Citation: Pang Chuming, Luo Shihe, Hao Zhifeng, Gao Jian, Huang Zhaohao, Yu Jiahai, Yu Simin, Wang Zhaoyang. Synthesis and Fluorescent Sensing Application of Porous Organic Polymer Materials[J]. Chinese Journal of Organic Chemistry, ;2018, 38(10): 2606-2624. doi: 10.6023/cjoc201804009 shu

Synthesis and Fluorescent Sensing Application of Porous Organic Polymer Materials

  • Corresponding author: Hao Zhifeng, haozhifeng3377@163.com Wang Zhaoyang, wangzy@scnu.edu.cn
  • Received Date: 5 April 2018
    Revised Date: 15 May 2018
    Available Online: 5 October 2018

    Fund Project: the Applied Science and Technology Research and Development Special Foundation of Guangdong Province 2016B090930004the Undergraduates Innovation Project of South China Normal University 20181415the Guangzhou Science and Technology Project Scientific Special 201607010251the Guangdong Provincial Science and Technology Project 2017A010103016the Natural Science Foundation of Guangdong Province 2014A030313429Project supported by the Undergraduates Innovation Project of South China Normal University (No. 20181415), the Natural Science Foundation of Guangdong Province (No. 2014A030313429), the Guangzhou Science and Technology Project Scientific Special (No. 201607010251), the Applied Science and Technology Research and Development Special Foundation of Guangdong Province (No. 2016B090930004) and the Guangdong Provincial Science and Technology Project (No. 2017A010103016)

Figures(5)

  • Porous organic polymer fluorescence materials have the characteristics of high porosity and outstanding fluorescence properties. The function of fluorescence sensing is given when the skeleton has binding sites with specific analytes, such as nitroaromatic explosives (NAEs), metal ions, anions, gases, organic solvents, etc. In this paper, according to the different types of porous organic polymer materials (POPs), namely the amorphous porous organic polymer materials, crystal porous metal organic framework materials (MOFs) containing coordination bond, and crystal covalent organic framework materials (COFs), the new progress of the POPs fluorescence materials in recent years is reviewed. Especially, the design and synthesis based on functional organic molecules, and their fluorescence sensing applications, are introduced in details. In the future, continuing to design new types of fluorescent COFs from the molecular level is a development direction of highly efficient and recyclable fluorescence chemosensors for detecting NAEs, metal ions, anions, etc.
  • 加载中
    1. [1]

      Das, S.; Heasman, P.; Ben. T.; Qiu, S. L. Chem. Rev. 2017, 117, 1515.  doi: 10.1021/acs.chemrev.6b00439

    2. [2]

      Dalapati, S.; Gu, C.; Jiang, D. L. Small 2016, 12, 6513.  doi: 10.1002/smll.v12.47

    3. [3]

      Tan, L. X.; Tan, B. Chem. Soc. Rev. 2017, 46, 3322.  doi: 10.1039/C6CS00851H

    4. [4]

      Zhang, W. J.; Aguila, B.; Ma, S. Q. J. Mater. Chem. A 2017, 5, 8795.  doi: 10.1039/C6TA11168H

    5. [5]

      Kreno, L. E.; Leong, K.; Farha, O. K.; Allendorf, M.; Van Duyne, R. P.; Hupp, J. T. Chem. Rev. 2012, 112, 1105.  doi: 10.1021/cr200324t

    6. [6]

      Wu, D. C.; Xu, F.; Sun. B.; Fu, R. W.; He, H. K.; Matyjaszewski, K. Chem. Rev. 2012, 112, 3959.  doi: 10.1021/cr200440z

    7. [7]

      Xu, Y. H.; Jin, S. B.; Xu, H.; Nagai, A.; Jiang, D. L. Chem. Soc. Rev. 2013, 42, 8012.  doi: 10.1039/c3cs60160a

    8. [8]

      Lustig, W. P.; Mukherjee, S.; Rudd, N. D.; Desai, A. V.; Li, J.; Ghosh, S. K. Chem. Soc. Rev. 2017, 46, 3242.  doi: 10.1039/C6CS00930A

    9. [9]

      Ren, X. M.; Kong, S. N.; Shu, Q. D.; Shu, M. H. Chin. J. Chem. 2016, 34, 373.  doi: 10.1002/cjoc.201500797

    10. [10]

      Kong, S. N.; Malik, A. U. Qian, X. F.; Shu, M. H.; Xiao, W. D. Chin. J. Org. Chem. 2018, 38, 656(in Chinese).
       

