. Lett. 2011, 21, 1741.  doi: 10.1016/j.bmcl.2011.01.075

    61. [61]

      Huang, C. Q.; Wilcoxen, K.; McCarthy, J. R.; Haddach, M.; Webb, T. R.; Gu, J.; Xie, Y.-F.; Grigoriadis, D. E.; Chen, C. Bioorg. Med. Chem. Lett. 2003, 13, 3375.  doi: 10.1016/S0960-894X(03)00684-X

    62. [62]

      Pontillo, J.; Guo, Z.; Wu, D.; Struthers, R. S.; Chen, C. Bioorg. Med. Chem. Lett. 2005, 15, 4363.  doi: 10.1016/j.bmcl.2005.06.057

    63. [63]

      Yasuma, T., Kitamura, S., Negoro, N. WO 2005063729, 2005.

    64. [64]

      Kazock, J.-Y.; Enguehard-Gueiffier, C.; Thery, I.; Gueiffier, A. Bull. Chem. Soc. Jpn. 2005, 78, 154.  doi: 10.1246/bcsj.78.154

    65. [65]

      Yoon, T., De Lombaert, S., Brodbeck, R., Gulianello, M., Krause, J. E., Hutchison, A., Horvath, R. F., Ge, P., Kehne, J, Hoffman, D., Chandrasekhar, J., Doller, D., Hodgetts, K. J. Bioorg. Med. Chem. Lett. 2008, 18, 4486.  doi: 10.1016/j.bmcl.2008.07.063

    66. [66]

      Liu, J.-J. WO 2009115425, 2009.

    67. [67]

      Cross, R. M.; Flanigan, D. L.; Monastyrskyi, A.; LaCrue, A. N.; Saenz, F. E.; Maignan, J. R.; Mutka, T. S.; White, K. L.; Shackleford, D. M.; Bathurst, I.; Fronczek, F. R.; Wojtas, L.; Guida, W. C.; Charman, S. A.; Burrows, J. N.; Kyle, D. E.; Manetsch, R. J. Med. Chem. 2014, 57, 8860.  doi: 10.1021/jm500942v

    68. [68]

      Lindner, A. S.; Geist, E.; Gjikaj, M.; Schmidt, A. J. Heterocycl. Chem. 2014, 51, 423.  doi: 10.1002/jhet.v51.2

    69. [69]

      Reed, M. A.; Wood, T. K.; Banfield, S. C.; Barden, C. J.; Yadav, A.; Lu, E.; Wu, F. WO 2015131021, 2015.

    70. [70]

      Reddy, G. M.; Garcia, J. R.; Reddy, V. H.; de Andrade, A. M.; Camilo, A., Jr.; Pontes Ribeiro, R. A.; de Lazaro, S. R. Eur. J. Med. Chem. 2016, 123, 508.  doi: 10.1016/j.ejmech.2016.07.062

    71. [71]

      Schmittel, M.; Ganz, A. Synlett 1997, 710.

    72. [72]

      Schmittel, M.; Ganz, A.; Schenk, W A.; Hagel, M. Z. Naturforsch. B, Chem. Sci. 1999, 54, 559.  doi: 10.1515/znb-1999-0421

    73. [73]

      Toyota, S.; Woods, C. R.; Benaglia, M.; Siegel, J. S. Tetrahedron Lett. 1998, 39, 2697.  doi: 10.1016/S0040-4039(98)00409-2

    74. [74]

      Toyota, S.; Woods, C R.; Benaglia, M.; Haldimann, R.; Warnmark, K.; Hardcastle, K.; Siegel, J S. Angew. Chem., Int. Ed. 2001, 40, 751.  doi: 10.1002/1521-3773(20010216)40:4<>1.0.CO;2-X

    75. [75]

      Tse, M. K.; Zhou, Z. Y.; Mak, T. C. W.; Chan, K. S. Tetrahedron 2000, 56, 7779.  doi: 10.1016/S0040-4020(00)00697-9

    76. [76]

      Lauffer, R. B., McMurry, T. J., Dumas, S., Kolodziej, A., Amedio, J.; Caravan, P., Zhang, Z.; Nair, S. WO 0108712, 2001.

    77. [77]

      Shi, B.; Boyle, R. W. J. Chem. Soc., Perkin Trans. 1 2002, 1397.

    78. [78]

      Goodall, W.; Wild, K.; Arm, K. J.; Williams, J. A. G. J. Chem. Soc., Perkin Trans. 2 2002, 1669.

