Citation: Zhang Jingang, Wu Zhengxing, Xie Fang, Zhang Wanbin. Metal-Catalyzed Unsaturated Hydrocarbon Functionalization Applied in the Synthesis of Pyrrolidines and Pyrrolines[J]. Chinese Journal of Organic Chemistry, ;2018, 38(6): 1319-1326. doi: 10.6023/cjoc201802001 shu

Metal-Catalyzed Unsaturated Hydrocarbon Functionalization Applied in the Synthesis of Pyrrolidines and Pyrrolines

  • Corresponding author: Xie Fang, xiefang@sjtu.edu.cn Zhang Wanbin, wanbin@sjtu.edu.cn
  • Received Date: 1 February 2018
    Revised Date: 24 February 2018
    Available Online: 8 June 2018

    Fund Project: Project supported by the National Natural Science Foundation of China (No. 21572129)the National Natural Science Foundation of China 21572129

Figures(6)

  • Pyrrolidines and pyrrolines, as important building blocks, are widely applied in the fields of medicine, agriculture and materials. Many synthetic methods for the preparation of pyrrolidines and pyrrolines have been reported over the past few years. Recently, following the rapid development of organometallic chemistry, the metal-catalyzed functionalization of unsaturated hydrocarbons has gradually become the research focus of organic synthesis methodology, due to the high efficiency and diversity of functionalization. Therefore the constructions of pyrrolidines and pyrrolines using metal-catalyzed unsaturated hydrocarbon functionalization are important and very useful. The development of metal-catalyzed functionalizations of different types of unsaturated hydrocarbons for the synthesis of pyrrolidines and pyrrolines is summarized.
  • 加载中
    1. [1]

      (a) Kini, G. D. ; Hennen, W. J. ; Robins, R. K. J. Org. Chem. 1986, 51, 4436.
      (b) Arredondo, V. M. ; Tian, S. ; McDonald, F. E. ; Marks, T. J. J. Am. Chem. Soc. 1999, 121, 3633.
      (c) Yu, S. ; Saenz, J. ; Srirangam, J. K. J. Org. Chem. 2002, 67, 1699.
      (d) Ortega, H. G. ; Crusats, J. ; Feliz, M. ; Ribo, J. M. J. Org. Chem. 2002, 67, 4170.
      (e) Bullington, J. L. ; Wolff, R. R. ; Jackson, P. F. J. Org. Chem. 2002, 67, 9439.
      (f) Shenoy, S. L. ; Cohen, D. ; Erkey, C. ; Weiss, R. A. Ind. Eng. Chem. Res. 2002, 41, 1484.
      (g) Lee, D. ; Swager, T. M. J. Am. Chem. Soc. 2003, 125, 6870.
      (h) Azioune, A. ; Ben Slimane, A. ; Ait Hamou, L. ; Pleuvy, A. ; Chehimi, M. M. ; Perruchot, C. ; Armes, S. P. Langmuir 2004, 20, 3350.
      (i) Butler, M. S. J. Nat. Prod. 2004, 67, 2141.
      (j) Magedov, I. V. ; Luchetti, G. ; Evdokimov, N. M. ; Manpadi, M. ; Steelant, W. F. A. ; Van Slambrouck, S. ; Tongwa, P. ; Antipin, M. Y. ; Kornienko, A. Bioorg. Med. Chem. Lett. 2008, 18, 1392.
      (k) Gupta, R. ; Walunj, S. S. ; Tokala, R. K. ; Parsa, K. V. ; Singh, S. K. ; Pal, M. Curr. Drug Targets 2009, 10, 71.
      (l) More, S. S. ; Krishna Mohan, T. ; Sateesh Kumar, Y. ; Syam Kumar, U. K. ; Patel, N. B. Beilstein J. Org. Chem. 2011, 7, 831.
      (m) Servillo, L. ; Giovane, A. ; Balestrieri, M. L. ; Cautela, D. ; Castaldo, A. D. J. Agric. Food Chem. 2011, 59, 274.
      (n) Grychowska, K. ; Satala, G. ; Kos, T. ; Partyka, A. ; Colacino, E. ; Chaumont-Dubel, S. ; Bantreil, X. ; Wesolowska, A. ; Pawlowski, M. ; Martinez, J. ; Marin, P. ; Subra, G. ; Bojarski, A. J. ; Lamaty, F. ; Popik, P. ; Zajdel, P. ACS Chem. Neurosci. 2016, 7, 972.

