Citation: Zhang Chenglu, Li Yizheng, Li Jingyi, Li Yilin, Gong Rongqing, Wang Huayu. Synthesis and Bioactivities of Novel 1, 2, 4-Triazine Scheleton Phenanthroline Derivatives and the Fluorescent Recognition on DNA Using Three Novel Co (Ⅲ) Complexes[J]. Chinese Journal of Organic Chemistry, ;2018, 38(10): 2720-2730. doi: 10.6023/cjoc201803048 shu

Synthesis and Bioactivities of Novel 1, 2, 4-Triazine Scheleton Phenanthroline Derivatives and the Fluorescent Recognition on DNA Using Three Novel Co (Ⅲ) Complexes

  • Corresponding author: Zhang Chenglu, zhangchenglu@lnnu.edu.cn
  • Received Date: 28 March 2018
    Revised Date: 7 June 2018
    Available Online: 30 October 2018

    Fund Project: Project supported by the Science and Technology Research Program of Liaoning Provincial Department of Education (No. 2009A426)the Science and Technology Research Program of Liaoning Provincial Department of Education 2009A426

Figures(9)

  • Cdc25B has become the important target for curing cancer owing to its over expression in kinds of cancers. Compounds containing phenanthroline moiety have become research objectives on the DNA fluorescence probes or the new curing agents for their excellent fluorescence property and bioactivities. Twelve novel 1, 2, 4-triazine scheleton phenanthroling derivatives ARTP1~ARTP12 were first designed and synthesized, the structures of ARTP1~ARTP12 were characterized successfully by means of IR and NMR. The inhibitory activities of ARTP1~ARTP12 against Cdc25B were evaluated. The results show that nine target molecules exhibit excellent inhibitories, four molecules behave better activities than the contrast reference Na3VO4 indicating that they may be used as Cdc25B inhibitors. Meanwhile, three novel complexes Co-ARTP-5, Co-ARTP-6 and Co-ARTP-10 were first afforded by the reaction of the excellent inhibitory active compounds ARTP5, ARTP6 and ARTP10 with Co3+ respectively. The structures of the three complexes were confirmed through IR, UV-Vis, 1H NMR and fluorescence spectra. The interaction modes between the complexes and CT-DNA were explored. As a result, the excitation peaks of the complexes show a red shift and the complexes interact with CT-DNA through the insert mode. The binding constants Kb are (2.12±0.20)×105, (3.29±0.20)×105and (1.50±0.20)×105 L·mol-1, respectively, and it occurs strong fluorescene quenching. The complexes are expected to be the DNA fluorescence probes.
  • 加载中
    1. [1]

      Mak, L. H.; Knott, J.; Scott, K. A.; Scott, C.; Whyte, G. F.; Ye, Y.; Mann, D. J.; Ces, O.; Stivers, J.; Woscholski, R. Bioorg. Med. Chem. 2012, 20, 4371.  doi: 10.1016/j.bmc.2012.05.040

    2. [2]

      He, X. P.; Deng, Q.; Gao, L. X.; Li, C.; Zhang, W.; Zhou, Y. B.; Tang, Y.; Shi, X. X.; Xie J.; Li J.; Chen, G. R.; Chen, K. X. Bioorg. Med. Chem. 2011, 19, 3892.  doi: 10.1016/j.bmc.2011.05.049

    3. [3]

      Sarkis, M.; Tran, D. N.; Kolb, S.; Miteva, M. A.; Villoutreix, B. O.; Garbay, C.; Braud, E. Bioorg. Med. Chem. Lett. 2012, 22, 7345.  doi: 10.1016/j.bmcl.2012.10.072

    4. [4]

      B urle, S.; Blume, T.; Günther, J.; Henschel, D.; Hillig, R. C.; Husemann, M.; Mengel, A.; Parchmann, C.; Schmid, E.; Skuballa, W. Bioorg. Med. Chem. Lett. 2004, 14, 1673.  doi: 10.1016/j.bmcl.2004.01.052

    5. [5]

      Barton, J. K.; Danishefsky, A.; Goldberg, J. J. Am. Chem. Soc. 1984, 106, 2172.  doi: 10.1021/ja00319a043

    6. [6]

      Demeunynck, M.; Bailly, C.; Wilson, W. D. DNA and RNA Binders, From Small Molecules to Drugs, Vol. 1, Wiley-VCH, Weinheim, 2003.

    7. [7]

      Masood, M. A.; Hodgson, D. J. Inorg. Chem. 1993, 32, 4839.  doi: 10.1021/ic00074a031

    8. [8]

      Kalyanasundaram, K.; Gratzel, M. Coord. Chem. Rev. 1998, 77, 347.

