Citation: Xu Linlin, Xu Hui, Lin Haixia, Dai Huixiong. Progress in the Synthesis of Primary Anilines via C-H Bond Functionalization[J]. Chinese Journal of Organic Chemistry, ;2018, 38(8): 1940-1948. doi: 10.6023/cjoc201804004 shu

Progress in the Synthesis of Primary Anilines via C-H Bond Functionalization

  • Corresponding author: Lin Haixia, haixialin@staff.shu.edu.cn Dai Huixiong, xdai@sioc.ac.cn
  • Received Date: 2 April 2018
    Revised Date: 23 April 2018
    Available Online: 3 August 2018

    Fund Project: the National Natural Science Foundation of China 21772211Project supported by the National Natural Science Foundation of China (No. 21772211) and the Youth Innovation Promotion Association of Chinese Academy of Sciences (No. 2014229)the Youth Innovation Promotion Association of Chinese Academy of Sciences 2014229

Figures(11)

  • Primary anilines are widely used in pharmaceutical, agrochemicals and material chemistry. In recent years, the green and efficient methods for constructing carbon-nitrogen (C-N) bonds to introduce primary amines has been one of the hottest topics in chemical synthesis. The direct C-H primary amination of aromatic compounds have received considerable attention due to its high efficiency and practicality. The recent progress in the C-H primary amination of aromatic compounds reactions is reviewed. Furthermore, the synthetic challenge and prospect in the future development for the synthesis of primary anilines through direct C-H amination are summarized.
  • 加载中
    1. [1]

      (a) Ricci, A. Amino Group Chemistry: From Synthesis to the Life Sciences, Wiley-VCH, Weinheim, 2008.
      (b) Evano, G. ; Theunissen, C. ; Pradal, A. Nat. Prod. Rep. 2013, 30, 1467.
      (c) Okano, K. ; Tokuyama, H. ; Fukuyama, T. Chem. Commun. 2014, 50, 13650.
      (d) Quintas-Cardama, A. ; Kantarjian, H. ; Cortes, J. Nat. Rev. Drug Discovery 2007, 6, 834.
      (e) Uno, S. ; Kamiya, M. ; Yoshihara, T. ; Sugawara, K. ; Okabe, K. ; Tarhan, M. C. ; Fujita, H. ; Funatsu, T. ; Okada, Y. ; Tobita, S. ; Urano, Y. Nat. Chem. 2014, 6, 681.
      (f) Uno, S. ; Kamiya, M. ; Yoshihara, T. ; Sugawara, K. ; Okabe, K. ; Tarhan, M. C. ; Fujita, H. ; Funatsu, T. ; Okada, Y. ; Tobita, S. ; Urano, Y. Nat. Chem. 2014, 6, 681.

    2. [2]

      (a) Lawrence, S. A. Amines: Synthesis Properties and Applications, Cambridge University Press, Cambridge, 2004.
      (b) Rappoport, Z. The Chemistry of Anilines, Parts 1 and 2, John Wiley & Sons, New York, 2007.
      (c) Aniszewski, T. Alkaloids. Secrets of Life, Elsevier Science, Amsterdam, 2007.

    3. [3]

      (a) Sandmeyer, T. ; Ber. Dtsch. Chem. Ges. 1884, 17, 1633.
      (b) Hodgson, H. H. Chem. Rev. 1947, 40, 251.
      (c) Mo, F. ; Jiang, Y. ; Qiu, D. ; Zhang, Y. ; Wang, J. Angew. Chem., Int. Ed. 2010, 49, 1846.
      (d) Dai, J. ; Fang, C. ; Xiao, B. ; Yi, J. ; Xu, J. ; Liu, Z. ; Lu, X. ; Liu, L. ; Fu, Y. J. Am. Chem. Soc. 2013, 135, 8436.
      (e) Mo, F. ; Dong, G. ; Zhang, Y. ; Wang, J. Org. Biomol. Chem. 2013, 11, 1582.