    2. [2]

      (a) Nakamura, I. ; Yamamoto, Y. Chem. Rev. 2004, 104, 2127.
      (b) Cai, T. ; Hu, B. ; Lv, C. Chin. J. Org. Chem. 2005, 25, 1311(in Chinese).
      (蔡超君, 胡炳成, 吕春绪, 有机化学, 2005, 25, 1311. )
      (c) Fan, H. ; Peng, J. N. ; Hamann, M. T. ; Hu, J. F. Chem. Rev. 2008, 108, 264.
      (d) Bhardwaj, V. ; Gumber, D. ; Abbot, V. ; Dhiman, S. ; Sharma, P. RSC Adv. 2015, 5, 15233.
      (e) Khajuria, R. ; Dham, S. ; Kapoor, K. K. RSC Adv. 2016, 6, 37039.
      (f) Feng, J. J. ; Zhang, J. L. ACS Catal. 2016, 6, 6651.
      (g) Wang, Q. ; Chang, H. ; Wei, W. ; Liu, Q. ; Gao, W. ; Li, Y. ; Li, X. Chin. J. Org. Chem. 2016, 36, 939(in Chinese).
      (王清宇, 常宏宏, 魏文珑, 刘强, 高文超, 李彦威, 李兴, 有机化学, 2016, 36, 939. )
      (h) Gholap, S. S. Eur. J. Med. Chem. 2016, 110, 13.
      (i) Shimizu, S. Chem. Rev. 2017, 117, 2730.
      (j) Wei, X. ; Handoko, D. D. ; Pather, L. ; Methven, L. ; Elmore, J. S. Food Chem. 2017, 232, 531.
      (k) Gao, Y. ; Xiao, Z. ; Liu, L. ; Huang, P. Chin. J. Org. Chem. 2017, 37, 1189(in Chinese).
      (高燕娇, 肖振华, 刘良先, 黄培强, 有机化学, 2017, 37, 1189. )
      (l) Zhu, C. ; Feng, J. ; Zhang, J. Chin. J. Org. Chem. 2017, 37, 1165(in Chinese).
      (朱超泽, 冯见君, 张俊良, 有机化学, 2017, 37, 1165. )

    3. [3]

      (a) Ager, D. J. ; Prakash, I. ; Schaad, D. R. Chem. Rev. 1996, 96, 835.
      (b) Bennani, Y. L. ; Hanessian, S. Chem. Rev. 1997, 97, 3161.
      (c) Gribble, G. W. Acc. Chem. Res. 1998, 31, 141.
      (d) Bataille, C. J. R. ; Donohoe, T. J. Chem. Soc. Rev. 2011, 40, 114.
      (e) Wang, J. ; Cui, D. Chin. J. Org. Chem. 2016, 36, 1163(in Chinese).
      (王剑, 崔冬梅, 有机化学, 2016, 36, 1163. )
      (f) Cai, S. -H. ; Da, B. -C. ; Zhou, J. -H. ; Xu, Y. -H. ; Loh, T. -P. Chin. J. Chem. 2016, 34, 1076.
      (g) Wu, Z. ; Zhang, W. Chin. J. Org. Chem. 2017, 37, 2250(in Chinese).
      (吴正兴, 张万斌, 有机化学, 2017, 37, 2250. )

    4. [4]

      (a) Pandey, G. ; Banerjee, P. ; Gadre, S. R. Chem. Rev. 2006, 106, 4484.
      (b) Müller, T. E. ; Hultzsch, K. C. ; Yus, M. ; Foubelo, F. ; Tada, M. Chem. Rev. 2008, 108, 3795.
      (c) Huang, L. B. ; Arndt, M. ; Gooßen K. ; Heydt, H. ; Gooßen, L. J. Chem. Rev. 2015, 115, 2596.