    79. [79]

      Chen, H.-P.; Liu, Y.-H.; Peng, S.-M.; Liu, S.-T. Organometallics 2003, 22, 4893.  doi: 10.1021/om030242i

    80. [80]

      Wang, C.-Y.; Liu, Y.-H.; Peng, S.-M.; Liu, S.-T. J. Organomet. Chem. 2006, 691, 4012.  doi: 10.1016/j.jorganchem.2006.06.004

    81. [81]

      Chao, C.-C.; Leung, M.-K.; Su, Y. O.; Chiu, K.-Y.; Lin, T.-H.; Shieh, S.-J.; Lin, S.-C. J. Org. Chem. 2005, 70, 4323.  doi: 10.1021/jo050001f

    82. [82]

      He, J.; Li, S.; Zeng, H. J. Heterocycl. Chem. 2017, 54, 2800.  doi: 10.1002/jhet.v54.5

    83. [83]

      Samanta, S. K.; Rana, A.; Schmittel, M. Dalton Trans. 2014, 43, 9438.  doi: 10.1039/C4DT00849A

    84. [84]

      Coombs, N. D.; Stasch, A.; Cowley, A.; Thompson, A. L.; Aldridge, S. Dalton Trans. 2008, 332.

    85. [85]

      Cozzi, F.; Annunziata, R.; Benaglia, M.; Baldridge, K. K.; Aguirre, G.; Estrada, J.; Sritana-Anant, Y.; Siegel, J. S. Phys. Chem. Chem. Phys. 2008, 10, 2686.  doi: 10.1039/b800031j

    86. [86]

      Fukuzumi, S.; Ito, A.; Kotani, H. JP 2008222471, 2008.

    87. [87]

      Moorthy, J. N.; Natarajan, P.; Venugopalan, P. J. Org. Chem. 2009, 74, 8566.  doi: 10.1021/jo901465f

    88. [88]

      Uberman, P. M.; Lanteri, M. N.; Parajon Puenzo, S. C.; Martin, S. E. Dalton Trans. 2011, 40, 9229.  doi: 10.1039/c1dt10207a

    89. [89]

      Quinteros, G. J.; Uberman, P. M.; Martin, S. E. Eur. J. Org. Chem. 2015, 2698.

    90. [90]

      Carpenter, A. E.; Mokhtarzadeh, C. C.; Ripatti, D. S.; Havrylyuk, I.; Kamezawa, R.; Moore, C. E.; Rheingold, A. L.; Figueroa, J. S. Inorg. Chem. 2015, 54, 2936.  doi: 10.1021/ic5030845

    91. [91]

      Kawakami, H.; Tonegawa, A.; Ishida, T. Dalton Trans. 2016, 45, 1306.  doi: 10.1039/C5DT04218F

    92. [92]

      Chen, X., Shi, Q.; Chen, P.; An, Z. CN 104326893, 2016.

    93. [93]

      Choi, J.; Kwak, S.; Kwak, Y.; Kwon, O.; Kim, J.; Lee, K.; Lee, S. US 20160013431 2016.

    94. [94]

      Henwood, A. F.; Bansal, A. K.; Cordes, D. B.; Slawin, A. M. Z.; Samuel, I. D. W.; Zysman-Colman, E. J. Mater. Chem. C 2016, 4, 3726.  doi: 10.1039/C6TC00151C

    95. [95]

      Martir, D. R.; Momblona, C.; Pertegas, A.; Cordes, D. B.; Slawin, A. M.; Bolink, H. J.; Zysman-Colman, E. ACS Appl. Mater. Interfaces 2016, 8, 33907.  doi: 10.1021/acsami.6b14050

    96. [96]

      Zysman-Colman, E.; Henwood, A. US 20160141523 2016.

    97. [97]

      Martir, D. R.; Hedley, G. J.; Cordes, D. B.; Slawin, A. M. Z.; Escudero, D.; Jacquemin, D.; Kosikova, T.; Philp, D.; Dawson, D. M.; Ashbrook, S. E.; Samuel, I. D. W.; Zysman-Colmana, E. Dalton Trans. 2016, 45, 17195.  doi: 10.1039/C6DT02619B

    98. [98]

      Mietke, T.; Cruchter, T.; Winterling, E.; Tripp, M.; Harms, K.; Meggers, E. Chem.-Eur. J. 2017, 23, 12363.  doi: 10.1002/chem.201701758

    99. [99]

      Benjamin, H.; Fox, M. A.; Batsanov, A. S.; Al-Attar, H. A.; Li, C.; Ren, Z.; Monkman, A. P.; Bryce, M. R. Dalton Trans. 2017, 46, 10996.  doi: 10.1039/C7DT02289A

    100. [100]

      Senge, M. O.; Shaker, Y. M.; Pintea, M.; Ryppa, C.; Hatscher, S. S.; Ryan, A.; Sergeeva, Y. Eur. J. Org. Chem. 2010, 237.