    9. [9]

      Barton, J. K.; Danishefsky, A. T.; Goldberg, J. M. J. Am. Chem. Soc. 1984, 106, 2172.  doi: 10.1021/ja00319a043

    10. [10]

      Juris, A.; Balzani, V.; Barigelletti, F.; Campagna, S.; Belser, P.; Von Zelewsky, A. Coord. Chem. Rev. 1988, 84, 85.  doi: 10.1016/0010-8545(88)80032-8

    11. [11]

      Balzani, V.; Juris, A.; Venturi, M.; Campagna, S.; Serroni, S. Chem. Rev. 1996, 96, 759.  doi: 10.1021/cr941154y

    12. [12]

      Cola, L. D.; Belser, P. Coord. Chem. Rev. 1998, 177, 301.  doi: 10.1016/S0010-8545(98)00198-2

    13. [13]

      Kaes, C.; Katz, A.; Hosseini, M. W. Chem. Rev. 2000, 100, 3553.  doi: 10.1021/cr990376z

    14. [14]

      Chao, H.; Ji, L. N. Bioinorg. Chem. Appl. 2005, 3, 15.  doi: 10.1155/BCA.2005.15

    15. [15]

      Vos, J. G.; Kelly, J. M. J. Chem. Soc., Dalton Trans. 2006, 41, 4869.

    16. [16]

      Tan, L. F.; Liu, J. H.; Wang, F.; Zhang, S. Chem. Biodiversity 2007, 4, 2863.  doi: 10.1002/(ISSN)1612-1880

    17. [17]

      Liu, Y. J.; Wang, N.; Mei, W. J.; Chen, F.; He, L. X.; Jian, L. Q.; Wang, R. J. Transition. Met. Chem. 2007, 32, 332.  doi: 10.1007/s11243-006-0172-4

    18. [18]

      Xu, H.; Deng, H.; Zhang, Q. L.; Huang, Y.; Liu, J. Z.; Li, L. L. Inorg. Chem. Commun. 2003, 6, 766.  doi: 10.1016/S1387-7003(03)00079-0

    19. [19]

      Tan, L. F.; Chao, H.; Liu, Y. J.; Li, H.; Sun, B.; Ji, L. N. Inorg. Chim. Acta 2005, 358, 2191.  doi: 10.1016/j.ica.2004.10.030

    20. [20]

      Cédric, M. R.; Eddy, D.; Francis, S. Chem. Commun. 2005, 345.

    21. [21]

      Mahajan, S. S.; Scian, M.; Sripathy, S.; Posakony, J.; Lao, U.; Loe, T. K.; Leko, V.; Thalhofer, A.; Schuler, A. D.; Bedalov, A.; Simon, J. A. J. Med. Chem. 2014, 57, 3283.  doi: 10.1021/jm4018064

    22. [22]

      Wang, Z. N.; Xue, S. J. Chin. J. Org. Chem. 2002, 22, 174(in Chinese).  doi: 10.3321/j.issn:0253-2786.2002.03.004
       

    23. [23]

      Paul, K.; Sharma, A.; Luxami, V. Bioorg. Med. Chem. Lett. 2014, 24, 624.  doi: 10.1016/j.bmcl.2013.12.005

    24. [24]

      Khoshneviszadeh, M.; Ghahremani, M. H.; Foroumadi, A.; Miri, R.; Firuzi, O.; Madadkar-Sobhani, A.; Edraki, N.; Parsa, M.; Shafiee, A. Bioorg. Med. Chem. 2013, 21, 6708.  doi: 10.1016/j.bmc.2013.08.009

    25. [25]

      El-Sayed Ali, T. S. Eur. J. Med. Chem. 2009, 44, 4385.  doi: 10.1016/j.ejmech.2009.05.031

    26. [26]

      Stefek, M.; Soltesova Prnova, M.; Majekova, M.; Rechlin, C.; Heine, A.; Klebe, G. J. Med. Chem. 2015, 58, 2649.  doi: 10.1021/jm5015814

    27. [27]

      Luo, R.; Liu, L.; Si, Y.; Fang, J. J.; Xu, H. R.; Zhao, L. L.; An, D. M.; Mu, J. Mod. Prev. Med. 2011, 38, 4550(in Chinese).

    28. [28]

      Guo, X. X.; Du, X. X.; Xue, S. S. Chin. J. Pharmacovigilance 2011, 8, 212(in Chinese).  doi: 10.3969/j.issn.1672-8629.2011.04.007

    29. [29]

      Li, J.; Li, X. M.; Wang, H. Y. Int. J. Intern. Med. 1999, 26, 107(in Chinese).

