碘介导的2-氨基吡啶对α, β-不饱和酮的双胺化反应合成3-酰基和2-酰基咪唑并[1, 2-a]吡啶
-
关键词:
- 分子碘
- / 无过渡金属
- / 双胺化
- / 咪唑并[1, 2-a]吡啶
- / 区域选择性
English
Synthesis of 3-Acyl and 2-Acyl Imidazo [1, 2-a]pyridines by I2-Mediated Diamination of α, β-Unsaturated Ketones with 2-Aminopyridines
-
Key words:
- molecular iodine
- / transition metal-free
- / diamination
- / imidazo[1, 2-a]pyridine
- / regioselective
-
1. Introduction
The direct diamination reaction is a very useful tool for the construction of heterocyclic frameworks containing two or more nitrogens. This synthetic strategy includes direct C—H functionalization without pre-activation, simple and readily accessible substrates, and generation of fewer wasteful by-products. In recent years, impressive achievements have been made in this area. For example, iodine-mediated diamination of methyl ketones[1] with appropriate amines can produce diverse diazaheterocyclic compounds, such as quinazoline-4(3H)-ones, isoquino-lines, and 1, 3, 4-oxadiazoles. Oxidative coupling of aminopyridines with β-keto esters, 1, 3-diones or propiolalde-hyde gives a variety of imidazo[1, 2-a]pyridine derivatives.[2] In 2014, Hajra et al.[3] reported diamination of chalcones with 2-amino substituted pyridines and benzo-thiazoles to prepare imidazo[1, 2-a]pyridines and related fused-ring compounds. Subsequently, Li et al.[4] achieved such a transformation with amidines to synthesize tetrasubstituted imidazoles. Recently, Nguyen and Al-Mourabit et al.[5] described a similar diamination using 2-cyclohexenones and cyclohexanones as substrates to prepare the corresponding tricyclic compounds.
Imidazo[1, 2-a]pyridine[6] is an important heterocyclic skeleton commonly found in drugs and bioactive molecules, [7] N-heterocyclic carbenes, [8] and organic materials.[9] Specifically, imidazo[1, 2-a]pyridines bearing a 2- or 3-acyl moiety on the imidazole ring exhibit a broad spec-trum of biological and pharmacological properties, [10] in-cluding anti-tuberculosis, antitumor, calcium channel blocking, anesthetic, anticonvulsant, and kinase inhibitory activities. Further, they are also useful building-blocks in medicinal chemistry, [11] and the development of practical synthetic methods to access 2-acyl and/or 3-acyl imid-azo[1, 2-a]pyridines is of importance in medicinal and bi-omedical research. In 1984, Stanovnik et al.[12] reported the synthesis of 3-acyl imidazo[1, 2-a]pyridines by alkylation of N, N-dime-thyl-N'-pyridylamidines with α-bromoketones and subsequent cyclization. In recent years, a number of oxidative annulation reactions have been developed using 2-aminopyridines or their derivatives as substrates. Such transformations afforded the 3-acyl products through transition-metal-catalyzed aerobic oxidation[2e~2f, 3a, 13] or utilizing non-metal oxidants, such as tetrahalomethanes, [2a, 2b] tert-butyl hydroperoxide (TBHP), [2c] and hypervalent iodine.[2d] However, to the best of our knowledge, few synthetic approaches to 2-acyl imidazo[1, 2-a]pyridines have been reported.
Recently, we synthesized 2, 3-disubstituted imidazo[1, 2-a]pyridine frameworks by addition of 2-aminopyridines to nitriles or α, β-ynones followed by I2-mediated intramole-cular C—H amination.[14] In our continuing research into the synthesis of imidazo[1, 2-a]pyridine derivatives, we envisioned direct diamination of α, β-unsaturated ketones with 2-aminopyridines employing molecular iodine as the sole oxidant.[15] By changing the solvent and substituents in 2-aminopyridines, 3-acyl and novel 2-acyl substituted imidazo[1, 2-a]pyridine derivatives can be prepared regio- selectively.