    11. [11]

      Geng, T.-M.; Li, D.-K.; Zhu, Z.-M.; Zhang, W.-Y.; Ye, S.-N.; Zhu, H.; Wang, Z.-Q. Anal. Chim. Acta 2018, 1011, 77.  doi: 10.1016/j.aca.2018.01.002

    12. [12]

      Zheng, T.-R.; Blatov, V. A.; Zhang, Y.-Q.; Yang, C.-H.; Qian, L.-L.; Li, K.; Li, B.-L.; Wu, B. J. Lumin. 2018, 199, 162.

    13. [13]

      Chen, L.; He, L. W.; Ma, F. Y.; Liu, W.; Wang, Y. X.; Silver, M. A; Chen, L. H.; Zhu, L.; Gui, D. X.; Juan, D. W.; Chai, Z. F.; Wang, S. A. ACS Appl. Mater. Interfaces 2018, 10, 15364  doi: 10.1021/acsami.8b05484

    14. [14]

      Patra, A.; Scherf, U. Chem.-Eur. J. 2012, 18, 10074.  doi: 10.1002/chem.201200804

    15. [15]

      Jiang, J. X.; Trewin, A.; Adams, D. J.; Cooper, A. I. Chem. Sci. 2011, 2, 1777.  doi: 10.1039/c1sc00329a

    16. [16]

      Dong, J. Q.; Zhang, K.; Li, X.; Qian, Y. H.; Zhu, H.; Yuan, D. Q.; Xu, Q. H.; Jiang, J. W.; Zhao, D. Nat. Commun. 2017, 8, 1142.  doi: 10.1038/s41467-017-01293-x

    17. [17]

      Long, Y. Y.; Chen, H. B.; Wang, H. M.; Peng, Z.; Yang, Y. F.; Zhang, G. Q.; Li, N.; Liu, F.; Pei, J. Anal. Chim. Acta 2012, 744, 82.  doi: 10.1016/j.aca.2012.07.028

    18. [18]

      Sun, L. B.; Zou, Y. C.; Liang, Z. Q.; Yu, J. H.; Xu, R. R. Polym. Chem. 2014, 5, 471.  doi: 10.1039/C3PY00980G

    19. [19]

      Sun, L. B.; Liang, Z. Q.; Yu, J. H.; Xu, R. R. Polym. Chem. 2013, 4, 1932.  doi: 10.1039/c2py21034g

    20. [20]

      Geng, T.-M.; Zhu, H.; Song, W.; Zhu, F.; Wang, Y. J. Mater. Sci. 2016, 51, 4104.  doi: 10.1007/s10853-016-9732-y

    21. [21]

      Novotney, J. L.; Dichtel, W. R. ACS Macro Lett. 2013, 2, 423.  doi: 10.1021/mz4000249

    22. [22]

      Bandyopadhyay, S.; Pallavi, P.; Anil, A. G.; Patra, A. Polym. Chem. 2015, 6, 3775.  doi: 10.1039/C5PY00235D

    23. [23]

      Deshmukh, A.; Bandyopadhyay, S.; James, A.; Patra, A. J. Mater. Chem. C 2016, 4, 4427.  doi: 10.1039/C6TC00599C

    24. [24]

      Geng, T.-M.; Y, S. N.; Wang, Y.; Zhu, H.; Wang, X.; Liu, X. Talanta 2017, 165, 282.  doi: 10.1016/j.talanta.2016.12.046

    25. [25]

      Xu, B. W.; Xu, . Y. X.; Wang, X. C.; Li, H. B.; Wu, X. F; Tong, H.; Wang, L. X. Polym. Chem. 2013, 4, 5056.  doi: 10.1039/c3py00806a

    26. [26]

      Sang, N. N.; Zhan, C. X.; Cao, D. P. J. Mater. Chem. A 2015, 3, 92.  doi: 10.1039/C4TA04903A

    27. [27]

      Cui, Y. Z.; Liu, Y. C.; Liu, J. C.; Du, J. F.; Yu, Y.; Wang, S.; Liang, Z. Q.; Yu, J. H. Polym. Chem. 2017, 8, 4842.  doi: 10.1039/C7PY00856B

