Citation: Wang Weiqiang, Yu Qinwei, Zhang Qian, Li Jiangwei, Hui Feng, Yang Jianming, Lü Jian. Recent Progress on Difluoromethylation Methods[J]. Chinese Journal of Organic Chemistry, ;2018, 38(7): 1569-1585. doi: 10.6023/cjoc201801041 shu

Recent Progress on Difluoromethylation Methods

  • Corresponding author: Yang Jianming, yangjm204@163.com Lü Jian, lujian204@263.net
  • Received Date: 28 January 2018
    Revised Date: 2 April 2018
    Available Online: 27 July 2018

    Fund Project: Project supported by the Key Research and Development Projects of Shanxi Province (Nos. 2017ZDXM-GY-042, 2017ZDXM-GY-070)the Key Research and Development Projects of Shanxi Province 2017ZDXM-GY-042the Key Research and Development Projects of Shanxi Province 2017ZDXM-GY-070

Figures(29)

  • The difluoromethyl functional group (CF2H) which has strong lipophilic and electron-withdrawing properties can significantly enhance the physiological activity of organic molecules. The applications of CF2H-containing compounds in the fields of drugs, agrochemicals and so on have attracted great attention of many research groups. Therefore, the development of effective and general methodologies for the selective incorporation of difluoromethyl groups has become one of the hotspots in the field of organic chemistry. Recently, new difluoromethylation reagents and methods that were able to efficiently incorporate the difluoromethyl group under mild conditions have been developed rapidly, that pave the way for the facile introduction of difluoromethyl group into site-specific positions of the target molecules. In this paper, we will first briefly introduce some organic molecules with different functional groups which can be difluoromethylated, and then focus on the development of the recent high-performance difluoromethylation reagents, new reactions and catalysts. Finally, we will discuss the remaining problems and challenges in this particular field.
  • 加载中
    1. [1]

      (a) Vulpetti, A. ; Dalvit, C. Drug Discovery Today 2012, 17, 890.
      (b) Wang, J. ; Sánchez-Roselló, M. ; Acea, J. L. ; Pozo, C. D. ; Sorochinsky, A. E. ; Fustero, S. ; Soloshonok, V. A. ; Liu, H. Chem. Rev. 2014, 114, 2432.

    2. [2]

      (a) Mìller, K. ; Faeh, C. ; Diederich, F. Science 2007, 317, 1881.
      (b) Ojima, I. Fluorine in Medicinal Chemistry and Chemical Biology, Wiley-Blackwell, Chichester (UK), 2009.

    3. [3]

      (a) Tomashenko, O. A. ; Grushin, V. V. Chem. Rev. 2011, 111, 4475.
      (b) Hollingworth, C. ; Gouverneur, V. Chem. Commun. 2012, 48, 2929.
      (c) Koike, T. ; Akita, M. J. Fluorine Chem. 2014, 167, 30.
      (d) Merino, E. ; Nevado, C. Chem. Rev. Soc. 2014, 43, 6598.
      (e) Ni, C. ; Hu, M. ; Hu, J. Chem. Rev. 2015, 115, 765.

    4. [4]

      (a) Toulgoat, F. ; Alazet, S. ; Billard, T. Eur. J. Org. Chem. 2014, 2415.
      (b) Barata-Vallejo, S. ; Bonesi, S. ; Postigo, A. Org. Biomol. Chem. 2016, 14, 7150.
      (c) Shi, J. ; Ren, G. ; Wu, N. ; Liu, X. ; Xu, T. ; Tan, C. Chin. J. Org. Chem. 2017, 37, 2131 (in Chinese).
      (史建俊, 任贵华, 吴宁捷, 刘幸海, 许天明, 谭成侠, 有机化学, 2017, 37, 2131.)
      (d) Hu, C. ; Liu, J. ; Du, X. Chin. J. Org. Chem. 2016, 36, 1051 (in Chinese).
      (胡崇波, 刘建华, 杜晓华, 有机化学, 2016, 36, 1051.)