    4. [4]

      Porter, R. J.; Nohria, V.; Rundfeldt, C. Neurotherapeutics 2007, 4, 149.  doi: 10.1016/j.nurt.2006.11.012

    5. [5]

      Weijlard, J.; Orahoyats, P. D.; Jr, A. P. S.; Purdue, G.; Heath, F. K.; Pfister, K. J. Am. Chem. Soc. 1956, 78, 2342.  doi: 10.1021/ja01591a088

    6. [6]

      Yang, L. P.; Mccormack, P. L. Drugs 2011, 71, 221.  doi: 10.2165/11205870-000000000-00000

    7. [7]

      Bartlett, J. B.; Dredge, K.; Dalgleish, A. G. Nat. Rev. Cancer 2004. 4, 314.  doi: 10.1038/nrc1323

    8. [8]

      (a) Trost, B. Science (Washington, D. C. ) 1991, 254, 1471.
      (b) Wender, P. A. ; Verma, V. A. ; Paxton, T. J. ; Pillow, T. H. Acc. Chem. Res. 2008, 41, 40.
      (c) Young, I. S. ; Baran, P. S. Nat. Chem. 2009, 1, 193.
      (d) Afagh, N. A. ; Yudin, A. K. Angew. Chem., Int. Ed. 2010, 49, 262.
      (e) Zhu, L. ; Guo, B. ; Tang, D. ; Hu, X. ; Li, G. Hu, C. J. Catal. 2007, 245, 446.
      (g) Singha, S. ; Parida, K. M. Catal. Sci. Technol. 2011, 1, 1496.
      (h) Parida, K. M. ; Rath, D. ; Dash, S. S. J. Mol. Catal. A: Chem. 2010, 318, 85.

    9. [9]

      Smith, M. B.; March, J. March's Advanced Organic Chemistry:Reactions, Mechanisms and Structure, 6th ed., John Wiley & Sons, Hoboken, 2007.

    10. [10]

      (a) Ullmann, F. Ber. 1903, 36, 2382.
      (b) Goldberg, I. Ber. 1906, 39, 1691.

    11. [11]

      (a) Kosugi, M. ; Kameyama, M. ; Migita, T. Chem. Lett. 1983, 927.
      (b) Guram, A. S. ; Buchwald, S. L. J. Am. Chem. Soc. 1994, 116, 7901.
      (c) Paul, F. ; Patt, J. ; Hartwig, J. F. J. Am. Chem. Soc. 1994, 116, 5969.

    12. [12]

      (a) Chan, D. ; Monaco, K. ; Wang, R. ; Winter, M. Tetrahedron Lett. 1998, 39, 2933.
      (b) Evans, D. ; Katz, J. ; West, T. Tetrahedron Lett. 1998, 39, 2937.
      (c) Lam, P. ; Clark, C. ; Saubern, S. ; Adams, J. ; Winters, M. ; Chan, D. ; Combs, A. Tetrahedron Lett. 1998, 39, 2941.

    13. [13]

      (a) Chen, X. ; Engle, K. M. ; Wang, D.-H. ; Yu, J.-Q. Angew. Chem. Int. Ed. 2009, 121, 5196.
      (b) Daugulis, O. ; Do, H.-Q. ; Shabashov, D. Acc. Chem. Res. 2009, 42, 1074.
      (c) Lyons, T. W. ; Sanford, M. S. Chem. Rev. 2010, 110, 1147

    14. [14]

      (a) Davies, H. M. L. ; Long, M. S. Angew. Chem., Int. Ed. 2005, 44, 3518.
      (b) Cho, S. H. ; Kim, J. Y. ; Kwak, J. ; Chang, S. Chem. Soc. Rev. 2011, 40, 5068.
      (c) Tsang, W. C. P. ; Zheng, N. ; Buchwald, S. L. J. Am. Chem. Soc. 2005, 127, 14560.
      (d) Wasa, M. ; Yu, J.-Q. J. Am. Chem. Soc. 2008, 130, 14058.
      (e) Hamada, T. ; Ye, X. ; Stahl, S. S. J. Am. Chem. Soc. 2008, 130, 833.
      (f) Matsuda, N. ; Hirano, K. ; Satoh, T. ; Miura, M. Org. Lett. 2011, 13, 2860.
      (g) Li, G. ; Jia, C. ; Sun, K. Org. Lett. 2013, 15, 5198.
      (h) Shang, M. ; Sun, S.-Z. ; Zeng, S.-H. ; Dai, H.-X. ; Yu, J.-Q. Org. Lett. 2013, 15, 5286.
      (i) Brasche, G. ; Buchwald, S. L. ; Angew. Chem., Int. Ed. 2008, 47, 1932.
      (j) Roane, J. ; Daugulis, O. J. Am. Chem. Soc. 2016, 138, 4601.
      (h)Wang, F. ; Jin, L. ; Kong, L.-H. ; Li, X.-W. Org. Lett. 2017, 19, 1812.