    28. [28]

      Yuan, K.; Guo-Wang, P. Y.; Hu, T.; Shi, L.; Zeng, R.; Forster, M.; Pichler, T.; Chen, Y. W.; Scherf, U. Chem. Mater. 2015, 27, 7403.  doi: 10.1021/acs.chemmater.5b03290

    29. [29]

      Geng, T. M.; Zhu, Z. M.; Wang, X.; Xia, H. Y.; Wang, Y.; Li, D. K. Sens. Actuators B 2017, 244, 334.  doi: 10.1016/j.snb.2017.01.005

    30. [30]

      Gu, C.; Huang, N.; Gao, J.; Xu, F.; Xu, Y. H.; Jiang, D. L. Angew. Chem., Int. Ed. 2014, 53, 4850.  doi: 10.1002/anie.201402141

    31. [31]

      Liu, X. M.; Xu, Y. H.; Jiang, D. L. J. Am. Chem. Soc. 2012, 134, 8738.  doi: 10.1021/ja303448r

    32. [32]

      Gu, C.; Huang, N.; Wu, Y.; Xu, H.; Jiang, D. L. Angew. Chem., Int. Ed. 2015, 54, 11540.  doi: 10.1002/anie.201504786

    33. [33]

      Ma, D. X.; Li, B. Y.; Cui, Z. H.; Liu, K.; Chen, C. L.; Li, G. H.; Hua, J.; Ma, B. H.; Shi, Z.; Feng, S. H. ACS Appl. Mater. Interfaces 2016, 8, 24097.  doi: 10.1021/acsami.6b07470

    34. [34]

      Jagadesan, P.; Eder, G.; McGrier, P. L. J. Mater. Chem. C 2017, 5, 5676.  doi: 10.1039/C7TC00123A

    35. [35]

      Zhao, W. X.; Zhuang, X. D.; Wu, D. Q.; Zhang, F.; Gehrig, D.; Laquai, F.; Feng, X. L. J. Mater. Chem. A 2013, 1, 13878.  doi: 10.1039/c3ta13334f

    36. [36]

      Li, Z. P.; Li, H.; Xia, H.; Ding, X. S.; Luo, X. L.; Liu, X. M.; Mu, Y. Chem.-Eur. J. 2015, 21, 17355.  doi: 10.1002/chem.201502241

    37. [37]

      Suresh, V. M.; Bandyopadhyay, A.; Roy, S.; Pati, S. K.; Maji, T. K. Chem.-Eur. J. 2015, 21, 10799.  doi: 10.1002/chem.v21.30

    38. [38]

      Su, Y. Q.; Wang, Y. X.; Li, X. J.; Li, X. X.; Wang, R. H. ACS Appl. Mater. Interfaces 2016, 8, 18904.  doi: 10.1021/acsami.6b05918

    39. [39]

      Lee, W. E.; Lee, C. L.; Sakaguchi, T.; Fujiki, M.; Kwak, G. Macromolecules 2011, 44, 432.  doi: 10.1021/ma102798j

    40. [40]

      Rao, K. V.; Mohapatra, S.; Maji, T. K.; George, S. J. Chem.-Eur. J. 2012, 18, 4505.  doi: 10.1002/chem.201103750

    41. [41]

      Bonillo, B.; Sprick, R. S.; Cooper, A. I. Chem. Mater. 2016, 28, 3469.  doi: 10.1021/acs.chemmater.6b01195

    42. [42]

      Dong, J. Q.; Tummanapelli, A. K.; Ying, S. M.; Hirao, H.; Zhao, D. Chem. Mater. 2016, 28, 7889.  doi: 10.1021/acs.chemmater.6b03376

    43. [43]

      Gu, S.; Guo, J.; Huang, Q.; He, J. Q.; Fu, Y.; Kuang, G. C.; Pan, C. Y.; Yu, G. P. Macromolecules 2017, 50, 8512.  doi: 10.1021/acs.macromol.7b01857

    44. [44]

      Li, B.; Wen, H.-M.; Cui, Y. J.; Zhou, W.; Qian, G. D.; Chen, B. L. Adv. Mater. 2016, 28, 8819.  doi: 10.1002/adma.v28.40

    45. [45]

      Cui, Y. J.; Yue, Y. F.; Qian, G. D.; Chen, B. L. Chem. Rev. 2012, 112, 1126.  doi: 10.1021/cr200101d

    46. [46]

      Suresh, V. M.; Chatterjee, S.; Modak, R.; Tiwari, V.; Patel, A. B.; Kundu, T. K.; Maji, T. K. J. Phys. Chem. C 2014, 118, 12241.