    5. [5]

      (a) Kirsch, P. Modern Fluoroorganic Chemistry, Wiley-VCH, Weinheim (Germany), 2013.
      (b) Besset, T. ; Poisson, T. ; Pannecoucke, X. Eur. J. Org. Chem. 2015, 2765.

    6. [6]

      (a) Xiong, H. ; Pannecoucke, X. ; Besset, T. Chem. Eur. J. 2016, 22, 16734.
      (b) Bos, M. ; Poisson, T. ; Pannecoucke, X. ; Charette, A. B. ; Jubault, P. Chem. Eur. J. 2017, 23, 4950.
      (c) Pan, X. ; Xia, H. ; Wu, J. Org. Chem. Front. 2016, 3, 1163.
      (d) Yerien, D. E. ; Barata-Vallejo, S. ; Postigo, A. Chem. Eur. J. 2017, 23, 14676.
      (e) Zhang, X. ; Cao, S. Tetrahedron Lett. 2017, 58, 375.
      (f) Ni, C. ; Zhu, L. ; Hu, J. Acta Chim. Sinica 2015, 73, 90 (in Chinese).
      (倪传法, 朱林桂, 胡金波, 化学学报, 2015, 73, 90.)

    7. [7]

      (a) Manteau, B. ; Pazenok, S. ; Vors, J. -P. ; Leroux, F. R. J. Fluorine Chem. 2010, 131, 140.
      (b) Huang, C. -H. ; Liang, T. ; Harada, S. ; Lee, E. ; Ritter, T. J. Am. Chem. Soc. 2011, 133, 13308.
      (c) Hojczyk, K. N. ; Feng, P. ; Zhan, C. ; Ngai, M. -Y. Angew. Chem., Int. Ed. 2014, 53, 14559.
      (d) Shen, X. ; Zhou, M. ; Ni, C. -F. ; Zhang, W. ; Hu, J. -B. Chem. Sci. 2014, 5, 117.
      (e) Huang, R. ; Huang, Y. ; Lin, X. ; Rong, M. ; Weng, Z. Angew. Chem. 2015, 127, 5828.
      (f) Liu, J. -B. ; Xu, X. -H. ; Qing, F. -L. Org. Lett. 2015, 17, 5048.
      (g) Feng, P. ; Lee, K. N. ; Lee, J. W. ; Zhan, C. ; Ngai, M. -Y. Chem. Sci. 2016, 7, 424.

    8. [8]

      Chauret, N.; Guay, D.; Li, C.; Day, S.; Silva, J.; blouin, M.; Ducharme, Y.; Yergey, J. A.; Nicoli-Griffith, D. A. Bioorg. Med. Chem. Lett. 2002, 12, 2149.  doi: 10.1016/S0960-894X(02)00349-9

    9. [9]

      Mizukado, J.; Matsukawa, Y.; Quan, H.-D.; Tamura, M.; Sekiya, A. J. Fluorine Chem. 2006, 127, 400.  doi: 10.1016/j.jfluchem.2005.12.034

    10. [10]

      Flynn, R. M.; Burton, D. J. J. Fluorine Chem. 2011, 132, 815.  doi: 10.1016/j.jfluchem.2011.05.034

    11. [11]

      (a) Fedorov, O. V. ; Struchkova, M. I. ; Dilman, A. D. J. Org. Chem. 2016, 81, 9455.
      (b) Song, X. ; Tian, S. ; Zhao, Z. ; Zhu, D. ; Wang, M. Org. Lett. 2016, 18, 3414.

    12. [12]

      Mizukado, J.; Matsukawa, Y.; Quan, H.-D.; Tamura, M.; Sekiya, A. J. Fluorine Chem. 2005, 126, 365.  doi: 10.1016/j.jfluchem.2005.01.012

    13. [13]

      Miethchen, R.; Hein, M.; Naumann, D.; Tyrra, W. Eur. J. Org. Chem. 1995, 1995, 1717.