    15. [15]

      (a) Amaoka, Y. ; Kamijo, S. ; Hoshikawa, T. ; Inoue, M. J. Org. Chem. 2012, 77, 9959.
      (b) Foo, K. ; Sella, E. ; Thome, I. ; Eastgate, M. D. ; Baran, P. S. J. Am. Chem. Soc. 2014, 136, 5279.
      (c) Zhou, L. ; Tang, S. ; Qi, X. ; Lin, C. ; Liu, K. ; Lan Y. ; Lei, A. Org. Lett. 2014, 16, 3404.
      (d) Allen, L. J. ; Cabrera, P. J. ; Cabrera, M. Lee; Sanford, M. S. J. Am. Chem. Soc. 2014, 136, 5607.
      (e) Hwang, Y. ; Park, Y. ; Chang, S. Chem.-Eur. J. 2017, 23, 11147.
      (f) Hong, S. Y. ; Park, Y. ; Hwang, Y. ; Kim, Y. B. ; Baik, M. H. ; Chang, S. Science 2018, 359, 1016.

    16. [16]

    17. [17]

      Graebe, C. Ber. 1901, 34, 1778.  doi: 10.1002/(ISSN)1099-0682

    18. [18]

      Jaubert, G. E'. Comp. Rend. 1901, 132, 841.
       

    19. [19]

      Kovacic, P.; Bennett, R. P. J. Am. Chem. Soc. 1961, 83, 221.  doi: 10.1021/ja01462a043

    20. [20]

      Yuzawa, H.; Yoshida, H. Chem. Commun. 2010, 46, 8854.  doi: 10.1039/c0cc03551c

    21. [21]

      (a) Yu, T. ; Yang, R. ; Xia, S. ; Li, G. ; Hu, C. Catal. Sci. Technol. 2014, 4, 3159.
      (b) Yu, T. ; Zhang, Q. ; Xia, S. ; Li, G. ; Hu, C. Catal. Sci. Technol. 2014, 4, 639.

    22. [22]

      Paudyal, M. P.; Adebesin, A. M.; Burt, S. R.; Ess, D. H.; Ma, Z.; Kürti, L.; Falck, J. R. Science (Washington, D. C.) 2016, 353, 1144.
       

    23. [23]

      Legnani, L.; Prina Cerai, G.; Morandi, B. ACS Catal. 2016, 6, 8162.  doi: 10.1021/acscatal.6b02576

    24. [24]

      Yi, H.; Zhang, G.; Wang, H.; Huang, Z.; Wang, J.; Singh, A. K; Lei, A. Chem. Rev. 2017, 117, 9016.  doi: 10.1021/acs.chemrev.6b00620

    25. [25]

      Citterio, A.; Gentile, A.; Minisci, F.; Navarrini, V.; Serravalle, M.; Ventura, S. J. Org. Chem. 1984, 49, 4479.  doi: 10.1021/jo00197a030

    26. [26]

      Morofuji, T.; Shimizu, A.; Yoshida, J.-I. J. Am. Chem. Soc. 2013, 135, 5000.  doi: 10.1021/ja402083e

    27. [27]

      Morofuji, T.; Shimizu, A.; Yoshida, J.-I. Chem.-Eur. J. 2015, 21, 3211.  doi: 10.1002/chem.v21.8

    28. [28]

      Kim, H.; Kim, T.; Lee, D. G.; Roh, S. W.; Lee, C. Chem. Commun. 2014, 50, 9273.  doi: 10.1039/C4CC03905J

    29. [29]

      Romero, N. A.; Margrey, K. A.; Tay, N. E.; Nicewicz, D. A. Science (Washington, D. C.) 2015, 349, 1326.  doi: 10.1126/science.aac9895

    30. [30]

      Zheng, Y.-W.; Chen, B.; Ye, P.; Feng, K.; Wang, W.; Meng, Q.-Y.; Wu, L.-Z.; Tung, C.-H. J. Am. Chem. Soc. 2016, 138, 10080.  doi: 10.1021/jacs.6b05498