2. Results and discussion
Initially, we took the chalcone (2a) as the model substrate with which to investigate the diamination reaction with 5-bromo-2-aminopyridine (1a) (Table 1). Solvent screening demonstrated that in the presence of iodine this oxidative annulation reaction proceeds under basic conditions in both 1, 2-dichloroethane (DCE) and toluene. The reaction in DCE afforded 46% of 3-benzoyl (3a) and 25% of 2-benzoyl imidazo[1, 2-a]pyridines (4a) (Entry 4). Switching the solvent to toluene significantly improved the yield of the 3-benzoyl product (3a) with excellent selectivity (Entry 5). Replacement of NaHCO3 with a stronger base such as K2CO3 slightly decreased the yield of 3a (Entry 6). The structure of 3a was further confirmed by X-ray crystallography.[16]
Table 1
Table 1. Optimization of reaction conditions for diamination of chalcone (2a) with 5-bromo-2-aminopyridine (1a)a
Entry Base Solvent T/℃ Yieldb/% 3a 4a 1 NaHCO3 1, 4-Dioxane Reflux 0 0 2 NaHCO3 MeCN Reflux 0 0 3 NaHCO3 DMSO 80 0 0 4 NaHCO3 DCE Reflux 46 25 5 NaHCO3 Toluene Reflux 92 Trace 6 K2CO3 Toluene Reflux 89 Trace a Optimal reaction conditions (Entry 5): 1a (2 mmol), 2a (0.5 mmol), I2 (1 mmol), NaHCO3 (2.25 mmol), toluene (5 mL), reflux. b Isolated yields Having established the optimal reaction conditions (Conditions A), we sought to probe the substrate scope and the generality of this reaction. As shown in Table 2, reac-tions of α, β-unsaturated ketones with halogenated 2-aminopyridines give the 3-acyl compounds (3a~3l) as the major products. For unsubstituted chalcones (R2=R3=Ph), the 3-acyl isomers (3a~3c) were formed with high regioselectivity (Entries 1~3). Nevertheless, the stronger electron-withdrawing group (e.g. 3, 5-dibromo) in the sub-strate has a negative impact on the transformation with 41% of the chalcone being recovered (Entry 3). The pres-ence of electron-donating groups or mono-halogens on the olefinic phenyl ring (R2) did not affect either the yield or the selectivity (Entries 4~7). The 2-furyl substituted im-idazo[1, 2-a]pyridine (3h) was obtained in a satisfactory yield (Entry 8). The presence of electron-withdrawing groups on the phenyl ring in the chalcone (R2) or aliphatic groups at R3 lowered the yields of 3-acyl products (3i~3l) with greater amounts of the 2-acyl isomers (4i~4l) being generated (Entries 9~12). Diamination with alkyl- or un-subsituted 2-aminopyridines also favored the formation of the 2-acyl products (4m~4p) (Entries 13~16). An excep-tion is the reaction with 6-methyl-2-aminopyridine which, due to the steric hindrance from the 6-methyl group, re-sulted in only the 3-benzoylimidazo[1, 2-a]pyridine (3q) (Entry 17).
Table 2

Entry R1 R2 R3 Yieldb/% 3 4 1 5-Br Ph Ph 92 (3a) Trace (4a) 2 5-Cl Ph Ph 88 (3b) Trace (4b) 3c 3, 5-Br2 Ph Ph 54 (3c) Trace (4c) 4 5-Br 4-MeC6H4 Ph 88 (3d) Trace (4d) 5 5-Br 4-MeOC6H4 Ph 60 (3e) Trace (4e) 6 5-Br 4-ClC6H4 Ph 85 (3f) Trace (4f) 7 5-Br 4-BrC6H4 Ph 81 (3g) Trace (4g) 8 5-Br 2-Furyl Ph 71 (3h) Trace (4h) 9 5-Br 2, 4-Cl2C6H3 Ph 47 (3i) 40 (4i) 10 5-Br 4-NO2C6H4 Ph 29 (3j) 14 (4j) 11 5-Br 4-MeC6H4 iPr 65 (3k) 8 (4k) 12 5-Br 4-MeC6H4 tBu 52 (3l) 21 (4l) 13 H Ph Ph 27 (3m) 49 (4m) 14 3-Me Ph Ph 12 (3n) 59 (4n) 15 4-Me Ph Ph 21 (3o) 43 (4o) 16 5-Me Ph Ph 38 (3p) 57 (4p) 17 6-Me Ph Ph 87 (3q) 0 (4q) aConditions A: 1 (2 mmol), 2 (0.5 mmol), I2 (1 mmol), NaHCO3 (2.25 mmol), toluene (5 mL), reflux; b isolated yields; c41% of the ketone was recovered In