    14. [14]

      Levchenko, K.; Datsenko, O. P.; Serhiichuk, O.; Tolmachev, A.; Iaroshenko, V. O.; Mykhailiuk, P. K. J. Org. Chem. 2016, 81, 5803.  doi: 10.1021/acs.joc.6b00628

    15. [15]

      Fier, P. S.; Hartwig, J. F. Angew. Chem. 2013, 125, 2146.  doi: 10.1002/ange.v125.7

    16. [16]

      Zhang, W. ; Mao, W. ; Wang, B. ; Zeng, J. ; Yang, J. ; Lü, J. Sci. Sin. Chim. 2017, 47, 1312 (in Chinese).
      (张伟, 毛伟, 王博, 曾纪珺, 杨建明, 吕剑, 中国科学: 化学, 2017, 47, 1312.)

    17. [17]

      (a) Piou, A. ; Celerier, S. ; Brunet, S. J. Fluorine Chem. 2012, 134, 103.
      (b) Dolbier Jr., W. R. ; Wang, F. ; Tang, X. ; Thomoson, C. S. ; Wang, L. J. Fluorine Chem. 2014, 160, 72.

    18. [18]

      (a) Prakash, G. K. S. ; Zhang, Z. ; Wang, F. ; Ni, C. -F. ; Olah, G. A. J. Fluorine Chem. 2011, 132, 792.
      (b) Prakash, G. K. S. ; Weber, C. ; Chacko, S. ; Olah, G. A. Org. Lett. 2007, 9, 1863.

    19. [19]

      Zhu, J.; Liu, Y.; Shen, Q. Angew. Chem., Int. Ed. 2016, 55, 1.  doi: 10.1002/anie.201510990

    20. [20]

      (a) Wang, F. ; Zhang, W. ; Zhu, J. ; Li, H. ; Huang, K. -W. ; Hu, J. Chem. Commun. 2011, 47, 2411.
      (b) Li, L. ; Wang, F. ; Ni, C. ; Hu, J. Angew. Chem. 2013, 125, 12616.
      (c) Ni, C. ; Hu, J. Synthesis 2014, 46, 842.

    21. [21]

      Xie, Q.; Ni, C.; Zhang, R.; Li, L.; Rong, J.; Hu, J. Angew. Chem., 2017, 129, 3254.  doi: 10.1002/ange.201611823

    22. [22]

      (a) Erickson, J. A. ; McLoughlin, J. I. J. Org. Chem. 1995, 60, 1626.
      (b) Jeanmart, S. ; F. Edmunds, A. J. ; Lamberth, C. ; Pouliot, M. Bioorg. Med. Chem. 2016, 24, 317.

    23. [23]

      Thomoson, C. S.; Dolbier Jr., W. R. J. Org. Chem. 2013, 78, 8904.  doi: 10.1021/jo401392f

    24. [24]

      Mehta, V. P.; Greaney, M. F. Org. Lett. 2013, 15, 5036.  doi: 10.1021/ol402370f

    25. [25]

      Prakash, G. K. S.; Krishnamoorthy, S.; Kar, S.; Olah, G. A. J. Fluorine Chem. 2015, 180, 186.  doi: 10.1016/j.jfluchem.2015.09.011

    26. [26]

      Ma, J.; Liu, Q.; Lu, G.; Yi, W. J. Fluorine Chem. 2017, 193, 113.  doi: 10.1016/j.jfluchem.2016.11.010

    27. [27]

      Zhang, C. Adv. Synth. Catal. 2017, 359, 372.  doi: 10.1002/adsc.201601011

    28. [28]

      Heine, N. B., Studer, A. Org. Lett. 2017, 19, 4150.  doi: 10.1021/acs.orglett.7b02109

    29. [29]

      Yang, J., Jiang, M., Jin, Y., Yang, H., Fu, H. Org. Lett. 2017, 19, 2758  doi: 10.1021/acs.orglett.7b01118

    30. [30]

      (a) Medebielle, M. ; Dolbier, W. R., Jr J. Fluorine Chem. 2008, 129, 930.
      (b) Dilman, A. D. ; Levin, V. V. Eur. J. Org. Chem. 2011, 2011, 831.
      (c) Liu, X. ; Xu, C. ; Wang, M. ; Liu, Q. Chem. Rev. 2015, 115, 683.
      (d) Alonso, C. ; de Marigorta, E. M. ; Rubiales, G. ; Palacios, F. Chem. Rev. 2015, 115, 1847.