    101. [101]

      Saito, S.; Oh-tani, S.; Miyaura, N. J. Org. Chem. 1997, 62, 8024.  doi: 10.1021/jo9707848

    102. [102]

      Ueda, M.; Saitoh, A.; Oh-Tani, S.; Miyaura, N. Tetrahedron 1998, 54, 13079.  doi: 10.1016/S0040-4020(98)00809-6

    103. [103]

      Littke, A. F.; Dai, C.; Fu, G. C. J. Am. Chem. Soc. 2000, 122, 4020.  doi: 10.1021/ja0002058

    104. [104]

      Kirchhoff, J. H.; Netherton, M. R.; Hills, I. D.; Fu, G. C. J. Am. Chem. Soc. 2002, 124, 13662.  doi: 10.1021/ja0283899

    105. [105]

      Guram, A. S.; King, A. O.; Allen, J. G.; Wang, X.; Schenkel, L. B.; Chan, J.; Bunel, E. E.; Faul, M. M.; Larsen, R. D.; Martinelli, M. J.; Reider, P. J. Org. Lett. 2006, 8, 1787.  doi: 10.1021/ol060268g

    106. [106]

      Hansen, A. L.; Ebran, J.-P.; Gogsig, T. M.; Skrydstrup, T. Chem. Commun. 2006, 4137.

    107. [107]

      Hoshi, T.; Nakazawa, T.; Saitoh, I.; Mori, A.; Suzuki, T.; Sakai, J-i.; Hagiwara, H. Org. Lett. 2008, 10, 2063.  doi: 10.1021/ol800567q

    108. [108]

      Hoshi, T.; Saitoh, I.; Nakazawa, T.; Suzuki, T.; Sakai, J.-I.; Hagiwara, H. J. Org. Chem. 2009, 74, 4013  doi: 10.1021/jo900550g

    109. [109]

      Franc, C.; Denonne, F.; Cuisinier, C.; Ghosez, L. Tetrahedron Lett. 1999, 40, 4555.  doi: 10.1016/S0040-4039(99)00808-4

    110. [110]

      Ghosez, L.; Franc, C.; Denonne, F.; Cuisinier, C.; Touillaux, R. Can. J. Chem. 2001, 79, 1827.  doi: 10.1139/v01-156

    111. [111]

      Lipshutz, B. H.; Petersen, T. B.; Abela, A. R. Org. Lett. 2008, 10, 1333.  doi: 10.1021/ol702714y

    112. [112]

      Donohoe, T. J.; Kershaw, N. M.; Baron, R.; Compton, R. G. Tetrahedron 2009, 65, 5377.  doi: 10.1016/j.tet.2009.04.057

    113. [113]

      Kang, P.-S.; Ko, S. B.; Ko, J. M.; Park, J. H. Bull. Korean Chem. Soc. 2009, 30, 2697.  doi: 10.5012/bkcs.2009.30.11.2697

    114. [114]

      Zhang, H.; Zhou, C.-B.; Chen, Q.-Y.; Xiao, J.-C.; Hong, R. Org. Lett. 2011, 13, 560.  doi: 10.1021/ol102645g

    115. [115]

      Yamamoto, Y.; Takizawa, M.; Yu, X.-Q.; Miyaura, N. Angew. Chem., Int. Ed. 2008, 47, 928.  doi: 10.1002/(ISSN)1521-3773

    116. [116]

      Yu, X.-Q.; Yamamoto, Y.; Miyaura, N. Chem.-Asian J. 2008, 3, 1517.  doi: 10.1002/asia.v3:8/9

    117. [117]

      Yu, X.-Q.; Shirai, T.; Yamamoto, Y.; Miyaura, N. Chem.-Asian J. 2011, 6, 932.  doi: 10.1002/asia.201000589

    118. [118]

      Li, G. Q.; Yamamoto, Y.; Miyaura, N. Synlett 2011, 1769.

    119. [119]

      Zimmermann, B.; Dzik, W. I.; Himmler, T.; Goossen, L. J. J. Org. Chem. 2011, 76, 8107.  doi: 10.1021/jo2014998

    120. [120]

      Yang, J.; Liu, S.; Zheng, J. F.; Zhou, J. S. Eur. J. Org. Chem. 2012, 6248.

    121. [121]

      Zou, Y.; Yue, G.; Xu, J.; Zhou, J. S. Eur. J. Org. Chem. 2014, 5901.

    122. [122]

      Yue, G.; Wu, Y.; Wu, C.; Yin, Z.; Chen, H.; Wang, X.; Zhang, Z. Tetrahedron Lett. 2017, 58, 666.  doi: 10.1016/j.tetlet.2017.01.014

    123. [123]

      Yuan, M.; Fang, Y.; Zhang, L.; Jin, X.; Tao, M.; Ye, Q.; Li, R.; Li, J.; Zheng, H.; Gu, J. Chin. J. Chem. 2015, 33, 1119.  doi: 10.1002/cjoc.201500414

    124. [124]

      Fang, Y.; Zhang, L.; Jin, X.; Li, J.; Yuan, M.; Li, R.; Wang, T.; Wang, T.; Hu, H.; Gu, J. Eur. J. Org. Chem. 2016, 1577.

    125. [125]

      Liu, C.; Liu, Y.; Liu, R.; Lalancette, R.; Szostak, R.; Szostak, M. Org. Lett. 2017, 19, 1434.  doi: 10.1021/acs.orglett.7b00373

    126. [126]

      Hachisu, S.; Hennessy, A. J.; Wailes, J. S.; Willetts, N. J.; Mathews, C. J.; Black, J.; Dale, S. J.; WO 2016062585, 2016.