    47. [47]

      Vellingiri, K.; Boukhyalov, D. W.; Pandey, S. K.; Deep, A.; Kim, K. H. Sens. Actuators B 2017, 245, 305.  doi: 10.1016/j.snb.2017.01.126

    48. [48]

      Hu, Z. C.; Pramanik, S.; Tan, K.; Zheng, C.; Liu, W.; Zhang, X.; Chabal, Y. J.; Li, J. Cryst. Growth Des. 2013, 13, 4204.  doi: 10.1021/cg4012185

    49. [49]

      Ye, J. W.; Wang, X. X.; Bogale, R. F.; Zhao, L. M.; Cheng, H.; Gong, W. T.; Zhao, J. Z.; Ning, G. L. Sens. Actuators B 2015, 210, 566.  doi: 10.1016/j.snb.2014.12.132

    50. [50]

      Li, X.; Yang, L.; Zhao, L.; Wang, X. L.; Shao, K. Z.; Su, Z. M. Cryst. Growth Des. 2016, 16, 4374.  doi: 10.1021/acs.cgd.6b00482

    51. [51]

      Wu, X. X.; Fu, H. R.; Han, M. L.; Zhou, Z.; Ma, L. F. Cryst. Growth Des. 2017, 17, 6041.  doi: 10.1021/acs.cgd.7b01155

    52. [52]

      Qi, X. J.; Jin, Y. H.; Li, N.; Wang, Z.; Wang, K. C.; Zhang, Q. H. Chem. Commun. 2017, 53, 10318.  doi: 10.1039/C7CC05345B

    53. [53]

      Bagheri, M.; Masoomi, M. Y.; Morsali, A. Sens. Actuators B 2017, 243, 353.  doi: 10.1016/j.snb.2016.11.144

    54. [54]

      Dalapati, R.; Biswas, S. Sens. Actuators B 2017, 239, 759.  doi: 10.1016/j.snb.2016.08.045

    55. [55]

      Zhao, S.-S.; Yang, J.; Liu. Y.-Y.; Ma, J.-F. Inorg. Chem. 2016, 55, 2261.  doi: 10.1021/acs.inorgchem.5b02666

    56. [56]

      Weng, H.; Yan, B. Sens. Actuators B 2016, 228, 702.  doi: 10.1016/j.snb.2016.01.101

    57. [57]

      Bogale, R. F.; Chen, Y. Z.; Ye, J. W.; Yang, Y. Y.; Rauf, A.; Duan, L. Y.; Tian, P.; Ning, G. L. Sens. Actuators B 2017 245, 171.  doi: 10.1016/j.snb.2017.01.177

    58. [58]

      Xu, H.; Hu, H.-C.; Cao, C.-S.; Zhao, B. Inorg. Chem. 2015, 54, 4585.  doi: 10.1021/acs.inorgchem.5b00113

    59. [59]

      Xiang, Z. H.; Fang, C. Q.; Leng, S. H.; Cao, D. P. J. Mater. Chem. A 2014, 2, 7662.  doi: 10.1039/c4ta00313f

    60. [60]

      Wang, F. Q.; Yu, Z. C.; Wang, C. M.; Xu, K. H.; Yu, J. G.; Zhang, J. X.; Fu, Y. Y.; Li, X. Y.; Zhao, Y. N. Sens. Actuators B 2017, 239, 688.  doi: 10.1016/j.snb.2016.08.067

    61. [61]

      Chen, S. G.; Shi, Z. Z.; Qin, L.; Jia, H. L.; Zheng, H. G. Cryst. Growth Des. 2017, 17. 67.  doi: 10.1021/acs.cgd.6b01197

    62. [62]

      Lian, C.; Chen, Y.; Li, S.; Hao, M. Y.; Gao, F.; Yang, L. R. J. Alloys Compd. 2017, 702, 303.  doi: 10.1016/j.jallcom.2017.01.260

    63. [63]

      Sun, Z.; Yang, M.; Ma, Y.; Li, L. C. Cryst. Growth Des. 2017, 17, 4326.  doi: 10.1021/acs.cgd.7b00638