    31. [31]

      Deng, Z.; Lin, J.-H.; Cai, J.; Xiao, J.-C. Org. Lett. 2016, 18, 3206.  doi: 10.1021/acs.orglett.6b01425

    32. [32]

      Krishnamoorthy, S., Prakash, G. K. S. Synthesis 2017, 49, 3394.  doi: 10.1055/s-0036-1588489

    33. [33]

      Krishnamoorthy, S.; Kothandaraman, J.; Saldana, J.; Prakash, G. K. S. Eur. J. Org. Chem. 2016, 29, 4965.
       

    34. [34]

      Hagiwara, T.; Fuchikami, T. Synlett 1995, 717.
       

    35. [35]

      Zhao, Y.; Huang, W.; Zheng, J.; Hu, J. Org. Lett. 2011, 13, 5342.  doi: 10.1021/ol202208b

    36. [36]

      Chen, D.; Ni, C.; Zhao, Y.; Cai, X.; Li, X.; Xiao, P.; Hu, J. Angew. Chem., Int. Ed. 2016, 55, 12632.  doi: 10.1002/anie.201605280

    37. [37]

      Trifonov, A. L.; Zemtsov, A. A.; Levin, V. V.; Struchkova, M. I.; Dilman, A. D. Org. Lett. 2016, 18, 3458.  doi: 10.1021/acs.orglett.6b01641

    38. [38]

      (a) Romanenko, V. D. ; Kukhar, V. P. Chem. Rev. 2006, 106, 3868.
      (b) Liang, T. ; Neumann C. N. ; Ritter, T. Angew. Chem., Int. Ed. 2013, 52, 8214.

    39. [39]

      (a) Sato, K. ; Omote, M. ; Ando, A. ; Kumadaki, I. J. Fluorine Chem. 2004, 125, 509.
      (b) Murakami, S. ; Ishii, H. ; Tajima, T. ; Fuchigami, T. Tetrahedron 2006, 62, 3761.
      (c) Leung, L. ; Linclau, B. J. Fluorine Chem. 2008, 129, 986.
      (d) Nguyen, J. D. ; Tucker, J. W. ; Konieczynska, M. D. ; Stephenson, C. R. J. J. Am. Chem. Soc. 2011, 133, 4160.
      (e) Wallentin, C. J. ; Nguyen, J. D. ; Finkbeiner, P. ; Stephenson, C. R. J. J. Am. Chem. Soc. 2012, 134, 8875.
      (f) Belhomme, M. -C. ; Poisson, T. ; Pannecoucke, X. Org. Lett. 2013, 15, 3428.

    40. [40]

      Yu, C.; Iqbal, N.; Park S.; Cho, E. J. Chem. Commun. 2014, 50, 12884.  doi: 10.1039/C4CC05467A

    41. [41]

      Arai, Y.; Tomita, R.; Ando, G.; Koike, T.; Akita, M. Chem. Eur. J. 2016, 22, 1262.  doi: 10.1002/chem.201504838

    42. [42]

      Pannecoucke, X.; Poisson, T. Synlett 2016, 27, 2314.  doi: 10.1055/s-0035-1562784

    43. [43]

      (a) Wang, X. ; Zhao, S. ; Liu, J. ; Zhu, D. ; Guo, M. ; Tang, X. ; Wang, G. Org. Lett. 2017, 19, 4187.
      (b) Chen, H. ; Wang, X. ; Guo, M. ; Zhao, W. ; Tang, X. ; Wang, G. Org. Chem. Front. 2017, 4, 2403.

    44. [44]

      Banik, S. M.; Medley, J. W.; Jacobsen, E. N. Science 2016, 353, 51.  doi: 10.1126/science.aaf8078

    45. [45]

      (a) Gu, Y. ; Leng, X. ; Shen, Q. Nat. Commun. 2014, 5, 5405.
      (b) Wu, J. ; Liu, Y. ; Lu, C. ; Shen, Q. Chem. Sci. 2016, 7, 3757.
      (c) Lu, C. ; Gu, Y. ; Wu, J. ; Gu, Y. ; Shen, Q. Chem. Sci. 2017, 8, 4848.