    5. [5]

      For allene: (a) Meguro, M. ; Yamamoto, Y. Tetrahedron Lett. 1998, 39, 5421.
      (b) Hamilton, G. L. ; Kang, E. J. ; Mba, M. ; Toste, F. D. Science 2007, 317, 496.
      For alkyne:
      (c) Lutete, L. M. ; Kadota, I. ; Yamamoto, Y. J. Am. Chem. Soc. 2004, 126, 1622.
      For isolated alkene:
      (d) Bender, C. F. ; Widenhoefer, R. A. J. Am. Chem. Soc. 2005, 127, 1070.
      (e) Jiang, H. J. ; Liu, K. ; Yu, J. ; Zhang, L. ; Gong, L. Z. Angew. Chem., Int. Ed. 2017, 56, 11931.
      (f) Gurak, John A. ; Engle, Keary M. Synlett 2017, 28, 2057.

    6. [6]

      (a) Fix, S. R. ; Brice, J. L. ; Stahl, S. S. Angew. Chem., Int. Ed. 2002, 41, 164.
      (b) McDonald, R. I. ; White, P. B. ; Weinstein, A. B. ; Tam, C. P. ; Stahl, S. S. Org. Lett. 2011, 13, 2830.

    7. [7]

      (a) Muñiz, K. ; Streuff, J. ; Hövelmann, C. H. ; Núñez, A. Angew. Chem., Int. Ed. 2007, 46, 7125.
      (b) Sibbald, P. A. ; Michael, F. E. Org. Lett. 2009, 11, 1147.
      (c) Sibbald, P. A. ; Rosewall, C. F. ; Swartz, R. D. ; Michael, F. E. J. Am. Chem. Soc. 2009, 131, 15945.
      (d) Wang, Y. F. ; Zhu, X. ; Chiba S. J. Am. Chem. Soc. 2012, 134, 3679.

    8. [8]

      (a) Donohoe, T. J. ; Churchill, G. H. ; Wheelhouse, K. M. P. ; Glossop, P. A. Angew. Chem., Int. Ed. 2006, 45, 8025.
      (b) Fuller, P. H. ; Kim, J. W. ; Chemler, S. R. J. Am. Chem. Soc. 2008, 130, 17638.

    9. [9]

      (a) Ney, J. E. ; Wolfe, J. P. Angew. Chem., Int. Ed. 2004, 43, 3605.
      (b) Sherman, E. S. ; Chemler, S. R. ; Tan, T. B. ; Gerlits, O. Org. Lett. 2004, 6, 1573.
      (c) Sherman, E. S. ; Fuller, P. H. ; Kasi, D. ; Chemler, S. R. J. Org. Chem. 2007, 72, 3896.
      (d) Zeng, W. ; Chemler, S. R. J. Am. Chem. Soc. 2007, 129, 12948.
      (e) Zeng, W. ; Chemler, S. R. J. Org. Chem. 2008, 73, 6045.
      (f) Rosewall, C. F. ; Sibbald, P. A. ; Liskin, D. V. ; Michael, F. E. J. Am. Chem. Soc. 2009, 131, 9488.
      (g) Sibbald, P. A. ; Rosewall, C. F. ; Swartz, R. D. ; Michael, F. E. J. Am. Chem. Soc. 2009, 131, 15945.
      (h) Lemen, G. S. ; Wolfe, J. P. Org. Lett. 2010, 12, 2322.
      (i) Zhang, G. Z. ; Cui, L. ; Wang, Y. Z. ; Zhang, L. M. J. Am. Chem. Soc. 2010, 132, 1474.
      (j) Brenzovich, W. E. ; Benitez, D. ; Lackner, A. D. ; Shunatona, H. P. ; Tkatchouk, E. ; Goddard, W. A. ; Toste, F. D. Angew. Chem., Int. Ed. 2010, 49, 5519.
      (k) Tkatchouk, E. ; Mankad, N. P. ; Benitez, D. ; Goddard, W. A. ; Toste, F. D. J. Am. Chem. Soc. 2011, 133, 14293.

    10. [10]

      (a) Ney, J. E. ; Wolfe J. P. Angew. Chem., Int. Ed. 2004, 43, 3605.
      (b) Ney, J. E. ; Hay, M. B. ; Yang, Q. F. ; Wolfe, J. P. Adv. Synth. Catal. 2005, 347, 1614.
      (c) Lemen, G. S. ; Wolfe, J. P. Org. Lett. 2010, 12, 2322.