    64. [64]

      Sun, Z.; Li, Y. G.; Ma, Y.; Li, L. C. Dyes Pigm. 2017, 146, 263.  doi: 10.1016/j.dyepig.2017.07.015

    65. [65]

      Das, A.; Biswas, S. Sens. Actuators B 2017, 250, 121.  doi: 10.1016/j.snb.2017.04.047

    66. [66]

      Liu, C.; Yan, B. Sens. Actuators B 2016, 235, 541.  doi: 10.1016/j.snb.2016.05.127

    67. [67]

      Zhao, J.; Wang, Y. N.; Dong, W. W.; Wu, Y. P.; Li, D. S.; Zhang, Q. C. Inorg. Chem. 2016, 55, 3265.  doi: 10.1021/acs.inorgchem.5b02294

    68. [68]

      Xu, X. Y.; Yan, B. Sens. Actuators B 2016, 222, 347.  doi: 10.1016/j.snb.2015.08.082

    69. [69]

      Singha, D. K.; Mahata, P. Inorg. Chem. 2015, 54, 6373.  doi: 10.1021/acs.inorgchem.5b00688

    70. [70]

      Wang, M. L.; Meng, G. W. Sens. Actuators B 2017, 243, 1137.  doi: 10.1016/j.snb.2016.12.092

    71. [71]

      Shahat, A.; Abd Elsalam, S.; Herrero-Martinez, J. M.; Simo-Alfonso, E. F.; Ramis-Ramos, G. Sens. Actuators B 2017, 25, 164.

    72. [72]

      Zhou, J.-M.; Shi, W.; Xu, N.; Cheng, P. Inorg. Chem. 2013, 52, 8082.  doi: 10.1021/ic400770j

    73. [73]

      Minmini, R.; Naha, S.; Velmath, S. Sens. Actuators B 2017, 251, 644.  doi: 10.1016/j.snb.2017.05.087

    74. [74]

      Vellingiri, K.; Deep, A.; Kim, K. H.; Boukhvalov, D. W.; Kumar, P.; Yao, Q. Sens. Actuators B 2017, 241, 938.  doi: 10.1016/j.snb.2016.11.017

    75. [75]

      Wu, Z. L.; Dong, J.; Ni. W, Y.; Zhang, B. W.; Cui, J. Z.; Zhao, B. Inorg. Chem. 2015, 54, 5266.  doi: 10.1021/acs.inorgchem.5b00240

    76. [76]

      Tehrani, A. A.; Abbasi, H.; Esrafili, L.; Morsali, A. Sens. Actuators B 2018, 256, 706.  doi: 10.1016/j.snb.2017.09.211

    77. [77]

      Li, C. M.; Huang, J. P.; Zhu, H. L.; Liu, L. L.; Feng, Y. M.; Hu, G.; Yu, X. B. Sens. Actuators B 2017, 253, 275.  doi: 10.1016/j.snb.2017.06.064

    78. [78]

      Wanderley, M. M.; Wang, C.; Wu, C.-D.; Lin, W. B. J. Am. Chem. Soc. 2012, 134, 9050.  doi: 10.1021/ja302110d

    79. [79]

      Feng, X.; Feng, Y. Q.; Guo, N.; Sun, Y. L.; Zhang, T.; Ma, L. F.; Wang, L. Y. Inorg. Chem. 2017, 56, 1713.  doi: 10.1021/acs.inorgchem.6b02851

    80. [80]

      Yan, X. Z.; Wang, H. Z.; Hauke, C. E.; Cook, T. R.; Wang, M.; Saha, M. L.; Zhou, Z. X.; Zhang, M. M.; Li, X. P.; Huang, H. J. Am. Chem. Soc. 2015, 137, 15276.  doi: 10.1021/jacs.5b10130

    81. [81]

      Jackson, S. L.; Rananaware, A.; Rix, C.; Bhosale, V.; Latham, K. Cryst. Growth Des. 2016, 16, 3067.  doi: 10.1021/acs.cgd.6b00428

    82. [82]

      Zeng, G.; Xing, S. H.; Wang, X. R.; Yang, Y. L.; Ma, D. X.; Liang, H. W.; Gao, L.; Hua, J.; Li, G. H.; Shi, Z. Inorg. Chem. 2016, 55, 1089.  doi: 10.1021/acs.inorgchem.5b02193