    46. [46]

      Xu, L.; Vicic, D. A. J. Am. Chem. Soc. 2016, 138, 2536.  doi: 10.1021/jacs.6b00053

    47. [47]

      Aikawa, K.; Serizawa, H.; Ishii, K.; Mikami, K. Org. Lett. 2016, 18, 3690  doi: 10.1021/acs.orglett.6b01734

    48. [48]

      Serizawa, H.; Ishii, K.; Aikawa, K.; Mikami, K. Org. Lett. 2016, 18, 3686.  doi: 10.1021/acs.orglett.6b01733

    49. [49]

      (a) Ge, S. ; Chaladaj, W. ; Hartwig, J. F. J. Am. Chem. Soc. 2014, 136, 4149.
      (b) Rong, J. ; Ni, C. ; Hu, J. Asian J. Org. Chem. 2017, 6, 139.

    50. [50]

      Bour, J. R.; Kariofillis, S. K.; Sanford, M. S. Organometallics 2017, 36, 1220.  doi: 10.1021/acs.organomet.7b00025

    51. [51]

      Miao, W.; Zhao, Y.; Ni, C.; Gao, B.; Zhang, W.; Hu, J. J. Am. Chem. Soc. 2018, 140, 880.  doi: 10.1021/jacs.7b11976

    52. [52]

      Fujiwara, Y.; Dixon, J. A.; Rodriguez, R. A.; Baxter, R. D.; Dixon, D. D.; Collins, M. R.; Blackmond, D. G.; Baran, P. S. J. Am. Chem. Soc. 2012, 134, 1494.  doi: 10.1021/ja211422g

    53. [53]

      Tung, T. T.; Christensen, S. B.; Nielsen, J. Chem.-Eur. J. 2017, 23, 18125.  doi: 10.1002/chem.201704261

    54. [54]

      (a) Ohtsuka, Y. ; Yamakawa, T. Tetrahedron 2011, 67, 2323.
      (b) Lin, Q. ; Chu, L. ; Qing, F. -L. Chin. J. Chem. 2013, 31, 885.
      (c) Jung, J. ; Kim, E. ; You, Y. ; Cho, E. J. Adv. Synth. Catal. 2014, 356, 2741.

    55. [55]

      Li, J.; Wan, W.; Ma, G.; Chen, Y.; Hu, Q.; Kang, K.; Jiang, H.; Hao, J. Eur. J. Org. Chem. 2016, 4916.
       

    56. [56]

      Huang, Z.; Matsubara, O.; Jia, S.; Tokunaga, E.; Shibata, N. Org. Lett. 2017, 19, 934.  doi: 10.1021/acs.orglett.7b00113

    57. [57]

      Ismalaj, E.; Glenadel, Q.; Billard, T. Eur. J. Org. Chem. 2017, 1911.
       

    58. [58]

      Feng, Z.; Min, Q.; Zhang, X. Org. Lett. 2016, 18, 44.  doi: 10.1021/acs.orglett.5b03206

    59. [59]

      Deng, X. Y.; Lin, J. H.; Xiao, J. C. Org. Lett. 2016, 18, 4384.  doi: 10.1021/acs.orglett.6b02141

    60. [60]

      Feng, Z.; Min, Q.; Fu, X.; An, L.; Zhang, X. Nat. Chem. 2017, 9, 918.  doi: 10.1038/nchem.2746

    61. [61]

      Fu, X. P.; Xiao, Y. L.; Zhang, X. Chin. J. Chem. 2018, 36, 143.  doi: 10.1002/cjoc.201700624

    62. [62]

      Sheng, J.; Ni, H. Q.; Bian, K. J.; Li, Y.; Wang, Y. N.; Wang, X. S. Org. Chem. Front. 2018, 5, 606.  doi: 10.1039/C7QO00934H

    63. [63]

      (a) Lui, N. ; Pazenok, S. ; Shermolovich, Y. G. US 2011/0060167, 2011.
      (b) Antons, S. ; Lui, N. ; Gerlach, A. US 2011/0082318, 2011.
      (c) Thomas, R. ; Ansgar, A. ; Christian, M. WO 2016/023773, 2016.
      (d) Norbert, M. T. ; Norbert, L. ; Stefan, M. US 20140243561, 2014.

