Citation: Pan Guoshuai, Wu Kongchuan, Deng Zeying, Zhang Xinyu, Zhang Xiaofeng, Lin Shen, Huang Qiufeng. Palladium-Catalyzed C—H Direct Arylation of Uracils and Caffeines with Arenes Using Molecular Oxygen as the Sole Oxidant[J]. Chinese Journal of Organic Chemistry, ;2018, 38(8): 2076-2084. doi: 10.6023/cjoc201802008 shu

Palladium-Catalyzed C—H Direct Arylation of Uracils and Caffeines with Arenes Using Molecular Oxygen as the Sole Oxidant

  • Corresponding author: Huang Qiufeng, qiufenghuang@fjnu.edu.cn
  • Received Date: 4 February 2018
    Revised Date: 25 March 2018
    Available Online: 13 August 2018

    Fund Project: the Natural Science Foundation of Fujian Province 2017J01572the National Natural Science Foundation of China 6152010615Project supported by the National Natural Science Foundation of China (No. 6152010615), the Natural Science Foundation of Fujian Province (No. 2017J01572), the Foundation of Fujian Educational Committee (No. JZ160424), the Fujian Province University Fund for New Century Excellent Talents, and Undergraduate Training Program for Innovation and Entrepreneurship (No. 201710394061)the Foundation of Fujian Educational Committee JZ160424the Fujian Province University Fund for New Century Excellent Talents, and Undergraduate Training Program for Innovation and Entrepreneurship 201710394061

Figures(3)

  • Palladium-catalyzed cross-dehydrogenative coupling of uracil or caffeine with unactivated arenes has been developed. The approach was characterized by using atmospheric pressure of molecular oxygen as the sole oxidant. Functional groups such as halo, ester, nitro, nitrile and ether are well-tolerated under the reaction conditions. This novel strategy provides a straightforward, facile and economical route to C6-aryl uracil derivatives or C8-aryl caffeine derivatives.
  • 加载中
    1. [1]

    2. [2]

      (a) Reddy, M. C. ; Jeganmohan, M. Chem. Commun. 2015, 51, 10738.
      (b) Gao, G. -L. ; Xia, W. ; Jain, P. ; Yu, J. -Q. Org. Lett. 2016, 18, 744.
      (c) Gong, H. ; Zeng, H. ; Zhou, F. ; Li, C. -J. Angew. Chem., Int. Ed. 2015, 54, 5718.
      (d) Yang, Z. ; Qiu, F. -C. ; Gao, J. Li, Z. -W. ; Guan, B. -T. Org. Lett. 2015, 17, 4316.
      (e) Lou, S. -J. ; Mao, Y. -J. ; Xu, D. -Q. ; He, J. -Q. ; Chen, Q. ; Xu, Z. -Y. ACS Catal. 2016, 6, 3890.
      (f) Huang, Y. ; Wu, D. ; Huang, J. ; Guo, Q. ; Li, J. ; You, J. Angew. Chem., Int. Ed. 2004, 53, 12158.
      (g) Qin, D. ; Wang, J. ; Qin, X. ; Wang, C. ; Gao, G. ; You, J. Chem. Commun. 2015, 51, 6190.
      (h) Zhang, X. -S. ; Zhang, Y. -F. ; Li, Z. -W. ; Luo, F. -X. ; Shi, Z. -J. Angew. Chem., Int. Ed. 2015, 54, 5478.
      (i) Zhang, Y. ; Zhao, H. ; Zhang, M. ; Su, W. Angew. Chem., Int. Ed. 2015, 54, 3817.