    83. [83]

      Yanai, N.; Kitayama, K.; Hijikata, Y.; Sato, H.; Matsuda, R.; Kubota, Y.; Takata, M.; Mizuno, M.; Uemura, T.; Kitagawa, S. Nat. Mater. 2011, 10, 787.  doi: 10.1038/nmat3104

    84. [84]

      Dalapati, R.; Balaji, S. N.; Trivedi, V.; Khamari, L.; Biswas, S. Sens. Actuators B 2017, 245, 1039.  doi: 10.1016/j.snb.2017.02.005

    85. [85]

      Cao, Y. Y.; Guo, X. F.; Wang, H. Sens. Actuators B 2017, 243, 8.  doi: 10.1016/j.snb.2016.11.085

    86. [86]

      Shustova, N. B.; Cozzolino, A. F.; Reineke, S.; Baldo, M.; Dinca, M. J. Am. Chem. Soc. 2013, 135, 13326.  doi: 10.1021/ja407778a

    87. [87]

      Dou, Z. S.; Yu, J. C.; Cui, Y. J.; Yang, Y.; Wang, Z. Y.; Yang, D. R.; Qian, G. D. J. Am. Chem. Soc. 2014, 136, 5527.  doi: 10.1021/ja411224j

    88. [88]

      Waller, P. J.; Gandara, F.; Yaghi, O. M. Acc. Chem. Res. 2015, 48, 3053.  doi: 10.1021/acs.accounts.5b00369

    89. [89]

      Segura, J. L.; Mancheno, M. J.; Zamora, F. Chem. Soc. Rev. 2016, 45, 5635.  doi: 10.1039/C5CS00878F

    90. [90]

      Feng, X.; Ding, X. S.; Jiang, D. L. Chem. Soc. Rev. 2012, 41, 6010.  doi: 10.1039/c2cs35157a

    91. [91]

      Diercks, C. S.; Yaghi, O. M. Science 2017, 355, eaal1585.  doi: 10.1126/science.aal1585

    92. [92]

      Lu, Q. Y.; Ma, Y. C.; Li, H.; Guan, X. Y.; Yusran, Y.; Xue, M.; Fang, Q. R.; Yan, Y. S.; Qiu, S. L.; Valtchev, V. Angew. Chem., Int. Ed. 2018, 57, 6042.  doi: 10.1002/anie.v57.21

    93. [93]

      Nguyen, V.; Grunwald, M. J. Am. Chem. Soc. 2018, 140. 3306.  doi: 10.1021/jacs.7b12529

    94. [94]

      Ding, S. Y.; Wang, W. Chem. Soc. Rev. 2013, 42, 548.  doi: 10.1039/C2CS35072F

    95. [95]

      Xue, R.; Guo, H.; Wang, T.; Gong, L.; Wang, Y. N.; Ai, J. B.; Huang, D. D.; Chen, H. Q.; Yang, W. Anal. Methods 2017, 9, 3737.  doi: 10.1039/C7AY01261F

    96. [96]

      Fang, Q. R.; Zhuang, Z. B.; Gu, S.; Kaspar, R. B.; Zheng, J.; Wang, J. H.; Qiu, S. L.; Yan, Y. S. Nat. Commun. 2014, 5:4503.  doi: 10.1038/ncomms5503

    97. [97]

      Zhang, G.; Tsujimoto, M.; Packwood, D.; Duong, N. T.; Nishiyama, Y.; Kadota, K.; Kitagawa, S.; Horike, S. J. Am. Chem. Soc. 2018, 140, 2602.  doi: 10.1021/jacs.7b12350

    98. [98]

      Dalapati, S.; Jin, S. B.; Gao, J.; Xu, Y. H.; Nagai, A.; Jiang, D. L. J. Am. Chem. Soc. 2013, 135, 17310.  doi: 10.1021/ja4103293

    99. [99]

      Das, G.; Biswal, B. P.; Kandambeth, S.; Venkatesh, V.; Kaur, G.; Addicoat, G.; Heine, T.; Vermab, S.; Banerjee, R. Chem. Sci. 2015, 6, 3931.  doi: 10.1039/C5SC00512D

    100. [100]

      Kaleeswaran, D.; Vishnoi, P.; Murugavel, R. J. Mater. Chem. C 2015, 3, 7159.  doi: 10.1039/C5TC00670H

    101. [101]

      Lin, G. Q.; Ding, H. M.; Yuan, D. Q.; Wang, B. S.; Wang. C. J. Am. Chem. Soc. 2016, 138, 3302.  doi: 10.1021/jacs.6b00652

    102. [102]

      Gao, Q.; Li, X.; Ning, G.-H.; Leng, K.; Tian, B. B.; Liu, C. B.; Tang, W.; Xu, H.-S.; Loh, K. P. Chem. Commun. 2018, 54, 2349.
       