light of these encouraging results, we further opti-mized the diamination conditions for 2-acylimidazo[1, 2-a]pyridine synthesis. Inspired by observation of the higher yield of the 2-acyl product that are produced in DCE (Table 1, Entry 4), we performed the oxidative coupling of 2-aminopyridine with chalcone using DCE as the solvent. This elevated the yield of the 2-benzoyl product (4m) with better selectivity (Entry 1 in Table 3 vs. Entry 13 in Table 2). With a stronger base, K2CO3, both the yield and the selectivity were further improved (Table 3, Entry 2). However, use of KOH as base disfavors the formation of 4m (Entry 3). Under the optimal conditions (Conditions B), diaminations of α, β-unsaturated ketones by alkyl- or unsubsituted 2-aminopyridines produced mainly the cor-responding 2-acyl imidazo[1, 2-a]pyridines (4m~4t). Taking the product 4s as an example, the structure of this type of 2-acylimidazo[1, 2-a]pyridine has been confirmed by X-ray crystallography.[16] Even the reaction with 5-bromo-2-aminopyridine resulted in the 2-benzoyl prod-ucts (4a, 4j~4k) as the major products (Table 3, Entry 11 vs. Table 2 Entry 1; Table 3 Entries 12~13 vs. Table 2 Entries 10, 11), which further supports the theory that DCE favors the 2-acyl product formation. Consistent with the results in toluene (Table 2, Entry 17), diamination with 6-methyl-2-aminopyridine in DCE also produced the 3-benzoyl isomer (3q) due to the steric effect (Table 3, Entry 9). It is noteworthy that the present diamination reaction is insensitive to air and moisture either in toluene or in DCE.
Table 3

Entry R1 R2 R3 Yieldb/% 4 3 1c H Ph Ph 73 (4m) 18 (3m) 2 H Ph Ph 84 (4m) 14 (3m) 3d H Ph Ph 53 (4m) 35 (3m) 4 3-Me Ph Ph 76 (4n) 7 (3n) 5 4-Me Ph Ph 77 (4o) 13 (3o) 6 5-Me Ph Ph 58 (4p) 18 (3p) 7e 6-Me Ph Ph 0 (4q) 43 (3q) 8 H 4-ClC6H4 Ph 41 (4r) 23 (3r) 9 H 4-BrC6H4 4-BrC6H4 56 (4s) 18 (3s) 10f H 4-MeC6H4 tBu 50 (4t) Trace (3t) 11 5-Br Ph Ph 62 (4a) 33 (3a) 12 5-Br 4-NO2C6H4 Ph 35 (4j) 14 (3j) 13 5-Br 4-MeC6H4 iPr 44 (4k) 26 (3k) a Conditions B: 1 (2 mmol), 2 (0.5 mmol), I2 (1 mmol), K2CO3 (2.25 mmol), DCE (5 mL), reflux; b isolated yields; c NaHCO3 was used as base; d KOH was used as base; e 40% of the ketone was recovered; f 42% of the ketone was recovered. We proposed plausible mechanisms for the regioselec-tive formation of 2-acyl and 3-acyl substituted imid-azo[1, 2-a]pyridines (Scheme 1). The I2-mediated regiose-lective diamination of α, β-unsaturated ketones by 2-amino-pyridines may proceed via two pathways. In the case of path a, conjugated addition of ketone 2 with the 2-amino group in 1 results in the intermediate B. Then, the I2-mediated cyclization of B via an intramolecular Or-toleva-King reaction[17, 9a] generates 2, 3-dihydroimidazo-[1, 2-a]pyridine D. Finally, oxidative aromatization of D by iodine forms the 3-acyl product (3). The second path (path b) involves conjugated addition of ketone 2 with the pyridine nitrogen in 1 (path b), leading eventually to the 2-acyl product (4). The presence of halo groups in substrates 1 favors the path a transformation due to its electron defi-ciency effect on the pyridine nitrogen. On the other hand, when R1 is H or an alkyl group, the diamination will undergo path b mechanism as the pyridine nitrogen in 1 is the more nucleophilic. Moreover, the results demonstrated that the reaction is more likely to proceed via path a in toluene (see Table 2), but via path b in DCE (Table 3).