    3. [3]

      (a) Li, B. ; Lan, J. ; Wu, D. ; You, J. Angew. Chem., Int. Ed. 2015, 54, 14008.
      (b) Gao, D. -W. ; Gu, Q. ; You, S. -L. J. Am. Chem. Soc. 2016, 138, 2544.
      (c) Engle, K. M. ; Wang, D. -H. ; Yu, J. -Q. J. Am. Chem. Soc. 2010, 132, 14137.
      (d) Wang, D. -H. ; Engle, K. M. ; Shi, B. -F. ; Yu, J. -Q. Science 2010, 327, 315.
      (e) Ye. X. ; Shi, X. Org. Lett. 2014, 16, 4448.
      (f) Huang, Q. ; Ke, S. ; Qiu, L. ; Zhang, X. ; Lin, S. ChemCatChem 2014, 6, 1531.
      (g) Huang, Q. ; Song, Q. ; Cai, J. ; Zhang, X. ; Lin, S. Adv. Synth. Catal. 2013, 355, 1512.

    4. [4]

    5. [5]

      (a) Zhang, Y. -H. ; Shi, B. -F. ; Yu, J. -Q. J. Am. Chem. Soc. 2009, 131, 5072.
      (b) BraSche, G. ; García-Fortanet, J. ; Buchwald, S. L. Org. Lett. 2008, 10, 2207.
      (c) Yang, D. ; Mao, S. ; Gao, Y. -R. ; Guo, D. -D. ; Guo, S. -H. ; Lin B. ; Wang, Y. -Q. RSC Adv. 2015, 2, 3727.
      (d) Kim, N. ; Min, M. ; Hong, S. Org. Chem. Front. 2015, 2, 1621.
      (e) Engle, K. M. ; Wang, D. -H. ; Yu, J. -Q. Angew. Chem., Int. Ed. 2010, 49, 6169.
      (f) Liu, B. ; Jiang, H. -Z. ; Shi, B. -F. J. Org. Chem. 2014, 79, 1521.
      (g) Lu, Y. ; Wang, H. -W. ; Spangler, J. E. ; Chen, K. ; Cui, P. -P. ; Zhao, Y. ; Sun, W. -Y. ; Yu, J. -Q. Chem. Sci. 2015, 6, 1923.

    6. [6]

      Huang, Q.; Zhang, X.; Qiu, L.; Wu, J.; Xiao, H.; Zhang, X.; Lin, S. Adv. Synth. Catal. 2015, 357, 3753.  doi: 10.1002/adsc.201500632

    7. [7]

      Zhang, X.; Su, L.; Qiu, L.; Fan, Z.; Zhang, X.; Lin, S.; Huang, Q. Org. Biomol. Chem. 2017, 15, 3499.  doi: 10.1039/C7OB00616K

    8. [8]

      (a) He, L. ; Pei, H. ; Ma, L. ; Pu, Y. ; Chen, J. ; Liu, Z. ; Ran, Y. ; Lei, L. ; Fu, S. ; Tang, M. ; Peng, A. ; Long, C. ; Chen, L. Eur. J. Med. Chem. 2014, 87, 595.
      (b) Thomas, R. ; Lee, J. ; Chevalier, V. ; Sadler, S. ; Selesniemi, K. ; Hatfield, S. ; Sitkovsky, M. ; Ondrechen, M. J. ; Jones, G. B. Bioorg. Med. Chem. 2013, 21, 7453.
      (c) Kim, S. -M. ; Lee, M. ; Lee, S. Y. ; Park, E. ; Lee, S. -M. ; Kim, E. J. ; Han, M. Y. ; Yoo, T. ; Ann, J. ; Yoon, S. ; Lee, J. ; Lee, J. J. Med. Chem. 2016, 59, 9150.
      (d) Qian, H. -Y. ; Wang, Z. -L. ; Pan, Y. -L. ; Chen, L. -L. ; Xie, X. ; Chen, J. -Z. ACS Med. Chem. Lett. 2017, 8, 678.
      (e) Rivara, S. ; Piersanti, G. ; Bartoccini, F. ; Diamantini, G. ; Pala, D. ; Riccioni, T. ; Stasi, M. A. ; Cabri, W. ; Borsini, F. ; Mor, M. ; Tarzia, G. ; Minetti, P. J. Med. Chem. 2013, 56, 1247.