    127. [127]

      Petrera, M.; Wein, T.; Allmendinger, L.; Sindelar, M.; Pabel, J.; Hoefner, G.; Wanner, K. T. ChemMedChem 2016, 11, 519.  doi: 10.1002/cmdc.v11.5

    128. [128]

      Christina, S.; Jeremy, D.; Mingliang, Z.; Zhenmin, H.; Huisheng, X. WO 2016019588, 2016.

    129. [129]

      Hareesh, N.; Bindu, S.; Klaus, N. WO 2016154203 2016.

    130. [130]

      Kaukoranta, P.; Kaellstroem, K.; Andersson, P. G. Adv. Synth. Catal. 2007, 349, 2595.  doi: 10.1002/(ISSN)1615-4169

    131. [131]

      Enthaler, S.; Erre, G.; Junge, K.; Schröder, K.; Addis, D.; Michalik, D.; Hapke, M.; Redkin, D.; Beller, M. Eur. J. Org. Chem. 2008, 3352.

    132. [132]

      Erre, G.; Junge, K.; Enthaler, S.; Addis, D.; Michalik, D.; Spannenberg, A.; Beller, M. Chem.-Asian J. 2008, 3, 887.  doi: 10.1002/(ISSN)1861-471X

    133. [133]

      McDougal, N. T.; Trevellini, W. L.; Rodgen, S. A.; Kliman, L. T.; Schaus, S. E. Adv. Synth. Catal. 2004, 346, 1231.  doi: 10.1002/(ISSN)1615-4169

    134. [134]

      Rueping, M.; Nachtsheim, B. J.; Koenigs, R. M.; Ieawsuwan, W. Chem.-Eur. J. 2010, 16, 13116.  doi: 10.1002/chem.201001438

    135. [135]

      Vargas, R. J. Vargas, R. J. WO 2010117886, 2010.

    136. [136]

      Yamada, N.; Kamatani, J.; Horiuchi, T.; Tomono, H.; Saitoh, A. WO 2010119914, 2010.

    137. [137]

      Nishide, Y.; Yamada, N.; Kamatani, J.; Ishii, R.; Kajimoto, N.; Ito, T.; Mizuno, N.; Ishige, K.; Saitoh, A. WO 2014163028, 2014.

    138. [138]

      Kondolff, I.; Doucet, H.; Santelli, M. Synlett 2005, 2057.

    139. [139]

      Demchuk, O. M.; Yoruk, B.; Blackburn, T.; Snieckus, V. Synlett 2006, 2908.

    140. [140]

      Izmer, V. V.; Lebedev, A. Y.; Nikulin, M. V.; Ryabov, A. N.; Asachenko, A. F.; Lygin, A. V.; Sorokin, D. A.; Voskoboynikov, A. Z. Organometallics 2006, 25, 1217.  doi: 10.1021/om050937e

    141. [141]

      Iwasawa, T.; Kamei, T.; Watanabe, S.; Nishiuchi, M.; Kawamura, Y. Tetrahedron Lett. 2008, 49, 7430.  doi: 10.1016/j.tetlet.2008.10.071

    142. [142]

      Zhao, Q.; Li, C.; Senanayake, C. H.; Tang, W. Chem.-Eur. J. 2013, 19, 2261.  doi: 10.1002/chem.v19.7

    143. [143]

      Tang, W.; Capacci, A. G.; Wei, X.; Li, W.; White, A.; Patel, N. D.; Savoie, J.; Gao, J. J.; Rodriguez, S.; Qu, B. Angew. Chem., Int. Ed. 2010, 49, 5879.  doi: 10.1002/anie.201002404

    144. [144]

      Xu, G. Q.; Zhao, Q.; Tang, W. J. Chin. J. Org. Chem. 2014, 34, 1919(in Chinese).
       

    145. [145]

      Li, C. X.; Chen, D. P. Tang, W. J. Synlett 2016, 27, 2183.  doi: 10.1055/s-0035-1562360

    146. [146]

      Altenhoff, G.; Goddard, R.; Lehmann, C. W.; Glorius, F. J. Am. Chem. Soc. 2004, 126, 15195.  doi: 10.1021/ja045349r

    147. [147]

      Wuertz, S.; Glorius, F. Acc. Chem. Res. 2008, 41, 1523.  doi: 10.1021/ar8000876

    148. [148]

      Altenhoff, G.; Goddard, R.; Lehmann, C. W.; Glorius, F. Angew. Chem., Int. Ed. 2003, 42, 3690.  doi: 10.1002/(ISSN)1521-3773

    149. [149]

      Schmidt, A.; Rahimi, A. Chem. Commun. 2010, 46, 2995.  doi: 10.1039/c001362e

    150. [150]