Scheme 1
3. Conclusions
In summary, we have established an I2-mediated direct diamination reaction of α, β-unsaturated ketones with 2-aminopyridines under basic conditions. Under the optimal reaction conditions, the versatile synthetic approach presented here can not only produce 3-acyl imidazo[1, 2-a]pyridines, but can also afford a series of novel 2-acyl products regioselectively by changing the solvent and substituents in the 2-aminopyridine substrates. Using DCE as the solvent and un-/alkyl-substituted aminopyridines as susbtrates favor the formation of the 2-acyl imidazo[1, 2-a]pyridines. This new and transition metal-free methodology is operationally simple, insensitive to air and moisture, and applicable to a variety of α, β-unsaturated ketone and 2-aminopyridine substrates.
4. Experimental
4.1 General information
1H NMR and 13C NMR spectra were recorded on a 400 MHz (100 MHz for 13C NMR) spectrometer. Chemical shift values are given in parts per million (ppm) relative to the internal standard, tetramethylsilane (TMS). Melting points were determined on a micromelting point apparatus and uncorrected. High-resolution mass spectra (HRMS) were obtained on a TOF-Q mass spectrometer equipped with an electrospray ion source (ESI) and operated in the positive mode. Flash column chromatography was per-formed over 200~300 mesh silica gel and the solvents were distilled prior to use. Toluene and DCE were analyti-cal reagent (AR) grade and used without any pretreatment.
4.2 General procedure for imidazo[1, 2-a]pyridine synthesis
Conditions A: A reaction mixture of 1 (2 mmol), 2 (0.5 mmol), NaHCO3 (189 mg, 2.25 mmol) and iodine (254 mg, 1 mmol) in toluene (5 mL) was refluxed for 15 h (TLC indicated that the conversion was complete). After cooling to room temperature, it was quenched with 5% Na2S2O3 (0.5 mL), followed by the addition of brine (15 mL), and then extracted with CH2Cl2 (15 mL×3). The combined organic layer was dried over anhydrous Na2SO4, concen-trated, and purified through column chromatography using a mixture of EtOAc and petroleum ether (PE) as the eluent to afford the products 3 (and 4).
Conditions B: A reaction mixture of 1 (2 mmol), 2 (0.5 mmol), K2CO3 (311 mg, 2.25 mmol) and iodine (254 mg, 1 mmol) in DCE (5 mL) was refluxed for 15 h (TLC indi-cated that the conversion was complete). After cooling to room temperature, it was quenched with 5% Na2S2O3 (0.5 mL), followed by the addition of brine (15 mL), and then extracted with CH2Cl2 (15 mL×3). The combined organic layer was dried over anhydrous Na2SO4, concentrated, and purified through column chromatography (or preparative TLC) using a mixture of EtOAc and PE as the eluent to afford the products 4 (and 3).
(6-Bromo-2-phenylimidazo[1, 2-a]pyridin-3-yl)(phen-yl)methanone (3a): 174 mg, 92% yield [under conditions A, eluent: V(EtOAc):V(PE)=10:90], white solid. m.p. 131~133 ℃; 1H NMR (400 MHz, CDCl3) δ: 9.71 (d, J=0.8 Hz, 1H), 7.69 (d, J=9.2 Hz, 1H), 7.59 (dd, J=9.6, 2.0 Hz, 1H), 7.51~7.50 (m, 2H), 7.32~7.30 (m, 2H), 7.27 (t, J=4.0 Hz, 1H), 7.17~7.07 (m, 5H); 13C NMR (100 MHz, CDCl3) δ: 187.3, 154.9, 145.8, 138.2, 133.5, 132.5, 132.1, 130.2, 129.6, 128.5, 128.4, 127.9, 127.8, 120.1, 118.0, 109.4; HRMS calcd for C20H14Br79N2O [M+H]+ 377.0284, found 377.0274.