    9. [9]

      Malakar, C. C.; Schmidt, D.; Conrad, J.; Beifuss, U. Org. Lett. 2011, 13, 1378.  doi: 10.1021/ol200065s

    10. [10]

      Kim, K. H.; Lee, H. S.; Kim, J. N. Tetrahedron Lett. 2011, 52, 6228.  doi: 10.1016/j.tetlet.2011.09.066

    11. [11]

      (a) Musaev, D. G. ; Figg, T. M. ; Kaledin, A. L. Chem. Soc. Rev. 2014, 43, 5009.
      (b) Haines, B. E. ; Musaev, D. G. ACS Catal. 2015, 5, 830.
      (c) Li, G. ; Leow, D. ; Wan, L. ; Yu, J. -Q. Angew. Chem., Int. Ed. 2013, 52, 1245.
      (d) Musaev, D. G. ; Kaledinm, A. L. ; Shi, B. -F. ; Yu, J. -Q. J. Am. Chem. Soc. 2012, 134, 1690.
      (e) Wang, H. -L. ; Hu, R. -B. ; Zhang, H. ; Zhou, A. -X. ; Yang, S. -D. Org. Lett. 2013, 15, 5302.
      (f) Cong, X. ; Tang, H. ; Wu, C. ; Zhang, X. Organometallics 2013, 32, 6565.
      (g) Cheng, G. -J. ; Yang, Y. -F. ; Liu, P. ; Chen, P. ; Sun, T. -Y. ; Li, G. ; Zhang, X. ; Houk, K. N. ; Yu, J. -Q. ; Wu, Y. -D. J. Am. Chem. Soc., 2014, 136, 894.

  • 加载中
    1. [1]

      Longping Li Jiali Li Tiange Qu Jiaqing Cai Chuyu Zhang Wenji Guo Qiulian Li Fan Luo . “可视化”助力从茶叶中提取咖啡因实验的关键步——升华. University Chemistry, 2025, 40(8): 272-276. doi: 10.12461/PKU.DXHX202409137

    2. [2]

      Zhanming Zhang Can Zhu Juan Wang Yanghui Lin Mo Sun . Ideological and Political Cases in the Course of Organic Chemistry Experiment: Taking Caffeine Extraction from Tea Leaves Experiment as an Example. University Chemistry, 2025, 40(7): 34-41. doi: 10.12461/PKU.DXHX202409030

    3. [3]

      Yifan Xie Liyun Yao Ruolin Yang Yuxing Cai Yujie Jin Ning Li . Application of Comparative Pedagogy in Instrumental Analysis Experiment Teaching. University Chemistry, 2024, 39(3): 266-273. doi: 10.3866/PKU.DXHX202309068

    4. [4]

      Tong Zhou Liyi Xie Chuyu Liu Xiyan Zheng Bao Li . Between Sobriety and Intoxication: The Fascinating Journey of Sauce-Flavored Latte. University Chemistry, 2024, 39(9): 55-58. doi: 10.12461/PKU.DXHX202312048

    5. [5]

      Haoyu SunDun LiYuanyuan MinYingying WangYanyun MaYiqun ZhengHongwen Huang . Hierarchical Palladium-Copper-Silver Porous Nanoflowers as Efficient Electrocatalysts for CO2 Reduction to C2+ Products. Acta Physico-Chimica Sinica, 2024, 40(6): 2307007-0. doi: 10.3866/PKU.WHXB202307007

    6. [6]

      Xue-Peng Zhang Yuchi Long Yushu Pan Jiding Wang Baoyu Bai Rui Ding . 定量构效关系方法学习探索:以钴卟啉活化氧气为例. University Chemistry, 2025, 40(8): 345-359. doi: 10.12461/PKU.DXHX202410107

    7. [7]

      Zhuoyan LvYangming DingLeilei KangLin LiXiao Yan LiuAiqin WangTao Zhang . Light-Enhanced Direct Epoxidation of Propylene by Molecular Oxygen over CuOx/TiO2 Catalyst. Acta Physico-Chimica Sinica, 2025, 41(4): 2408015-0. doi: 10.3866/PKU.WHXB202408015

    8. [8]