    30. [30]

      Cui, X. Y.; Cao, M. F.; Sun, H.; Yu, B. L. Med. Lab. Sci. Clin. 2008, 16, 71(in Chinese).

    31. [31]

      Sangshetti, J. N.; Shinde, D. B. Bioorg. Med. Chem. Lett. 2010, 20, 742.  doi: 10.1016/j.bmcl.2009.11.048

    32. [32]

      Misra, U.; Hitkari, A.; Saxena, A. K.; Gurtu, S.; Shanker, K. Eur. J. Med. Chem. 1996, 31, 629.  doi: 10.1016/0223-5234(96)89559-6

    33. [33]

      Lindsley, C. W.; Wisnoski, D. D.; Wang, Y.; Leister, W. H.; Zhao, Z. J. Tetrahedron Lett. 2003, 44, 4495.  doi: 10.1016/S0040-4039(03)01019-0

    34. [34]

      Thirumurugan, P.; Perumal, P. T. Dyes Pigm. 2011, 88, 403.  doi: 10.1016/j.dyepig.2010.07.013

    35. [35]

      Ghazvini Zadeh, E. H.; El-Gendy, B. E. M.; Popa, A. G.; Katritzky, A. R. Med. Chem. Commun. 2012, 3, 52.  doi: 10.1039/C1MD00177A

    36. [36]

      Chai, J. H.; Wang, Y.; Xu, D. Q.; Wang, X.; Zhu, C. A.; Guo, Y.; Zhang, C. L. Chem. J. Chin. Univ. 2014, 35, 750(in Chinese).  doi: 10.7503/cjcu20130759

    37. [37]

      Zhang, C. L.; Wang, X.; Guo, Y.; Wu, Y. F.; Gao, L. N.; Sun, L. J. Chin. J. Org. Chem. 2014, 34, 2331(in Chinese).
       

    38. [38]

      Zhu, C. A.; Wu, F. Y.; Wang, X.; Gao, L. N.; Weng, Q. F.; Shi, L.; Zhang, C. L. Chin. J. Appl. Chem. 2014, 31, 455(in Chinese).

    39. [39]

      Zhang, C. L.; Guo, Y.; Chen, Y.; Sun, L. J.; Cheng, A. Q.; Zhao, N.; Zhao, B. C.; Tang, J.; Xi, H. Chin. J. Org. Chem. 2015, 35, 1665(in Chinese).
       

    40. [40]

      Shui, Y. H. J. Chengdu Text. Coll. 2000, 17, 61(in Chinese).

    41. [41]

      Wang, G. Z.; Wang, Q. X. Stud. Trace Elem. Health 2004, 21, 54(in Chinese).

    42. [42]

      Park, H.; Bahn, Y. H.; Jung, S. K.; Jeong, D. G.; Lee, S. H.; Seo, I.; Yoon, T. S.; Kim, S. J.; Ryu, S. E. J. Med. Chem. 2008, 51, 5533.  doi: 10.1021/jm701157g

    43. [43]

      Vlček, A. A. Inorg. Chem. 1967, 6, 1425.  doi: 10.1021/ic50053a028

    44. [44]

      Heinrich W, Milena T. Collect. Czech. Chem. Commun. 2003, 68, 965.  doi: 10.1135/cccc20030965

    45. [45]

      Akritopoulou-Zanze, I.; Wang, Y.; Zhao, H.; Djuric, S. W. Tetrahedron Lett. 2009, 50, 5773.  doi: 10.1016/j.tetlet.2009.07.036

    46. [46]

      Zou, X. H.; Ye, B. H.; Li, H.; Liu, J. G.; Xiong, Y.; Ji, L. N. J. Chem. Soc., Dalton Trans. 1999, 9, 1423.

    47. [47]

      Pabst, G. R.; Pfüller, O. C.; Sauer, J. Tetrahedron Lett. 1998, 39, 8825.  doi: 10.1016/S0040-4039(98)02044-9

    48. [48]

      Chao, H.; Qiu, Z. R.; Cai, L. R.; Zhang, H.; Li, X. Y.; Wong, K. S.; Ji, L. N. Inorg. Chem. 2003, 42, 8823.  doi: 10.1021/ic034769z

  • 加载中
    1. [1]

      Jun LUOBaoshu LIUYunchang ZHANGBingkai WANGBeibei GUOLan SHETianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240

    2. [2]

      Jinlong YANWeina WUYuan WANG . A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1653-1660. doi: 10.11862/CJIC.20240154