      Singh, R.; Viciu, M S.; Kramareva, N.; Navarro, O.; Nolan, S P. Org. Lett. 2005, 7, 1829.  doi: 10.1021/ol050472o

    151. [151]

      O'Brien, C. J.; Kantchev, E. A. B.; Valente, C.; Hadei, N.; Chass, G. A.; Lough, A.; Hopkinson, A. C.; Organ, M. G. Chem.-Eur. J. 2006, 12, 4743.  doi: 10.1002/(ISSN)1521-3765

    152. [152]

      Organ, M. G.; Çalimsiz, S.; Sayah, M.; Hoi, K. H.; Lough, A. J. Angew. Chem. Int. Ed. 2009, 48, 2383.  doi: 10.1002/anie.200805661

    153. [153]

      Wang, C.-Y.; Liu, Y.-H.; Peng, S.-M.; Chen, J.-T.; Liu, S.-T. J. Organomet. Chem. 2007, 692, 3976.  doi: 10.1016/j.jorganchem.2007.06.007

    154. [154]

      Paulose, T. A. P.; Olson, J. A.; Wilson Quail, J.; Foley, S. R. J. Organomet. Chem. 2008, 693, 3405.  doi: 10.1016/j.jorganchem.2008.07.040

    155. [155]

      Diebolt, O.; Braunstein, P.; Nolan, S. P.; Cazin, C. S. J. Chem. Commun. 2008, 3190.
       

    156. [156]

      Diebolt, O.; Braunstein, P.; Nolan, S. P.; Cazin, C. S. J. Chem. Commun. 2008, 3190.
       

    157. [157]

      Hsu, Y.-C.; Shen, J.-S.; Lin, B.-C.; Chen, W.-C.; Chan, Y.-T.; Ching, W.-M.; Yap, G. P. A.; Hsu, C.-P.; Ong, T.-G. Angew. Chem., Int. Ed. 2015, 54, 2420.  doi: 10.1002/anie.201406481

    158. [158]

      Dyker, C. A.; Lavallo, V.; Donnadieu, B.; Bertrand, G. Angew. Chem., Int. Ed. 2008, 47, 3206.  doi: 10.1002/(ISSN)1521-3773

    159. [159]

      Fürstner, A. F.; Alcarazo, M.; Goddard, R.; Lehmann, C. W. Angew. Chem., Int. Ed. 2008, 47, 3210  doi: 10.1002/(ISSN)1521-3773

    160. [160]

      Shih, W.-C.; Chiang, Y.-T.; Wang, Q.; Wu, M.-C.; Yap, G. P. A.; Zhao, L.; Ong, T.-G. Organometallics 2017, 36, 4287.  doi: 10.1021/acs.organomet.7b00692

    161. [161]

      Mikhailov, V. N.; Korvinson, K.; Sorokoumov, V. N. Russ. J. Gen. Chem. 2016, 86, 2473.  doi: 10.1134/S1070363216110128

    162. [162]

      Gribanov, P. S.; Chesnokov, G. A.; Topchiy, M. A.; Asachenko, A. F.; Nechaev, M. S. Org. Biomol. Chem. 2017, 15, 9575.  doi: 10.1039/C7OB02091K

    163. [163]

      Lu, D. D.; He, X. X.; Liu, F. S. J. Org. Chem. 2017, 82, 10898.  doi: 10.1021/acs.joc.7b01711

    164. [164]

       

    165. [165]

      Brayton, D. F.; Larkin, T. M.; Vicic, D. A.; Navarro, O. J. Organomet. Chem. 2009, 694, 3008.  doi: 10.1016/j.jorganchem.2009.04.044

    166. [166]

      Diebolt, O.; Jurčík, V.; Correa da Costa, R.; Braunstein, P.; Cavallo, L.; Nolan, S. P.; Slawin, A. M. Z.; Cazin, C. S. J. Organometallics 2010, 29, 1443.  doi: 10.1021/om9011196

    167. [167]

      So, C. M.; Chow, W. K.; Choy, P. Y.; Lau, C. P.; Kwong, F. Y. Chem.-Eur. J. 2010, 16, 7996.  doi: 10.1002/chem.201000723

    168. [168]

      Fu, W. C.; Zhou, Z.; Kwong, F. Y. Org. Chem. Front. 2016, 3, 273.  doi: 10.1039/C5QO00400D

    169. [169]

      Guram, A. S.; Wang, X.; Bunel, E. E.; Faul, M. M.; Larsen, R. D.; Martinelli, M. J. J. Org. Chem. 2007, 72, 5104.  doi: 10.1021/jo070341w

    170. [170]

      Ackermann, L.; Potukuchi, H. K.; Althammer, A.; Born, R.; Mayer, P. Org. Lett. 2010, 12, 1004.  doi: 10.1021/ol1000186

    171. [171]

      Korolev, D. N.; Bumagin, N. A. Tetrahedron Lett. 2005, 46, 5751.  doi: 10.1016/j.tetlet.2005.06.085

    172. [172]

      Lin, X.-F.; Loughhead, D. G.; Novakovic, S.; O'Yang, C.; Putman, D. G.; Soth, M. F. WO 2005016892, 2005.