    31. [31]

      Liu, J.-Z.; Wu, K.; Shen, T.; Liang, Y.-J.; Zou, M.-C.; Zhu, Y.-C.; Li, X. W.; Li, X.-Y.; Jiao, N. Chem.-Eur. J. 2017, 23, 563.  doi: 10.1002/chem.201605476

    32. [32]

      (a) Kakiuchi, F. ; Sekine, S. ; Kamatani, A. ; Sonoda, M. ; Chatani, N. ; Murai, S. Bull. Chem. Soc. Jpn. 1995, 68, 62.
      (b) Giri, R. ; Shi, B.-F. ; Engle, K. M. ; Maugel, N. ; Yu, J.-Q. Chem. Soc. Rev. 2009, 38, 3242.
      (c) Colby, D. A. ; Bergman, R. G. ; Ellman, J. A. Chem. Rev. 2010, 110, 624.
      (d) Wencel-Delord, J. ; Dröge, T. ; Liu, F. ; Glorius, F. Chem. Soc. Rev. 2011, 40, 4740.
      (g) Arockiam, P. B. ; Bruneau, C. ; Dixneuf, P. H. Chem. Rev. 2012, 112, 5879.

    33. [33]

      (a) Liu, J.-D. ; Chen, G.-S; Tan Z. Adv. Synth. Catal. 2016, 358, 1174.
      (b) Jiao, J. ; Murakami, K. ; Itami, K. ACS Catal. 2016, 6, 610.
      (c) Park, Y. ; Kim, Y. ; Chang, S. Chem. Rev. 2017, 117, 9247.

    34. [34]

      (a) Chen, X. ; Hao, X.-S. ; Goodhue, C. E. ; Yu, J.-Q. J. Am. Chem. Soc. 2006, 128, 6790.
      (b) Rao, W.-H. ; Shi, B.-F. Org. Chem. Front. 2016, 3, 1028.
      (c) Shang, M. ; Sun, S.-Z. ; Wang, M.-M. ; Dai, H.-X. Synthesis 2016, 48, 4381.

    35. [35]

      Peng, J.; Chen, M.; Xie, Z.; Luo, S.; Zhu, Q. Org. Chem. Front. 2014, 1, 777.  doi: 10.1039/C4QO00143E

    36. [36]

      Yu, L.; Chen, X.; L, D; Tan, Z.; Gui, Q.-W. Adv. Synth. Catal. 2018, 360, 1346.  doi: 10.1002/adsc.v360.7

    37. [37]

      Yu, S.-J.; Wan, B.-S.; Li, X.-W. Org. Lett. 2013, 15, 3706.  doi: 10.1021/ol401569u

    38. [38]

      Raghuvanshi, K.; Zell, D.; Rauch, K.; Ackermann, L. ACS Catal. 2016, 6, 3172  doi: 10.1021/acscatal.6b00711

    39. [39]

      Li, Z.; Yu, H.; Bolm, C. Angew. Chem., Int. Ed. 2017, 56, 9532.  doi: 10.1002/anie.v56.32

    40. [40]

      Tezuka, N.; Shimojo, K.; Komagawa, S.; Miyamoto, K.; Saito, T.; Takita, R.; Uchiyama, M. J. Am. Chem. Soc. 2016, 138, 9166.  doi: 10.1021/jacs.6b03855

  • 加载中
    1. [1]

      Yanhui GuoLi WeiZhonglin WenChaorong QiHuanfeng Jiang . Recent Progress on Conversion of Carbon Dioxide into Carbamates. Acta Physico-Chimica Sinica, 2024, 40(4): 2307004-0. doi: 10.3866/PKU.WHXB202307004

    2. [2]

      Geyang Song Dong Xue Gang Li . Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides. University Chemistry, 2024, 39(2): 321-329. doi: 10.3866/PKU.DXHX202308030

    3. [3]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . 基于激发态手性铜催化的烯烃EZ异构的动力学拆分——推荐一个本科生综合化学实验. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

    4. [4]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    5. [5]

      Lu ZhuoranLi ShengkaiLu YuxuanWang ShuangyinZou Yuqin . Cleavage of C―C Bonds for Biomass Upgrading on Transition Metal Electrocatalysts. Acta Physico-Chimica Sinica, 2024, 40(4): 2306003-0. doi: 10.3866/PKU.WHXB202306003