(6-Chloro-2-phenylimidazo[1, 2-a]pyridin-3-yl)(phen-yl)methanone (3b): Yield 146 mg, 88% yield [under con-ditions A, eluent: V(EtOAc):V(PE)=10:90], yellow sol-id. m.p. 126~127 ℃; 1H NMR (400 MHz, CDCl3) δ: 9.62 (s, 1H), 7.74 (d, J=9.2 Hz, 1H), 7.51~7.48 (m, 3H), 7.32~7.26 (m, 3H), 7.15~7.09 (m, 5H); 13C NMR (100 MHz, CDCl3) δ: 187.3, 155.1, 145.6, 138.2, 133.5, 132.1, 130.4, 130.1, 129.6, 128.5, 127.9, 126.3, 122.9, 120.2, 117.7; HRMS calcd for C20H14ClN2O [M+H]+ 333.0789, found 333.0785.
(6, 8-Dibromo-2-phenylimidazo[1, 2-a]pyridin-3-yl)-(phenyl)methanone (3c) 123 mg, 54% yield [under condi-tions A, eluent: V(EtOAc):V(PE)=5:95], yellow solid. m.p. 250~252 ℃; 1H NMR (400 MHz, CDCl3) δ: 9.64 (d, J=1.6 Hz, 1H), 7.87 (d, J=1.6 Hz, 1H), 7.52~7.49 (m, 2H), 7.36~7.33 (m, 2H), 7.31~7.26 (m, 1H), 7.17~7.07 (m, 5H); 13C NMR (100 MHz, CDCl3) δ: 187.5, 154.8, 143.9, 137.7, 134.1, 133.1, 132.4, 130.4, 129.6, 128.7, 127.93, 127.90, 127.4, 121.3, 111.9, 108.3; HRMS (m/z) [M+H]+ C20H13Br281N2O calcd for 456.9369, found 456.9358.
(6-Bromo-2-(p-tolyl)imidazo[1, 2-a]pyridin-3-yl)(ph-enyl)methanone (3d): 172 mg, 88% yield [under condi-tions A, eluent: V(EtOAc):V(PE)=10:90], white solid. m.p. 122~123 ℃; 1H NMR (400 MHz, CDCl3) δ: 9.68 (dd, J=2.0, 0.8 Hz, 1H), 7.68 (d, J=9.6 Hz, 1H), 7.57 (dd, J=9.6, 1.6 Hz, 1H), 7.52~7.50 (m, 2H), 7.31~7.27 (m, 1H), 7.20 (d, J=8.0 Hz, 2H), 7.11 (t, J=7.6 Hz, 2H), 6.89 (d, J=8.0 Hz, 2H), 2.23 (s, 3H); 13C NMR (100 MHz, CDCl3) 187.4, 154.9, 145.7, 138.5, 138.2, 132.4, 132.0, 130.5, 130.1, 129.6, 128.6, 128.3, 127.8, 119.9, 117.9, 109.2, 21.2; HRMS calcd for C21H16Br81N2O [M+H]+ 393.0420, found 393.0421.
(6-Bromo-2-(4-methoxyphenyl)imidazo[1, 2-a]pyridin-3-yl)(phenyl)methanone (3e): 122 mg, 60% yield [under conditions A, eluent: V(EtOAc):V(PE)=15:85], yellow solid. m.p. 94~97 ℃; 1H NMR (400 MHz, CDCl3) δ: 9.68 (dd, J=2.0, 0.8 Hz, 1H), 7.686 (dd, J=9.2, 0.4 Hz, 1H), 7.57 (dd, J=9.6, 2.0 Hz, 1H), 7.53~7.51 (m, 2H), 7.32~7.28 (m, 1H), 7.27~7.23 (m, 2H), 7.13 (t, J=7.6 Hz, 2H), 6.63~6.61 (m, 2H), 3.72 (s, 3H); 13C NMR (100 MHz, CDCl3) δ: 187.3, 159.9, 154.6, 145.7, 138.2, 132.5, 132.0, 131.5, 129.6, 128.3, 127.9, 125.8, 119.7, 117.7, 113.4, 109.2, 55.3.; HRMS calcd for C21H16Br79N2O2 [M+H]+ 407.0390, found 407.0395.