    103. [103]

      Zhang, W.; Qiu, L.-G.; Yuan, Y.-P.; Xie, A.-J.; Shen, Y.-H.; Zhu, J.-F. J. Hazard. Mater. 2012, 221, 147.

    104. [104]

      Zhang, C. L.; Zhang, S. M.; Yan, Y. H.; Xia, F.; Huang, A. N.; Xian, Y. Z. ACS Appl. Mater. Interfaces 2017, 9, 13415.  doi: 10.1021/acsami.6b16423

    105. [105]

      Jiang, K.; Wu, Y.-C.; Wu, H.-Q.; Li, S.-L.; Luo, S.-H.; Wang, Z.-Y. J. Photochem. Photobiol. A 2018, 350, 52.  doi: 10.1016/j.jphotochem.2017.09.065

    106. [106]

      Guan, X. Y.; Ma, Y. C.; Li, H.; Yusran, Y.; Xue, M.; Fang, Q, R, ; Yan, Y. S.; Valtchev, V.; Qiu, S. L. J. Am. Chem. Soc. 2018, 140, 4494.  doi: 10.1021/jacs.8b01320

    107. [107]

      Ding, S. Y.; Dong, M.; Wang, Y. W.; Chen, Y. T.; Wang, H. Z.; Su, C. Y.; Wang, W. J. Am. Chem. Soc. 2016, 138, 3031.  doi: 10.1021/jacs.5b10754

    108. [108]

      Li, Z. P.; Zhang, Y. W.; Xia, H.; Mu, Y.; Liu, X. M. Chem. Commun. 2016, 52, 6613.  doi: 10.1039/C6CC01476C

    109. [109]

      Wang, T.; Xue, R.; Chen, H. Q.; Shi, P. L.; Lei, X.; Wei, Y. L.; Guo, H.; Yang, W. New J. Chem. 2017, 41, 14272.  doi: 10.1039/C7NJ02134H

    110. [110]

      Roy, A.; Mondal, S.; Halder, A.; Banerjee, A.; Ghoshal, D. Paul, A.; Malik, S. Eur. Polym. J. 2017, 93, 448.  doi: 10.1016/j.eurpolymj.2017.06.028

    111. [111]

      Dalapati, S.; Jin, E.; Addicoat, M.; Heine, T.; Jiang, D. L. J. Am. Chem. Soc. 2016, 138, 5797.  doi: 10.1021/jacs.6b02700

    112. [112]

      Zhu, M.-W.; Xu, S.-Q.; Wang, X.-Z.; Chen, Y. Q.; Dai, L. Y.; Zhao, X. Chem. Commun. 2018, 54, 2308.  doi: 10.1039/C8CC00203G

    113. [113]

      Qian, H. L.; Dai, C.; Yang, C. X.; Yan, X. P. ACS Appl. Mater. Interfaces 2017, 9, 24999.  doi: 10.1021/acsami.7b08060

    114. [114]

      Rao, M.; Fang, Y.; De Feyter, S.; Perepichka, D. F. J. Am. Chem. Soc. 2017, 139, 2421.  doi: 10.1021/jacs.6b12005

    115. [115]

      Zhang, Y. W.; Shen, X. C.; Feng, X.; Xia, H.; Mu, Y.; Liu, X. M. Chem. Commun. 2016, 52, 11088.  doi: 10.1039/C6CC05748A

  • 加载中
    1. [1]

      Bao Jia Yunzhe Ke Shiyue Sun Dongxue Yu Ying Liu Shuaishuai Ding . Innovative Experimental Teaching for the Preparation and Modification of Conductive Organic Polymer Thin Films in Undergraduate Courses. University Chemistry, 2024, 39(10): 271-282. doi: 10.12461/PKU.DXHX202404121