    6. [6]

      Mengyang LIHao XUZhonghao NIUChunhua GONGWeihui ZHONGJingli XIE . Highly effective catalytic synthesis of β-amino alcohols by using viologen-polyoxometalate hybrid materials. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1294-1300. doi: 10.11862/CJIC.20250080

    7. [7]

      Dong XiangKunzhen LiKanghua MiaoRan LongYujie XiongXiongwu Kang . Amine-Functionalized Copper Catalysts: Hydrogen Bonding Mediated Electrochemical CO2 Reduction to C2 Products and Superior Rechargeable Zn-CO2 Battery Performance. Acta Physico-Chimica Sinica, 2024, 40(8): 2308027-0. doi: 10.3866/PKU.WHXB202308027

    8. [8]

      Yuanyuan Ping Wangqing Kong . 光催化碳氢键官能团化合成1-苯基-1,2-乙二醇. University Chemistry, 2025, 40(6): 238-247. doi: 10.12461/PKU.DXHX202408092

    9. [9]

      Fugui XIDu LIZhourui YANHui WANGJunyu XIANGZhiyun DONG . Functionalized zirconium metal-organic frameworks for the removal of tetracycline from water. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 683-694. doi: 10.11862/CJIC.20240291

    10. [10]

      Hanxue LIUShijie LIMeng RENXuling XUEHongke LIU . Design and antitumor properties of dehydroabietic acid functionalized cyclometalated iridium(Ⅲ) complex. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1483-1494. doi: 10.11862/CJIC.20250031

    11. [11]

      Lina GuoRuizhe LiChuang SunXiaoli LuoYiqiu ShiHong YuanShuxin OuyangTierui Zhang . Effect of Interlayer Anions in Layered Double Hydroxides on the Photothermocatalytic CO2 Methanation of Derived Ni-Al2O3 Catalysts. Acta Physico-Chimica Sinica, 2025, 41(1): 100002-0. doi: 10.3866/PKU.WHXB202309002

    12. [12]

      Guoqiang ChenZixuan ZhengWei ZhongGuohong WangXinhe Wu . Molten Intermediate Transportation-Oriented Synthesis of Amino-Rich g-C3N4 Nanosheets for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-0. doi: 10.3866/PKU.WHXB202406021

    13. [13]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    14. [14]

      Xinyu Zhu Meili Pang . Application of Functional Group Addition Strategy in Organic Synthesis. University Chemistry, 2024, 39(3): 218-230. doi: 10.3866/PKU.DXHX202308106

    15. [15]

      Wen Jiang Jieli Lin Zhongshu Li . 低配位含磷官能团的研究进展. University Chemistry, 2025, 40(8): 138-151. doi: 10.12461/PKU.DXHX202409144

    16. [16]

      Yi YangXin ZhouMiaoli GuBei ChengZhen WuJianjun Zhang . Femtosecond transient absorption spectroscopy investigation on ultrafast electron transfer in S-scheme ZnO/CdIn2S4 photocatalyst for H2O2 production and benzylamine oxidation. Acta Physico-Chimica Sinica, 2025, 41(6): 100064-0. doi: 10.1016/j.actphy.2025.100064

    17. [17]

      Zeyu LiuWenze HuangYang XiaoJundong ZhangWeijin KongPeng WuChenzi ZhaoAibing ChenQiang Zhang . Nanocomposite Current Collectors for Anode-Free All-Solid-State Lithium Batteries. Acta Physico-Chimica Sinica, 2024, 40(3): 2305040-0. doi: 10.3866/PKU.WHXB202305040

    18. [18]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    19. [19]

      Wenjie SHIFan LUMengwei CHENJin WANGYingfeng HAN . Synthesis and host-guest properties of imidazolium-functionalized zirconium metal-organic cage. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 105-113. doi: 10.11862/CJIC.20240360

    20. [20]

      Yan Qi Yueqin Yu Weisi Guo Yongjun Liu . 过渡金属参与的有机反应案例教学与实践探索. University Chemistry, 2025, 40(6): 111-117. doi: 10.12461/PKU.DXHX202411021

Metrics
  • PDF Downloads(80)
  • Abstract views(5489)
  • HTML views(1574)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return