    11. [11]

      (a) Schierle, K. ; Vahle, R. ; Steckhan, E. Eur. J. Org. Chem. 1998, 509.
      (b) Field, L. D. ; Messerle, B. A. ; Wren, S. L. Organometallics 2003, 22, 4393.
      (c) Burling, S. ; Field, L. D. ; Li, H. L. ; Messerle, B. A. ; Turner, P. Eur. J. Inorg. Chem. 2003, 3179.
      (d) Burling, S. ; Field, L. D. ; Messerle, B. A. ; Turner, P. Organometallics 2004, 23, 1714.
      (e) Field, L. D. ; Messerle, B. A. ; Vuong, K. Q. ; Turner, P. Organometallics 2005, 24, 4241.
      (f) Field, L. D. ; Messerle, B. A. ; Vuong, K. Q. ; Turner, P. ; Failes, T. Organometallics 2007, 26, 2058.
      (g) Burling, S. ; Field, L. D. ; Messerle, B. A. ; Rumble, S. L. Organometallics 2007, 26, 4335.
      (h) Field, L. D. ; Messerle, B. A. ; Vuong, K. Q. ; Turner, P. Dalton Trans. 2009, 3599.
      (i) Beeren, S. R. ; Dabb, S. L. ; Messerle, B. A. J. Organomet. Chem. 2009, 694, 309.
      (j) Beeren, S. R. ; Dabb, S. L. ; Edwards, G. ; Smith, M. K. ; Willis, A. C. ; Messerle, B. A. New J. Chem. 2010, 34, 1200.
      (k) Rao, W. D. ; Kothandaraman, P. ; Koh, C. B. ; Chan, P. W. H. Adv. Synth. Catal. 2010, 352, 2521.
      (l) Rumble, S. L. ; Page, M. J. ; Field, L. D. ; Messerle, B. A. Eur. J. Inorg. Chem. 2012, 2226.
      (m) Rossom, W. V. ; Matsushita, Y. ; Ariga, K. ; Hill, J. P. RSC Adv. 2014, 4, 4897.
      (n) Shin, Y. H. ; Maheswara, M. ; Hwang, J. Y. ; Kang, E. J. Eur. J. Org. Chem. 2014, 2305.
      (o) Gao, P. C. ; Sipos, G. ; Foster, D. ; Dorta, R. ACS Catal. 2017, 7, 6060.
      (p) Timmerman, J. C. ; Laulhé, S. ; Widenhoefer, R. A. Org. Lett. 2017, 19, 1466.

    12. [12]

      (a) Faulkner, A. ; Bower, J. F. Angew. Chem., Int. Ed. 2012, 51, 1675.
      (b) Faulkner, A. ; Scott, J. S. ; Bower, J. F. J. Am. Chem. Soc. 2015, 137, 7224.
      (c) Chen, C. ; Hou, L. L. ; Cheng, M. ; Su, J. H. ; Tong, X. F. Angew. Chem., Int. Ed. 2015, 54, 3092.

    13. [13]

      (a) Hegedus, L. S. ; McKearin, J. M. J. Am. Chem. Soc. 1982, 104, 2444.
      (b) Pugin, B. ; Venanzi, L. M. J. Am. Chem. Soc. 1983, 105, 6877.
      (c) Shi, Z. Z. ; Suri, M. ; Glorius, F. Angew. Chem., Int. Ed. 2013, 52, 4892.

    14. [14]

      (a) Tsutsui, H. ; Narasaka, K. Chem. Lett. 1999, 28, 45.
      (b) Tsutsui, H. ; Kitamura, M. ; Narasaka, K. Bull. Chem. Soc. Jpn. 2002, 75, 1451.

  • 加载中
    1. [1]

      Yue Zhao Yanfei Li Tao Xiong . Copper Hydride-Catalyzed Nucleophilic Additions of Unsaturated Hydrocarbons to Aldehydes and Ketones. University Chemistry, 2024, 39(4): 280-285. doi: 10.3866/PKU.DXHX202309001

    2. [2]

      Tingting Yu Si Chen Lianglong Sun Tongtong Shi Kai Sun Xin Wang . Comprehensive Experimental Design for the Photochemical Synthesis, Analysis, and Characterization of Difluoropyrroles. University Chemistry, 2024, 39(11): 196-203. doi: 10.3866/PKU.DXHX202401022

    3. [3]

      Fugui XIDu LIZhourui YANHui WANGJunyu XIANGZhiyun DONG . Functionalized zirconium metal-organic frameworks for the removal of tetracycline from water. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 683-694. doi: 10.11862/CJIC.20240291

