Citation: Xu Linlin, Xu Hui, Lin Haixia, Dai Huixiong. Progress in the Synthesis of Primary Anilines via C-H Bond Functionalization[J]. Chinese Journal of Organic Chemistry, ;2018, 38(8): 1940-1948. doi: 10.6023/cjoc201804004 shu

Progress in the Synthesis of Primary Anilines via C-H Bond Functionalization

  • Corresponding author: Lin Haixia, haixialin@staff.shu.edu.cn Dai Huixiong, xdai@sioc.ac.cn
  • Received Date: 2 April 2018
    Revised Date: 23 April 2018
    Available Online: 3 August 2018

    Fund Project: the National Natural Science Foundation of China 21772211Project supported by the National Natural Science Foundation of China (No. 21772211) and the Youth Innovation Promotion Association of Chinese Academy of Sciences (No. 2014229)the Youth Innovation Promotion Association of Chinese Academy of Sciences 2014229

Figures(11)

  • Primary anilines are widely used in pharmaceutical, agrochemicals and material chemistry. In recent years, the green and efficient methods for constructing carbon-nitrogen (C-N) bonds to introduce primary amines has been one of the hottest topics in chemical synthesis. The direct C-H primary amination of aromatic compounds have received considerable attention due to its high efficiency and practicality. The recent progress in the C-H primary amination of aromatic compounds reactions is reviewed. Furthermore, the synthetic challenge and prospect in the future development for the synthesis of primary anilines through direct C-H amination are summarized.
  • 加载中
    1. [1]

      (a) Ricci, A. Amino Group Chemistry: From Synthesis to the Life Sciences, Wiley-VCH, Weinheim, 2008.
      (b) Evano, G. ; Theunissen, C. ; Pradal, A. Nat. Prod. Rep. 2013, 30, 1467.
      (c) Okano, K. ; Tokuyama, H. ; Fukuyama, T. Chem. Commun. 2014, 50, 13650.
      (d) Quintas-Cardama, A. ; Kantarjian, H. ; Cortes, J. Nat. Rev. Drug Discovery 2007, 6, 834.
      (e) Uno, S. ; Kamiya, M. ; Yoshihara, T. ; Sugawara, K. ; Okabe, K. ; Tarhan, M. C. ; Fujita, H. ; Funatsu, T. ; Okada, Y. ; Tobita, S. ; Urano, Y. Nat. Chem. 2014, 6, 681.
      (f) Uno, S. ; Kamiya, M. ; Yoshihara, T. ; Sugawara, K. ; Okabe, K. ; Tarhan, M. C. ; Fujita, H. ; Funatsu, T. ; Okada, Y. ; Tobita, S. ; Urano, Y. Nat. Chem. 2014, 6, 681.

    2. [2]

      (a) Lawrence, S. A. Amines: Synthesis Properties and Applications, Cambridge University Press, Cambridge, 2004.
      (b) Rappoport, Z. The Chemistry of Anilines, Parts 1 and 2, John Wiley & Sons, New York, 2007.
      (c) Aniszewski, T. Alkaloids. Secrets of Life, Elsevier Science, Amsterdam, 2007.

    3. [3]

      (a) Sandmeyer, T. ; Ber. Dtsch. Chem. Ges. 1884, 17, 1633.
      (b) Hodgson, H. H. Chem. Rev. 1947, 40, 251.
      (c) Mo, F. ; Jiang, Y. ; Qiu, D. ; Zhang, Y. ; Wang, J. Angew. Chem., Int. Ed. 2010, 49, 1846.
      (d) Dai, J. ; Fang, C. ; Xiao, B. ; Yi, J. ; Xu, J. ; Liu, Z. ; Lu, X. ; Liu, L. ; Fu, Y. J. Am. Chem. Soc. 2013, 135, 8436.
      (e) Mo, F. ; Dong, G. ; Zhang, Y. ; Wang, J. Org. Biomol. Chem. 2013, 11, 1582.