      Weihan ZhangMenglu WangAnkang JiaWei DengShuxing Bai . Surface Sulfur Species Influence Hydrogenation Performance of Palladium-Sulfur Nanosheets. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-0. doi: 10.3866/PKU.WHXB202309043

    9. [9]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    10. [10]

      Renxiao Liang Zhe Zhong Zhangling Jin Lijuan Shi Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024

    11. [11]

      Lu ZhuoranLi ShengkaiLu YuxuanWang ShuangyinZou Yuqin . Cleavage of C―C Bonds for Biomass Upgrading on Transition Metal Electrocatalysts. Acta Physico-Chimica Sinica, 2024, 40(4): 2306003-0. doi: 10.3866/PKU.WHXB202306003

    12. [12]

      Shuai TangZian WangMengyi ZhuXinyun ZhaoXiaoyun HuHua Zhang . Synthesis of organoboron compounds via heterogeneous C–H and C–X borylation. Chinese Chemical Letters, 2025, 36(5): 110503-. doi: 10.1016/j.cclet.2024.110503

    13. [13]

      Xin LiJia-Min LuBo LiChen ZhaoBei-Bei YangLi Li . Chiroptical sensing for remote chiral amines via a C–H activation reaction. Chinese Chemical Letters, 2025, 36(5): 110310-. doi: 10.1016/j.cclet.2024.110310

    14. [14]

      Aidang Lu Yunting Liu Yanjun Jiang . Comprehensive Organic Chemistry Experiment: Synthesis and Characterization of Triazolopyrimidine Compounds. University Chemistry, 2024, 39(8): 241-246. doi: 10.3866/PKU.DXHX202401029

    15. [15]

      Tong LiLeping PanYan ZhangJihu SuKai LiKuiliang LiHu ChenQi SunZhiyong Wang . Electrochemical construction of 2,5-diaryloxazoles via N–H and C(sp3)-H functionalization. Chinese Chemical Letters, 2024, 35(4): 108897-. doi: 10.1016/j.cclet.2023.108897

    16. [16]

      Yi LuoLin Dong . Multicomponent remote C(sp2)-H bond addition by Ru catalysis: An efficient access to the alkylarylation of 2H-imidazoles. Chinese Chemical Letters, 2024, 35(10): 109648-. doi: 10.1016/j.cclet.2024.109648

    17. [17]

      Ke-Ai Zhou Lian Huang Xing-Ping Fu Li-Ling Zhang Yu-Ling Wang Qing-Yan Liu . Fluorinated metal-organic framework for methane purification from a ternary CH4/C2H6/C3H8 mixture. Chinese Journal of Structural Chemistry, 2023, 42(11): 100172-100172. doi: 10.1016/j.cjsc.2023.100172

    18. [18]

      Jialin HuangLiying FuZhanyong TangXiaoqiang MaXingda ZhaoDepeng Zhao . Cross-coupling of trifluoromethylarenes with alkynes C(sp)-H bonds and azoles C(sp2)-H bonds via photoredox/copper dual catalysis. Chinese Chemical Letters, 2025, 36(7): 110505-. doi: 10.1016/j.cclet.2024.110505

    19. [19]

      Shulei HuYu ZhangXiong XieLuhan LiKaixian ChenHong LiuJiang Wang . Rh(Ⅲ)-catalyzed late-stage C-H alkenylation and macrolactamization for the synthesis of cyclic peptides with unique Trp(C7)-alkene crosslinks. Chinese Chemical Letters, 2024, 35(8): 109408-. doi: 10.1016/j.cclet.2023.109408

    20. [20]

      Haoran ShiJiaxin WangYuqin ZhuHongyang LiGuodong JuLanlan ZhangChao Wang . Highly selective α-C(sp3)-H arylation of alkenyl amides via nickel chain-walking catalysis. Chinese Chemical Letters, 2024, 35(7): 109333-. doi: 10.1016/j.cclet.2023.109333

Metrics
  • PDF Downloads(4)
  • Abstract views(1914)
  • HTML views(1066)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return