    4. [4]

      Hanxue LIUShijie LIMeng RENXuling XUEHongke LIU . Design and antitumor properties of dehydroabietic acid functionalized cyclometalated iridium(Ⅲ) complex. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1483-1494. doi: 10.11862/CJIC.20250031

    5. [5]

      Lijuan Liu Xionglei Wang . Preparation of Hydrogels from Waste Thermosetting Unsaturated Polyester Resin by Controllable Catalytic Degradation: A Comprehensive Chemical Experiment. University Chemistry, 2024, 39(11): 313-318. doi: 10.12461/PKU.DXHX202403060

    6. [6]

      Huirong BAOJun YANGXiaomiao FENG . Preparation and electrochemical properties of NiCoP/polypyrrole/carbon cloth by electrodeposition. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1083-1093. doi: 10.11862/CJIC.20250008

    7. [7]

      Hongxia Yan Rui Wu Weixu Feng Yan Zhao Yi Yan . Innovation Inspired by Classical Chemistry: Luminescent Hyperbranched Polysiloxanes. University Chemistry, 2025, 40(4): 154-159. doi: 10.12461/PKU.DXHX202409010

    8. [8]

      Lina GuoRuizhe LiChuang SunXiaoli LuoYiqiu ShiHong YuanShuxin OuyangTierui Zhang . Effect of Interlayer Anions in Layered Double Hydroxides on the Photothermocatalytic CO2 Methanation of Derived Ni-Al2O3 Catalysts. Acta Physico-Chimica Sinica, 2025, 41(1): 100002-0. doi: 10.3866/PKU.WHXB202309002

    9. [9]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    10. [10]

      Hong RAOYang HUYicong MAChunxin LÜWei ZHONGLihua DU . Synthesis and in vitro anticancer activity of phenanthroline-functionalized nitrogen heterocyclic carbene homo- and heterobimetallic silver/gold complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2429-2437. doi: 10.11862/CJIC.20240275

    11. [11]

      Yuanyuan Ping Wangqing Kong . 光催化碳氢键官能团化合成1-苯基-1,2-乙二醇. University Chemistry, 2025, 40(6): 238-247. doi: 10.12461/PKU.DXHX202408092

    12. [12]

      Zeyu LiuWenze HuangYang XiaoJundong ZhangWeijin KongPeng WuChenzi ZhaoAibing ChenQiang Zhang . Nanocomposite Current Collectors for Anode-Free All-Solid-State Lithium Batteries. Acta Physico-Chimica Sinica, 2024, 40(3): 2305040-0. doi: 10.3866/PKU.WHXB202305040

    13. [13]

      Huiwei DingBo PengZhihao WangQiaofeng Han . Advances in Metal or Nonmetal Modification of Bismuth-Based Photocatalysts. Acta Physico-Chimica Sinica, 2024, 40(4): 2305048-0. doi: 10.3866/PKU.WHXB202305048

    14. [14]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    15. [15]

      Wenjie SHIFan LUMengwei CHENJin WANGYingfeng HAN . Synthesis and host-guest properties of imidazolium-functionalized zirconium metal-organic cage. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 105-113. doi: 10.11862/CJIC.20240360

    16. [16]

      Shiyang HeDandan ChuZhixin PangYuhang DuJiayi WangYuhong ChenYumeng SuJianhua QinXiangrong PanZhan ZhouJingguo LiLufang MaChaoliang Tan . Pt Single-Atom-Functionalized 2D Al-TCPP MOF Nanosheets for Enhanced Photodynamic Antimicrobial Therapy. Acta Physico-Chimica Sinica, 2025, 41(5): 100046-0. doi: 10.1016/j.actphy.2025.100046

    17. [17]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    18. [18]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    19. [19]

      Guojie Xu Fang Yu Yunxia Wang Meng Sun . Introduction to Metal-Catalyzed β-Carbon Elimination Reaction of Cyclopropenones. University Chemistry, 2024, 39(8): 169-173. doi: 10.3866/PKU.DXHX202401060

    20. [20]

      Wenxiu YangJinfeng ZhangQuanlong XuYun YangLijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-0. doi: 10.3866/PKU.WHXB202312014

Metrics
  • PDF Downloads(40)
  • Abstract views(3810)
  • HTML views(1455)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return