    64. [64]

      (a) Yun, J. ; Yang, J. M. ; Lu, J. ; Zhang, Q. ; Li, J. W. ; Zhao, F. W. ; Yu, Q. W. ; Mei, S. N. ; Wang, W. Q. ; Li, Y. N. ; Hui, F. CN 106831338, 2017.
      (b) Yun, J. ; Yang, J. M. ; Lu, J. ; Hui, F. ; Li, Y. N. ; Zhang, Q. ; Li, J. W. ; Zhao, F. W. ; Yu, Q. W. ; Wang, W. Q. ; Mei, S. N. CN 106810421, 2017.
      (c) Sun, D. A. ; Li, C. Y. ; Du, Y. M. ; Zhang, W. ; Zhang, J. W. . ; Ma, Y. B. ; Zeng J. J. ; Lu, J. J. Mol. Catal. 2013, 27, 242 (in Chinese).
      (孙道安, 李春迎, 杜咏梅, 张伟, 张建伟, 马洋博, 曾纪珺, 吕剑, 分子催化, 2013, 27, 242.)

    65. [65]

      (a) Wang, Q. ; Yu, X. ; Jin, J. ; Wu, Y. ; Liang, Y. Chin. J. Chem. 2018, 36, 223.
      (b) Zhou, N. ; Xu, P. ; Li, W. ; Cheng, Y. ; Zhu, C. Acta Chim. Sinica 2017, 75, 60 (in Chinese).
      (周能能, 胥攀, 李伟鹏, 成义祥, 朱成建, 化学学报, 2017, 75, 60.)

    66. [66]

      (a) Fujita, T. ; Sanada, S. ; Chiba, Y. ; Sugiyama, K. ; Ichikawa, J. Org. Lett. 2014, 16, 1398.
      (b) Fujita, T. ; Sugiyama, K. ; Sanada, S. ; Ichitsuka, T. ; Ichikawa, J. Org. Lett. 2016, 18, 248.

    67. [67]

      Mykhailiuk, P. K. Angew. Chem., Int. Ed. 2015, 54, 1.  doi: 10.1002/anie.201410930

    68. [68]

      Li, J.; X.-L.; Yu, Cossy, J.; Lv, S.-Y.; Zhang, H.-L.; Su, F.; Mykhailiuk, P. K.; Wu, Y. Eur. J. Org. Chem. 2017, 2017, 266.
       

    69. [69]

      Nawrot, E.; Jonczyk, A. J. Org. Chem. 2007, 72, 10258.  doi: 10.1021/jo701735n

    70. [70]

      Zafrani, Y.; Amir, D.; Yehezkel, L.; Madmon, M.; Saphier, S.; Karton-Lifshin, N.; Gershonov, E. J. Org. Chem. 2016, 81, 9180.  doi: 10.1021/acs.joc.6b01728

  • 加载中
    1. [1]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    2. [2]

      Tingting Yu Si Chen Lianglong Sun Tongtong Shi Kai Sun Xin Wang . Comprehensive Experimental Design for the Photochemical Synthesis, Analysis, and Characterization of Difluoropyrroles. University Chemistry, 2024, 39(11): 196-203. doi: 10.3866/PKU.DXHX202401022

    3. [3]

      Lei Shi . Nucleophilicity and Electrophilicity of Radicals. University Chemistry, 2024, 39(11): 131-135. doi: 10.3866/PKU.DXHX202402018

    4. [4]

      南开大学师唯/华北电力大学(保定)刘景维:二维配位聚合物中有序的亲锂冠醚位点用于无枝晶锂沉积

      . CCS Chemistry, 2025, 7(0): -.