    4. [4]

      Porter, R. J.; Nohria, V.; Rundfeldt, C. Neurotherapeutics 2007, 4, 149.  doi: 10.1016/j.nurt.2006.11.012

    5. [5]

      Weijlard, J.; Orahoyats, P. D.; Jr, A. P. S.; Purdue, G.; Heath, F. K.; Pfister, K. J. Am. Chem. Soc. 1956, 78, 2342.  doi: 10.1021/ja01591a088

    6. [6]

      Yang, L. P.; Mccormack, P. L. Drugs 2011, 71, 221.  doi: 10.2165/11205870-000000000-00000

    7. [7]

      Bartlett, J. B.; Dredge, K.; Dalgleish, A. G. Nat. Rev. Cancer 2004. 4, 314.  doi: 10.1038/nrc1323

    8. [8]

      (a) Trost, B. Science (Washington, D. C. ) 1991, 254, 1471.
      (b) Wender, P. A. ; Verma, V. A. ; Paxton, T. J. ; Pillow, T. H. Acc. Chem. Res. 2008, 41, 40.
      (c) Young, I. S. ; Baran, P. S. Nat. Chem. 2009, 1, 193.
      (d) Afagh, N. A. ; Yudin, A. K. Angew. Chem., Int. Ed. 2010, 49, 262.
      (e) Zhu, L. ; Guo, B. ; Tang, D. ; Hu, X. ; Li, G. Hu, C. J. Catal. 2007, 245, 446.
      (g) Singha, S. ; Parida, K. M. Catal. Sci. Technol. 2011, 1, 1496.
      (h) Parida, K. M. ; Rath, D. ; Dash, S. S. J. Mol. Catal. A: Chem. 2010, 318, 85.

    9. [9]

      Smith, M. B.; March, J. March's Advanced Organic Chemistry:Reactions, Mechanisms and Structure, 6th ed., John Wiley & Sons, Hoboken, 2007.

    10. [10]

      (a) Ullmann, F. Ber. 1903, 36, 2382.
      (b) Goldberg, I. Ber. 1906, 39, 1691.

    11. [11]

      (a) Kosugi, M. ; Kameyama, M. ; Migita, T. Chem. Lett. 1983, 927.
      (b) Guram, A. S. ; Buchwald, S. L. J. Am. Chem. Soc. 1994, 116, 7901.
      (c) Paul, F. ; Patt, J. ; Hartwig, J. F. J. Am. Chem. Soc. 1994, 116, 5969.

    12. [12]

      (a) Chan, D. ; Monaco, K. ; Wang, R. ; Winter, M. Tetrahedron Lett. 1998, 39, 2933.
      (b) Evans, D. ; Katz, J. ; West, T. Tetrahedron Lett. 1998, 39, 2937.
      (c) Lam, P. ; Clark, C. ; Saubern, S. ; Adams, J. ; Winters, M. ; Chan, D. ; Combs, A. Tetrahedron Lett. 1998, 39, 2941.

    13. [13]

      (a) Chen, X. ; Engle, K. M. ; Wang, D.-H. ; Yu, J.-Q. Angew. Chem. Int. Ed. 2009, 121, 5196.
      (b) Daugulis, O. ; Do, H.-Q. ; Shabashov, D. Acc. Chem. Res. 2009, 42, 1074.
      (c) Lyons, T. W. ; Sanford, M. S. Chem. Rev. 2010, 110, 1147

    14. [14]