    173. [173]

      Steffen, A.; Sladek, M. I.; Braun, T.; Neumann, B.; Stammler, H.-G. Organometallics 2005, 24, 4057.  doi: 10.1021/om050080l

    174. [174]

      Rosa, G. R.; Rosa, C. H.; Rominger, F.; Dupont, J.; Monteiro, A. L. Inorg. Chim. Acta 2006, 359, 1947.  doi: 10.1016/j.ica.2005.11.031

    175. [175]

      Desmarets, C.; Omar-Amrani, R.; Walcarius, A.; Lambert, J.; Champagne, B.; Fort, Y.; Schneider, R. Tetrahedron 2008, 64, 372.  doi: 10.1016/j.tet.2007.10.091

    176. [176]

      Ines, B.; Moreno, I.; SanMartin, R.; Dominguez, E. J. Org. Chem. 2008, 73, 8448.  doi: 10.1021/jo8016633

    177. [177]

      Nobre, S. M.; Monteiro, A. L. J. Mol. Catal. A Chem. 2009, 313, 65.  doi: 10.1016/j.molcata.2009.08.003

    178. [178]

      Matos, K.; de Oliveira, L. L.; Favero, C.; Monteiro, A. L.; Hoerner, M.; Carpentier, J.-F.; Gil, M. P.; Casagrande, O. L. Inorg. Chim. Acta 2009, 362, 4396.  doi: 10.1016/j.ica.2009.04.014

    179. [179]

      Levin, M. D.; Toste, F. D. Angew. Chem., Int. Ed. 2014, 53, 6211.  doi: 10.1002/anie.201402924

    180. [180]

      Chen, Y.-Z.; Zhang, L.; Lu, A.-M.; Yang, F.; Wu, L. J. Org. Chem. 2015, 80, 673  doi: 10.1021/jo502485u

    181. [181]

      Melvin, P. R.; Nova, A.; Balcells, D.; Dai, W.; Hazari, N.; Hruszkewycz, D. P.; Shah, H. P.; Tudge, M. T. ACS Catal. 2015, 5, 3680.  doi: 10.1021/acscatal.5b00878

    182. [182]

      Hazari, N.; Melvin, P.; Hruszkewycz, D. WO 2016057600, 2016.

    183. [183]

      Palau-Lluch, G.; Fernandez, E. Asian J. Org. Chem. 2015, 4, 963.  doi: 10.1002/ajoc.v4.9

    184. [184]

      Allouche, E. M. D.; Taillemaud, S.; Charette, A. B. Chem. Commun. 2017, 53, 9606.  doi: 10.1039/C7CC04348A

    185. [185]

      Zhou, Z.; Zhang, Y.; Xia, W.; Chen, H.; Liang, H.; He, X.; Yu, S.; Cao, R.; Qiu, L. Asian J. Org. Chem. 2016, 5, 1260.  doi: 10.1002/ajoc.v5.10

    186. [186]

      Ishiyama, T.; Kizaki, H.; Miyaura, N.; Suzuki, A. Tetrahedron Lett. 1993, 34, 7595.  doi: 10.1016/S0040-4039(00)60409-4

    187. [187]

      Suzuki, A.; Miyaura, N. J. Synth. Org. Chem. 1993, 51, 1043.  doi: 10.5059/yukigoseikyokaishi.51.1043

    188. [188]

      Matsuda, T.; Makino, M.; Murakami, M. Bull. Chem. Soc. Jpn. 2005, 78, 1528.  doi: 10.1246/bcsj.78.1528

    189. [189]

      Ohishi, T.; Nishiura, M.; Hou, Z. Angew. Chem., Int. Ed. 2008, 47, 5792.  doi: 10.1002/anie.v47:31

    190. [190]

      Yamaguchi, K.; Yamaguchi, J.; Studer, A.; Itami, K. Chem. Sci. 2012, 3, 2165.  doi: 10.1039/c2sc20277h

    191. [191]

      Yamaguchi, K.; Kondo, H.; Yamaguchi, J.; Itami, K. Chem. Sci. 2013, 4, 3753.  doi: 10.1039/c3sc51206a

    192. [192]

      Srinivasan, R.; Senthil Kumaran, R.; Nagarajan, N. S. RSC Adv. 2014, 4, 47697.  doi: 10.1039/C4RA06055E

    193. [193]

      Walker, S. E.; Jordan-Hore, J. A.; Johnson, D. G.; MacGregor, S. A.; Lee, A.-L. Angew. Chem., Int. Ed. 2014, 53, 13876.  doi: 10.1002/anie.201408054

    194. [194]

      Feng, C.; Loh, T-P. Chem. Commun. 2010, 46, 4779.  doi: 10.1039/c0cc00403k

    195. [195]

      Muto, K.; Yamaguchi, J.; Musaev, D. G.; Itami, K. Nat. Commun. 2015, 6, 7508.  doi: 10.1038/ncomms8508

    196. [196]

      Kenichiro, I.; Junichiro, Y.; Kel, M. WO 2016027809 2016.