(6-Bromo-2-(4-chlorophenyl)imidazo[1, 2-a]pyridin-3-yl)(phenyl)methanone (3f): 175 mg, 85% yield [under conditions A, eluent: V(EtOAc):V(PE)=10:90], white solid. m.p. 162~164 ℃; 1H NMR (400 MHz, CDCl3) δ: 9.69 (d, J=1.2 Hz, 1H), 7.69 (d, J=9.6 Hz, 1H), 7.61 (dd, J=9.6, 1.6 Hz, 1H), 7.51~7.49 (m, 2H), 7.38~7.34 (m, 1H), 7.26~7.23 (m, 2H), 7.16 (t, J=7.6 Hz, 2H), 7.08~7.06 (m, 2H); 13C NMR (100 MHz, CDCl3) δ: 187.1, 153.5, 145.8, 138.0, 134.7, 132.8, 132.4, 132.1, 131.3, 129.6, 128.4, 128.09, 128.06, 120.1, 118.0, 109.6; HRMS calcd for C20H13Br81ClN2O [M+H]+ 412.9874, found 412.9862.
(6-Bromo-2-(4-bromophenyl)imidazo[1, 2-a]pyridin-3-yl)(phenyl)methanone (3g): 185 mg, 81% yield [under conditions A, eluent: V(EtOAc):V(PE)=10:90], white solid. m.p. 177~178 ℃; 1H NMR (400 MHz, CDCl3) δ: 9.68 (s, 1H), 7.69 (d, J=9.6 Hz, 1H), 7.60 (dd, J=9.6, 1.6 Hz, 1H), 7.50 (d, J=7.2 Hz, 2H), 7.36 (t, J=7.2 Hz, 1H), 7.24~7.22 (m, 2H), 7.19~7.14 (m, 4H); 13C NMR (100 MHz, CDCl3) δ: 187.1, 153.5, 145.7, 138.0, 132.8, 132.5, 132.4, 131.6, 131.0, 129.6, 128.4, 128.1, 123.1, 120.1, 118.0, 109.7; HRMS calcd for C20H13Br812N2O [M+H]+ 456.9369, found 456.9362.
(6-Bromo-2-(furan-2-yl)imidazo[1, 2-a]pyridin-3-yl)-(phenyl)methanone (3h): 130 mg, 71% yield [under condi-tions A, eluent: V(EtOAc):V(PE)=15:85], grey solid. m.p. 139~141 ℃; 1H NMR (400 MHz, CDCl3) δ: 9.52~9.51 (m, 1H), 7.68 (d, J=7.6 Hz, 2H), 7.65 (d, J=9.6 Hz, 1H), 7.56 (dd, J=9.2, 1.2 Hz, 1H), 7.46 (t, J=7.6 Hz, 1H), 7.32 (t, J=7.6 Hz, 2H), 7.07~7.06 (m, 1H), 6.48 (d, J=3.6 Hz, 1H), 6.26 (dd, J=3.2, 1.6 Hz, 1H); 13C NMR (100 MHz, CDCl3) δ: 187.0, 147.1, 145.9, 143.8, 143.7, 138.9, 132.6, 132.3, 129.0, 128.2, 128.1, 119.3, 117.9, 112.5, 111.6, 109.4; HRMS calcd for C18H12Br79N2O2 [M+H]+ 367.0077, found 367.0071.
(6-Bromo-2-(2, 4-dichlorophenyl)imidazo[1, 2-a]pyridin-3-yl)(phenyl)methanone (3i): 105 mg, 47% yield [under conditions A, eluent: V(EtOAc):V(PE)=10:90, with 40% of 4i isolated], yellow solid. m.p. 174~175 ℃; 1H NMR (400 MHz, CDCl3) δ: 9.76~9.75 (m, 1H), 7.71 (dd, J=9.2, 4.0 Hz, 1H), 7.64~7.60 (m, 1H), 7.46~7.44 (m, 2H), 7.33~7.28 (m, 1H), 7.20 (dd, J=8.0, 2.0 Hz, 1H), 7.13~7.10 (m, 3H), 7.07 (dt, J=8.4, 2.0 Hz, 1H); 13C NMR (100 MHz, CDCl3) δ: 186.9, 150.7, 145.7, 138.1, 135.2, 134.2, 132.9, 132.8, 132.1, 131.9, 129.2, 129.1, 128.6, 127.5, 126.7, 121.4, 118.2, 110.0; HRMS calcd for C20H12Br81Cl2N2O [M+H]+ 446.9484, found 446.9466.