      (a) Davies, H. M. L. ; Long, M. S. Angew. Chem., Int. Ed. 2005, 44, 3518.
      (b) Cho, S. H. ; Kim, J. Y. ; Kwak, J. ; Chang, S. Chem. Soc. Rev. 2011, 40, 5068.
      (c) Tsang, W. C. P. ; Zheng, N. ; Buchwald, S. L. J. Am. Chem. Soc. 2005, 127, 14560.
      (d) Wasa, M. ; Yu, J.-Q. J. Am. Chem. Soc. 2008, 130, 14058.
      (e) Hamada, T. ; Ye, X. ; Stahl, S. S. J. Am. Chem. Soc. 2008, 130, 833.
      (f) Matsuda, N. ; Hirano, K. ; Satoh, T. ; Miura, M. Org. Lett. 2011, 13, 2860.
      (g) Li, G. ; Jia, C. ; Sun, K. Org. Lett. 2013, 15, 5198.
      (h) Shang, M. ; Sun, S.-Z. ; Zeng, S.-H. ; Dai, H.-X. ; Yu, J.-Q. Org. Lett. 2013, 15, 5286.
      (i) Brasche, G. ; Buchwald, S. L. ; Angew. Chem., Int. Ed. 2008, 47, 1932.
      (j) Roane, J. ; Daugulis, O. J. Am. Chem. Soc. 2016, 138, 4601.
      (h)Wang, F. ; Jin, L. ; Kong, L.-H. ; Li, X.-W. Org. Lett. 2017, 19, 1812.

    15. [15]

      (a) Amaoka, Y. ; Kamijo, S. ; Hoshikawa, T. ; Inoue, M. J. Org. Chem. 2012, 77, 9959.
      (b) Foo, K. ; Sella, E. ; Thome, I. ; Eastgate, M. D. ; Baran, P. S. J. Am. Chem. Soc. 2014, 136, 5279.
      (c) Zhou, L. ; Tang, S. ; Qi, X. ; Lin, C. ; Liu, K. ; Lan Y. ; Lei, A. Org. Lett. 2014, 16, 3404.
      (d) Allen, L. J. ; Cabrera, P. J. ; Cabrera, M. Lee; Sanford, M. S. J. Am. Chem. Soc. 2014, 136, 5607.
      (e) Hwang, Y. ; Park, Y. ; Chang, S. Chem.-Eur. J. 2017, 23, 11147.
      (f) Hong, S. Y. ; Park, Y. ; Hwang, Y. ; Kim, Y. B. ; Baik, M. H. ; Chang, S. Science 2018, 359, 1016.

    16. [16]

    17. [17]

      Graebe, C. Ber. 1901, 34, 1778.  doi: 10.1002/(ISSN)1099-0682

    18. [18]

      Jaubert, G. E'. Comp. Rend. 1901, 132, 841.
       

    19. [19]

      Kovacic, P.; Bennett, R. P. J. Am. Chem. Soc. 1961, 83, 221.  doi: 10.1021/ja01462a043

    20. [20]

      Yuzawa, H.; Yoshida, H. Chem. Commun. 2010, 46, 8854.  doi: 10.1039/c0cc03551c

    21. [21]

      (a) Yu, T. ; Yang, R. ; Xia, S. ; Li, G. ; Hu, C. Catal. Sci. Technol. 2014, 4, 3159.
      (b) Yu, T. ; Zhang, Q. ; Xia, S. ; Li, G. ; Hu, C. Catal. Sci. Technol. 2014, 4, 639.

    22. [22]

      Paudyal, M. P.; Adebesin, A. M.; Burt, S. R.; Ess, D. H.; Ma, Z.; Kürti, L.; Falck, J. R. Science (Washington, D. C.) 2016, 353, 1144.
       

    23. [23]

      Legnani, L.; Prina Cerai, G.; Morandi, B. ACS Catal. 2016, 6, 8162.  doi: 10.1021/acscatal.6b02576

    24. [24]

      Yi, H.; Zhang, G.; Wang, H.; Huang, Z.; Wang, J.; Singh, A. K; Lei, A. Chem. Rev. 2017, 117, 9016.  doi: 10.1021/acs.chemrev.6b00620

    25. [25]

      Citterio, A.; Gentile, A.; Minisci, F.; Navarrini, V.; Serravalle, M.; Ventura, S. J. Org. Chem. 1984, 49, 4479.  doi: 10.1021/jo00197a030

    26. [26]

      Morofuji, T.; Shimizu, A.; Yoshida, J.-I. J. Am. Chem. Soc. 2013, 135, 5000.  doi: 10.1021/ja402083e

    27. [27]

      Morofuji, T.; Shimizu, A.; Yoshida, J.-I. Chem.-Eur. J. 2015, 21, 3211.  doi: 10.1002/chem.v21.8