    197. [197]

      Zhang, Z.; Liebeskind, L. S. Org. Lett. 2006, 8, 4331.  doi: 10.1021/ol061741t

    198. [198]

      Anbarasan, P.; Neumann, H.; Beller, M. Angew. Chem., Int. Ed. 2011, 50, 519.  doi: 10.1002/anie.201006044

    199. [199]

      Ma, L.; Placzek, M. S.; Hooker, J. M.; Vasdev, N.; Liang, S. H. Chem. Commun. 2017, 53, 6597.  doi: 10.1039/C7CC02886E

    200. [200]

      Makaravage, K. J.; Shao, X.; Brooks, A. F.; Yang, L.; Sanford, M. S.; Scott, P. J. H. Org. Lett. 2018, 20, 1530.  doi: 10.1021/acs.orglett.8b00242

    201. [201]

      Rao, H.; Fu, H.; Jiang, Y.; Zhao, Y. Angew. Chem., Int. Ed. 2009, 48, 1114.  doi: 10.1002/anie.v48:6

    202. [202]

      Zhu, C.; Li, G.; Ess, D. H.; Falck, J. R.; Kürti, L. J. Am. Chem. Soc. 2012, 134, 18253.  doi: 10.1021/ja309637r

    203. [203]

      Li, Y.; Gao, L. X.; Han, F. S. Chem.-Eur. J. 2010, 16, 7969.  doi: 10.1002/chem.201000971

    204. [204]

      Molander, G. A.; Cavalcanti, L. N. J. Org. Chem. 2012, 77, 4402.  doi: 10.1021/jo300551m

    205. [205]

      Chen, J.; Natte, K.; Man, N. Y. T.; Stewart, S. G.; Wu, X.-F. Tetrahedron Lett. 2015, 56, 4843.  doi: 10.1016/j.tetlet.2015.06.092

    206. [206]

      Roscales, S.; Csӓky, A. G. Org. Lett. 2018, 20, 1667.  doi: 10.1021/acs.orglett.8b00473

    207. [207]

      Drost, R. M.; Broere, D. L. J.; Hoogenboom, J.; de Baan, S. N.; Lutz, M.; de Bruin, B.; Elsevier, C. J. Eur. J. Inorg. Chem. 2015, 982.

    208. [208]

      Gogoi, P.; Kalita, M.; Barman, P. Synlett 2014, 25, 866.  doi: 10.1055/s-00000083

    209. [209]

      Mohan, B.; Mohan, B.; Yoon, C.; Jang, S.; Park, K. H. ChemCatChem 2015, 7, 405.  doi: 10.1002/cctc.v7.3

    210. [210]

      Park, K. H.; Park, S. K.; Youn, B. H.; Park, J. K.; Lee, G. S.; Mohan, B.; Jang, S. W.; Lee, S. G.; Lee, S. G.; Yoon, C. H. US 20160311768 2016.

    211. [211]

      Mukherjee, N.; Kundu, D.; Ranu, B. C. Adv. Synth. Catal. 2017, 359, 329.  doi: 10.1002/adsc.v359.2

    212. [212]

      Andappan, M. M. S.; Nilsson, P.; Larhed, M. Mol. Diversity 2003, 7, 97.  doi: 10.1023/B:MODI.0000006803.99656.8c

    213. [213]

      Andappan, M. M. S.; Nilsson, P.; Larhed, M. Chem. Commun. 2004, 218.
       

    214. [214]

      Vellakkaran, M.; Andappan, M. M. S.; Nagaiah, K. RSC Adv. 2014, 4, 45490.  doi: 10.1039/C4RA07478E

    215. [215]

      Vellakkaran, M.; Andappan, M. M. S.; Kommu, N. Green Chem. 2014, 16, 2788.  doi: 10.1039/C3GC42504E

    216. [216]

      Chen, S.; Zhang, X.; Chu, M.; Gan, X.; Lv, X.; Yu, J. Synlett 2015, 26, 791.  doi: 10.1055/s-00000083

    217. [217]

      Li, Y.; Tu, D.-H.; Gu, Y.-J.; Wang, B.; Wang, Y.-Y.; Liu, Z.-T.; Liu, Z.-W.; Lu, J. Eur. J. Org. Chem. 2015, 4340.