    5. [5]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    6. [6]

      Baohua LÜYuzhen LI . Anisotropic photoresponse of two-dimensional layered α-In2Se3(2H) ferroelectric materials. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1911-1918. doi: 10.11862/CJIC.20240105

    7. [7]

      Shahua Huang Xiaoming Guo Lin Lin Guangping Chang Sheng Han Zuxin Zhou . Application of “Integration of Industry and Education” in Engineering Chemistry: Improvement of the Pesticide Fipronil Production. University Chemistry, 2024, 39(3): 199-204. doi: 10.3866/PKU.DXHX202309064

    8. [8]

      Xiaofeng Xia Jielian Zhu . Innovative Comprehensive Experimental Design: Synthesis of 6-Fluoro-N-benzoyl Tetrahydroquinoline. University Chemistry, 2024, 39(10): 344-352. doi: 10.12461/PKU.DXHX202405063

    9. [9]

      Wentao Lin Wenfeng Wang Yaofeng Yuan Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095

    10. [10]

      Minna Ma Yujin Ouyang Yuan Wu Mingwei Yuan Lijuan Yang . Green Synthesis of Medical Chemiluminescence Reagents by Photocatalytic Oxidation. University Chemistry, 2024, 39(5): 134-143. doi: 10.3866/PKU.DXHX202310093

    11. [11]

      Zitong Chen Zipei Su Jiangfeng Qian . Aromatic Alkali Metal Reagents: Structures, Properties and Applications. University Chemistry, 2024, 39(8): 149-162. doi: 10.3866/PKU.DXHX202311054

    12. [12]

      Hong RAOYang HUYicong MAChunxin LÜWei ZHONGLihua DU . Synthesis and in vitro anticancer activity of phenanthroline-functionalized nitrogen heterocyclic carbene homo- and heterobimetallic silver/gold complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2429-2437. doi: 10.11862/CJIC.20240275

    13. [13]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    14. [14]

      Yang Chen Peng Chen Yuyang Song Yuxue Jin Song Wu . Application of Chemical Transformation Driven Impurity Separation in Experiments Teaching: A Novel Method for Purification of α-Fluorinated Mandelic Acid. University Chemistry, 2024, 39(6): 253-263. doi: 10.3866/PKU.DXHX202310077

    15. [15]

      Cuicui Yang Bo Shang Xiaohua Chen Weiquan Tian . Understanding the Wave-Particle Duality and Quantization of Confined Particles Starting from Classic Mechanics. University Chemistry, 2025, 40(3): 408-414. doi: 10.12461/PKU.DXHX202407066

    16. [16]

      Tao Wen Tao Zhang Changguo Sun Jinyu Liu . Preparation of Dess-Martin Reagent and Its Application in Oxidizing Cyclohexanol. University Chemistry, 2024, 39(5): 20-26. doi: 10.3866/PKU.DXHX202309055

    17. [17]

      Wanmin Cheng Juan Du Peiwen Liu Yiyun Jiang Hong Jiang . Photoinitiated Grignard Reagent Synthesis and Experimental Improvement in Triphenylmethanol Preparation. University Chemistry, 2024, 39(5): 238-242. doi: 10.3866/PKU.DXHX202311066

    18. [18]

      Shiyang He Dandan Chu Zhixin Pang Yuhang Du Jiayi Wang Yuhong Chen Yumeng Su Jianhua Qin Xiangrong Pan Zhan Zhou Jingguo Li Lufang Ma Chaoliang Tan . 铂单原子功能化的二维Al-TCPP金属-有机框架纳米片用于增强光动力抗菌治疗. Acta Physico-Chimica Sinica, 2025, 41(5): 100046-. doi: 10.1016/j.actphy.2025.100046

    19. [19]

      Min LIUHuapeng RUANZhongtao FENGXue DONGHaiyan CUIXinping WANG . Neutral boron-containing radical dimers. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 123-130. doi: 10.11862/CJIC.20240362

    20. [20]

      Yue Zhao Yanfei Li Tao Xiong . Copper Hydride-Catalyzed Nucleophilic Additions of Unsaturated Hydrocarbons to Aldehydes and Ketones. University Chemistry, 2024, 39(4): 280-285. doi: 10.3866/PKU.DXHX202309001

Metrics
  • PDF Downloads(281)
  • Abstract views(6498)
  • HTML views(2789)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return