    28. [28]

      Kim, H.; Kim, T.; Lee, D. G.; Roh, S. W.; Lee, C. Chem. Commun. 2014, 50, 9273.  doi: 10.1039/C4CC03905J

    29. [29]

      Romero, N. A.; Margrey, K. A.; Tay, N. E.; Nicewicz, D. A. Science (Washington, D. C.) 2015, 349, 1326.  doi: 10.1126/science.aac9895

    30. [30]

      Zheng, Y.-W.; Chen, B.; Ye, P.; Feng, K.; Wang, W.; Meng, Q.-Y.; Wu, L.-Z.; Tung, C.-H. J. Am. Chem. Soc. 2016, 138, 10080.  doi: 10.1021/jacs.6b05498

    31. [31]

      Liu, J.-Z.; Wu, K.; Shen, T.; Liang, Y.-J.; Zou, M.-C.; Zhu, Y.-C.; Li, X. W.; Li, X.-Y.; Jiao, N. Chem.-Eur. J. 2017, 23, 563.  doi: 10.1002/chem.201605476

    32. [32]

      (a) Kakiuchi, F. ; Sekine, S. ; Kamatani, A. ; Sonoda, M. ; Chatani, N. ; Murai, S. Bull. Chem. Soc. Jpn. 1995, 68, 62.
      (b) Giri, R. ; Shi, B.-F. ; Engle, K. M. ; Maugel, N. ; Yu, J.-Q. Chem. Soc. Rev. 2009, 38, 3242.
      (c) Colby, D. A. ; Bergman, R. G. ; Ellman, J. A. Chem. Rev. 2010, 110, 624.
      (d) Wencel-Delord, J. ; Dröge, T. ; Liu, F. ; Glorius, F. Chem. Soc. Rev. 2011, 40, 4740.
      (g) Arockiam, P. B. ; Bruneau, C. ; Dixneuf, P. H. Chem. Rev. 2012, 112, 5879.

    33. [33]

      (a) Liu, J.-D. ; Chen, G.-S; Tan Z. Adv. Synth. Catal. 2016, 358, 1174.
      (b) Jiao, J. ; Murakami, K. ; Itami, K. ACS Catal. 2016, 6, 610.
      (c) Park, Y. ; Kim, Y. ; Chang, S. Chem. Rev. 2017, 117, 9247.

    34. [34]

      (a) Chen, X. ; Hao, X.-S. ; Goodhue, C. E. ; Yu, J.-Q. J. Am. Chem. Soc. 2006, 128, 6790.
      (b) Rao, W.-H. ; Shi, B.-F. Org. Chem. Front. 2016, 3, 1028.
      (c) Shang, M. ; Sun, S.-Z. ; Wang, M.-M. ; Dai, H.-X. Synthesis 2016, 48, 4381.

    35. [35]

      Peng, J.; Chen, M.; Xie, Z.; Luo, S.; Zhu, Q. Org. Chem. Front. 2014, 1, 777.  doi: 10.1039/C4QO00143E

    36. [36]

      Yu, L.; Chen, X.; L, D; Tan, Z.; Gui, Q.-W. Adv. Synth. Catal. 2018, 360, 1346.  doi: 10.1002/adsc.v360.7

    37. [37]

      Yu, S.-J.; Wan, B.-S.; Li, X.-W. Org. Lett. 2013, 15, 3706.  doi: 10.1021/ol401569u

    38. [38]

      Raghuvanshi, K.; Zell, D.; Rauch, K.; Ackermann, L. ACS Catal. 2016, 6, 3172  doi: 10.1021/acscatal.6b00711

    39. [39]

      Li, Z.; Yu, H.; Bolm, C. Angew. Chem., Int. Ed. 2017, 56, 9532.  doi: 10.1002/anie.v56.32

    40. [40]

      Tezuka, N.; Shimojo, K.; Komagawa, S.; Miyamoto, K.; Saito, T.; Takita, R.; Uchiyama, M. J. Am. Chem. Soc. 2016, 138, 9166.  doi: 10.1021/jacs.6b03855