    218. [218]

      Gauchot, V.; Lee, A. L. Chem. Commun. 2016, 52, 10163.  doi: 10.1039/C6CC05078F

    219. [219]

      Nambo, M.; Keske, E. C.; Rygus, J. P. G.; Yim, J. C. H.; Crudden, C. M. ACS Catal. 2017, 7, 1108.  doi: 10.1021/acscatal.6b03434

  • 加载中
    1. [1]

      Jing WUPuzhen HUIHuilin ZHENGPingchuan YUANChunfei WANGHui WANGXiaoxia GU . Synthesis, crystal structures, and antitumor activities of transition metal complexes incorporating a naphthol-aldehyde Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2422-2428. doi: 10.11862/CJIC.20240278

    2. [2]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    3. [3]

      Jiaming Xu Yu Xiang Weisheng Lin Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093

    4. [4]

      Wei Zhong Dan Zheng Yuanxin Ou Aiyun Meng Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005

    5. [5]

      Guoqiang Chen Zixuan Zheng Wei Zhong Guohong Wang Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021

    6. [6]

      Aiyi Xin Jiawei Li Xinyang Ran Chuanjiang Fu Zhiguo Wang . Collaborative Science and Education Based Experimental Design in Organic Chemistry: A Case Study of the Nucleophilic Substitution Reaction of 2-Hydroxymethyl-4,6-Di-Tert-Butylphenol. University Chemistry, 2025, 40(5): 366-375. doi: 10.12461/PKU.DXHX202407031

    7. [7]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006

    8. [8]

      Yi Yang Xin Zhou Miaoli Gu Bei Cheng Zhen Wu Jianjun Zhang . Femtosecond transient absorption spectroscopy investigation on ultrafast electron transfer in S-scheme ZnO/CdIn2S4 photocatalyst for H2O2 production and benzylamine oxidation. Acta Physico-Chimica Sinica, 2025, 41(6): 100064-. doi: 10.1016/j.actphy.2025.100064

    9. [9]

      Renxiao Liang Zhe Zhong Zhangling Jin Lijuan Shi Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024

    10. [10]

      Shulei HuYu ZhangXiong XieLuhan LiKaixian ChenHong LiuJiang Wang . Rh(Ⅲ)-catalyzed late-stage C-H alkenylation and macrolactamization for the synthesis of cyclic peptides with unique Trp(C7)-alkene crosslinks. Chinese Chemical Letters, 2024, 35(8): 109408-. doi: 10.1016/j.cclet.2023.109408

    11. [11]

      Yahui HANJinjin ZHAONing RENJianjun ZHANG . Synthesis, crystal structure, thermal decomposition mechanism, and fluorescence properties of benzoic acid and 4-hydroxy-2, 2′: 6′, 2″-terpyridine lanthanide complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 969-982. doi: 10.11862/CJIC.20240395

    12. [12]

      Xiaofeng Xia Jielian Zhu . Innovative Comprehensive Experimental Design: Synthesis of 6-Fluoro-N-benzoyl Tetrahydroquinoline. University Chemistry, 2024, 39(10): 344-352. doi: 10.12461/PKU.DXHX202405063

    13. [13]

      Ke-Ai Zhou Lian Huang Xing-Ping Fu Li-Ling Zhang Yu-Ling Wang Qing-Yan Liu . Fluorinated metal-organic framework for methane purification from a ternary CH4/C2H6/C3H8 mixture. Chinese Journal of Structural Chemistry, 2023, 42(11): 100172-100172. doi: 10.1016/j.cjsc.2023.100172

    14. [14]

      Wanmin Cheng Juan Du Peiwen Liu Yiyun Jiang Hong Jiang . Photoinitiated Grignard Reagent Synthesis and Experimental Improvement in Triphenylmethanol Preparation. University Chemistry, 2024, 39(5): 238-242. doi: 10.3866/PKU.DXHX202311066

    15. [15]

      Jianyu Qin Yuejiao An Yanfeng ZhangIn Situ Assembled ZnWO4/g-C3N4 S-Scheme Heterojunction with Nitrogen Defect for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408002-. doi: 10.3866/PKU.WHXB202408002

    16. [16]

      Yifeng TANPing CAOKai MAJingtong LIYuheng WANG . Synthesis of pentaerythritol tetra(2-ethylthylhexoate) catalyzed by h-MoO3/SiO2. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2155-2162. doi: 10.11862/CJIC.20240147

    17. [17]

      Dong-Xue Jiao Hui-Li Zhang Chao He Si-Yu Chen Ke Wang Xiao-Han Zhang Li Wei Qi Wei . Layered (C5H6ON)2[Sb2O(C2O4)3] with a large birefringence derived from the uniform arrangement of π-conjugated units. Chinese Journal of Structural Chemistry, 2024, 43(6): 100304-100304. doi: 10.1016/j.cjsc.2024.100304

    18. [18]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

    19. [19]

      Feiya Cao Qixin Wang Pu Li Zhirong Xing Ziyu Song Heng Zhang Zhibin Zhou Wenfang Feng . Magnesium-Ion Conducting Electrolyte Based on Grignard Reaction: Synthesis and Properties. University Chemistry, 2024, 39(3): 359-368. doi: 10.3866/PKU.DXHX202308094

    20. [20]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

Metrics
  • PDF Downloads(36)
  • Abstract views(6190)
  • HTML views(1186)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return