    3. [3]

      Yanxi LIUMengjia XUHaonan CHENQuan LIUYuming ZHANG . A fluorescent-colorimetric probe for peroxynitrite-anion-imaging in living cells. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1112-1122. doi: 10.11862/CJIC.20240423

    4. [4]

      Yu SUXinlian FANYao YINLin WANG . From synthesis to application: Development and prospects of InP quantum dots. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2105-2123. doi: 10.11862/CJIC.20240126

    5. [5]

      Yuan ZHUXiaoda ZHANGShasha WANGPeng WEITao YI . Conditionally restricted fluorescent probe for Fe3+ and Cu2+ based on the naphthalimide structure. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 183-192. doi: 10.11862/CJIC.20240232

    6. [6]

      Liyang ZHANGDongdong YANGNing LIYuanyu YANGQi MA . Crystal structures, luminescent properties and Hirshfeld surface analyses of three cadmium(Ⅱ) complexes based on 2-(3-(pyridin-2-yl)-1H-pyrazol-1-yl)benzoate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1943-1952. doi: 10.11862/CJIC.20240079

    7. [7]

      Yahui HANJinjin ZHAONing RENJianjun ZHANG . Synthesis, crystal structure, thermal decomposition mechanism, and fluorescence properties of benzoic acid and 4-hydroxy-2, 2′: 6′, 2″-terpyridine lanthanide complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 969-982. doi: 10.11862/CJIC.20240395

    8. [8]

      Shuwen SUNGaofeng WANG . Design and synthesis of a Zn(Ⅱ)-based coordination polymer as a fluorescent probe for trace monitoring 2, 4, 6-trinitrophenol. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 753-760. doi: 10.11862/CJIC.20240399

    9. [9]

      Meirong HANXiaoyang WEISisi FENGYuting BAI . A zinc-based metal-organic framework for fluorescence detection of trace Cu2+. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1603-1614. doi: 10.11862/CJIC.20240150

    10. [10]

      Hexing SONGZan SUN . Synthesis, crystal structure, Hirshfeld surface analysis, and fluorescent sensing for Fe3+ of an Mn(Ⅱ) complex based on 1-naphthalic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 885-892. doi: 10.11862/CJIC.20240402

    11. [11]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006

    12. [12]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    13. [13]

      You ZhouLi-Sheng WangShuang-Gui LeiBo-Cheng TangZhi-Cheng YuXing LiYan-Dong WuKai-Lu ZhengAn-Xin Wu . I2-DMSO mediated tetra-functionalization of enaminones for the construction of novel furo[2′,3′:4,5]pyrimido[1,2-b]indazole skeletons via in situ capture of ketenimine cations. Chinese Chemical Letters, 2025, 36(1): 109799-. doi: 10.1016/j.cclet.2024.109799

    14. [14]

      Xuewei BACheng CHENGHuaikang ZHANGDeqing ZHANGShuhua LI . Preparation and luminescent performance of Sr1-xZrSi2O7xDy3+ phosphor with high thermal stability. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 357-364. doi: 10.11862/CJIC.20240096

    15. [15]

      Gaofeng WANGShuwen SUNYanfei ZHAOLixin MENGBohui WEI . Structural diversity and luminescence properties of three zinc coordination polymers based on bis(4-(1H-imidazol-1-yl)phenyl)methanone. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 849-856. doi: 10.11862/CJIC.20230479

    16. [16]

      Zhifeng CAIYing WUYanan LIGuiyu MENGTianyu MIAOYihao ZHANG . Effective detection of malachite green by folic acid stabilized silver nanoclusters. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 983-993. doi: 10.11862/CJIC.20240394

    17. [17]

      Wei GAOMeiqi SONGXuan RENJianliang BAIJing SUJianlong MAZhijun WANG . A self-calibrating fluorescent probe for the selective detection and bioimaging of HClO. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1173-1182. doi: 10.11862/CJIC.20250112

    18. [18]

      Lei ZHANGCheng HEYang JIAO . An azo-based fluorescent probe for the detection of hypoxic tumor cells. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1162-1172. doi: 10.11862/CJIC.20250081

    19. [19]

      Shuhui Li Rongxiuyuan Huang Yingming Pan . Electrochemical Synthesis of 2,5-Diphenyl-1,3,4-Oxadiazole: A Recommended Comprehensive Organic Chemistry Experiment. University Chemistry, 2025, 40(5): 357-365. doi: 10.12461/PKU.DXHX202407028

    20. [20]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

Metrics
  • PDF Downloads(8)
  • Abstract views(905)
  • HTML views(146)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return