  • 加载中
    1. [1]

      Geyang Song Dong Xue Gang Li . Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides. University Chemistry, 2024, 39(2): 321-329. doi: 10.3866/PKU.DXHX202308030

    2. [2]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . 基于激发态手性铜催化的烯烃EZ异构的动力学拆分——推荐一个本科生综合化学实验. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

    3. [3]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    4. [4]

      Fugui XIDu LIZhourui YANHui WANGJunyu XIANGZhiyun DONG . Functionalized zirconium metal-organic frameworks for the removal of tetracycline from water. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 683-694. doi: 10.11862/CJIC.20240291

    5. [5]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    6. [6]

      Guoqiang Chen Zixuan Zheng Wei Zhong Guohong Wang Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021

    7. [7]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    8. [8]

      Yi Yang Xin Zhou Miaoli Gu Bei Cheng Zhen Wu Jianjun Zhang . S型ZnO/CdIn2S4光催化剂制备H2O2偶联苄胺氧化的超快电子转移飞秒吸收光谱研究. Acta Physico-Chimica Sinica, 2025, 41(6): 100064-. doi: 10.1016/j.actphy.2025.100064

    9. [9]

      Xinyu Zhu Meili Pang . Application of Functional Group Addition Strategy in Organic Synthesis. University Chemistry, 2024, 39(3): 218-230. doi: 10.3866/PKU.DXHX202308106

    10. [10]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    11. [11]

      Wenjie SHIFan LUMengwei CHENJin WANGYingfeng HAN . Synthesis and host-guest properties of imidazolium-functionalized zirconium metal-organic cage. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 105-113. doi: 10.11862/CJIC.20240360

    12. [12]

      Jingzhao Cheng Shiyu Gao Bei Cheng Kai Yang Wang Wang Shaowen Cao . 4-氨基-1H-咪唑-5-甲腈修饰供体-受体型氮化碳光催化剂的构建及其高效光催化产氢研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406026-. doi: 10.3866/PKU.WHXB202406026

    13. [13]

      Fei Xie Chengcheng Yuan Haiyan Tan Alireza Z. Moshfegh Bicheng Zhu Jiaguo Yud带中心调控过渡金属单原子负载COF吸附O2的理论计算研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2407013-. doi: 10.3866/PKU.WHXB202407013

    14. [14]

      Jing WUPuzhen HUIHuilin ZHENGPingchuan YUANChunfei WANGHui WANGXiaoxia GU . Synthesis, crystal structures, and antitumor activities of transition metal complexes incorporating a naphthol-aldehyde Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2422-2428. doi: 10.11862/CJIC.20240278

    15. [15]

      Shiyang He Dandan Chu Zhixin Pang Yuhang Du Jiayi Wang Yuhong Chen Yumeng Su Jianhua Qin Xiangrong Pan Zhan Zhou Jingguo Li Lufang Ma Chaoliang Tan . 铂单原子功能化的二维Al-TCPP金属-有机框架纳米片用于增强光动力抗菌治疗. Acta Physico-Chimica Sinica, 2025, 41(5): 100046-. doi: 10.1016/j.actphy.2025.100046

    16. [16]

      Hong RAOYang HUYicong MAChunxin LÜWei ZHONGLihua DU . Synthesis and in vitro anticancer activity of phenanthroline-functionalized nitrogen heterocyclic carbene homo- and heterobimetallic silver/gold complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2429-2437. doi: 10.11862/CJIC.20240275

    17. [17]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    18. [18]

      Shulei HuYu ZhangXiong XieLuhan LiKaixian ChenHong LiuJiang Wang . Rh(Ⅲ)-catalyzed late-stage C-H alkenylation and macrolactamization for the synthesis of cyclic peptides with unique Trp(C7)-alkene crosslinks. Chinese Chemical Letters, 2024, 35(8): 109408-. doi: 10.1016/j.cclet.2023.109408

    19. [19]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    20. [20]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

Metrics
  • PDF Downloads(80)
  • Abstract views(5164)
  • HTML views(1459)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return