    2. [2]

      Liang TANGJingfei NIKang XIAOXiangmei LIU . Synthesis and X-ray imaging application of lanthanide-organic complex-based scintillators. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1892-1902. doi: 10.11862/CJIC.20240139

    3. [3]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    4. [4]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

    5. [5]

      Yi DINGPeiyu LIAOJianhua JIAMingliang TONG . Structure and photoluminescence modulation of silver(Ⅰ)-tetra(pyridin-4-yl)ethene metal-organic frameworks by substituted benzoates. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 141-148. doi: 10.11862/CJIC.20240393

    6. [6]

      Lina Feng Guoyu Jiang Xiaoxia Jian Jianguo Wang . Application of Organic Radical Materials in Biomedicine. University Chemistry, 2025, 40(4): 253-260. doi: 10.12461/PKU.DXHX202405171

    7. [7]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    8. [8]

      Qianlang Wang Jijun Sun Qian Chen Quanqin Zhao Baojuan Xi . The Appeal of Organophosphorus Compounds: Clearing Their Name. University Chemistry, 2025, 40(4): 299-306. doi: 10.12461/PKU.DXHX202405205

    9. [9]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    10. [10]

      Fan Wu Wenchang Tian Jin Liu Qiuting Zhang YanHui Zhong Zian Lin . Core-Shell Structured Covalent Organic Framework-Coated Silica Microspheres as Mixed-Mode Stationary Phase for High Performance Liquid Chromatography. University Chemistry, 2024, 39(11): 319-326. doi: 10.12461/PKU.DXHX202403031

    11. [11]

      Xinyu Zhu Meili Pang . Application of Functional Group Addition Strategy in Organic Synthesis. University Chemistry, 2024, 39(3): 218-230. doi: 10.3866/PKU.DXHX202308106

    12. [12]

      Xiaofang DONGYue YANGShen WANGXiaofang HAOYuxia WANGPeng CHENG . Research progress of conductive metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 14-34. doi: 10.11862/CJIC.20240388

    13. [13]

      Shengbiao Zheng Liang Li Nini Zhang Ruimin Bao Ruizhang Hu Jing Tang . Metal-Organic Framework-Derived Materials Modified Electrode for Electrochemical Sensing of Tert-Butylhydroquinone: A Recommended Comprehensive Chemistry Experiment for Translating Research Results. University Chemistry, 2024, 39(7): 345-353. doi: 10.3866/PKU.DXHX202310096

    14. [14]

      Zhongxin YUWei SONGYang LIUYuxue DINGFanhao MENGShuju WANGLixin YOU . Fluorescence sensing on chlortetracycline of a Zn-coordination polymer based on mixed ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2415-2421. doi: 10.11862/CJIC.20240304

    15. [15]

      Yihao Zhao Jitian Rao Jie Han . Synthesis and Photochromic Properties of 3,3-Diphenyl-3H-Naphthopyran: Design and Teaching Practice of a Comprehensive Organic Experiment. University Chemistry, 2024, 39(10): 149-155. doi: 10.3866/PKU.DXHX202402050

    16. [16]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    17. [17]

      Xingchao Zhao Xiaoming Li Ming Liu Zijin Zhao Kaixuan Yang Pengtian Liu Haolan Zhang Jintai Li Xiaoling Ma Qi Yao Yanming Sun Fujun Zhang . 倍增型全聚合物光电探测器及其在光电容积描记传感器上的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2311021-. doi: 10.3866/PKU.WHXB202311021

    18. [18]

      Feng Sha Xinyan Wu Ping Hu Wenqing Zhang Xiaoyang Luan Yunfei Ma . Design of Course Ideology and Politics for the Comprehensive Organic Synthesis Experiment of Benzocaine. University Chemistry, 2024, 39(2): 110-115. doi: 10.3866/PKU.DXHX202307082

    19. [19]

      Aidang Lu Yunting Liu Yanjun Jiang . Comprehensive Organic Chemistry Experiment: Synthesis and Characterization of Triazolopyrimidine Compounds. University Chemistry, 2024, 39(8): 241-246. doi: 10.3866/PKU.DXHX202401029

    20. [20]

      Xiao SANGQi LIUJianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158

Metrics
  • PDF Downloads(84)
  • Abstract views(5293)
  • HTML views(1177)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return