(6-Bromo-2-(4-nitrophenyl)imidazo[1, 2-a]pyridin-3-yl)(phenyl)methanone (3J): 62 mg, 29% yield [under con-ditions A, eluent: V(EtOAc):V(PE)=15:85, with 14% of 4J isolated], yellow solid. m.p. 192~194 ℃; 1H NMR (400 MHz, CDCl3) δ: 9.68 (d, J=0.8 Hz, 1H), 7.97~7.95 (m, 2H), 7.72 (d, J=9.2 Hz, 1H), 7.65 (dd, J=9.2, 1.6 Hz, 1H), 7.51~7.48 (m, 4H), 7.34 (t, J=7.6 Hz, 1H), 7.14 (t, J=7.6 Hz, 2H); 13C NMR (100 MHz, CDCl3) δ: 186.8, 151.8, 147.4, 145.8, 140.1, 138.0, 133.1, 132.8, 130.9, 129.5, 128.3, 128.2, 122.9, 120.6, 118.2, 110.2; HRMS calcd for C20H12Br81N3O3Na [M+Na]+ 445.9934, found 445.9913.
1-(6-Bromo-2-phenylimidazo[1, 2-a]pyridin-3-yl)-2-methylpropan-1-one (3k): 116 mg, 65% yield [under con-ditions A, eluent: V(EtOAc):V(PE)=5:95, with 8% of 4k isolated], white solid. m.p. 95~98 ℃; 1H NMR (400 MHz, CDCl3) δ: 9.91 (s, 1H), 7.62 (d, J=9.2 Hz, 1H), 7.56 (dd, J=9.2, 1.6 Hz, 1H), 7.47 (d, J=8.0 Hz, 2H), 7.30 (d, J=8.0 Hz, 2H), 3.07 (heptet, J=6.8 Hz, 1H), 2.45 (s, 3H), 1.02 (d, J=6.8 Hz, 6H); 13C NMR (100 MHz, CDCl3) δ: 197.8, 154.6, 145.3, 139.4, 132.4, 132.0, 129.4, 129.2, 129.1, 120.3, 117.7, 109.5, 36.9, 21.5, 19.3; HRMS calcd for C18H18Br79N2O [M+H]+ 357.0597, found 357.0595.
1-(6-Bromo-2-(p-tolyl)imidazo[1, 2-a]pyridin-3-yl)-2, 2-dimethylpropan-1-one (3l): 97 mg, 52% yield [under con-ditions A, eluent: V(EtOAc):V(PE)=10:90, with 21% of 4l isolated], white solid. m.p. 111 ℃; 1H NMR (400 MHz, CDCl3) δ: 8.37~8.36 (m, 1H), 7.56 (d, J=9.6 Hz, 1H), 7.47 (d, J=8.0 Hz, 2H), 7.35 (dt, J=9.6, 1.6 Hz, 1H), 7.26 (d, J=8.0 Hz, 1H), 2.41 (s, 3H), 1.08 (s, 9H); 13C NMR (100 MHz, CDCl3) δ: 206.6, 147.9, 144.1, 139.2, 132.1, 130.0, 129.5, 129.0, 125.6, 120.2, 118.1, 108.1, 46.3, 27.5, 21.4; HRMS calcd for C19H20Br81N2O [M+H]+ 373.0733, found 373.0742.
Phenyl(2-phenylimidazo[1, 2-a]pyridin-3-yl)methan-one (3m): 40 mg, 27% yield [under conditions A, eluent: V(EtOAc):V(PE)=10:90, with 49% of 4m isolated], white solid. m.p. 119~121 ℃ (lit.[13d] m.p. 124~127 ℃); 1H NMR (400 MHz, CDCl3) δ: 9.56 (d, J=6.8 Hz, 1H), 7.81 (d, J=8.8 Hz, 1H), 7.56~7.51 (m, 3H), 7.33~7.31 (m, 2H), 7.27~7.24 (m, 1H), 7.15~7.07 (m, 6H); 13C NMR (100 MHz, CDCl3) δ: 187.4, 155.0, 147.4, 138.7, 134.0, 131.8, 130.2, 129.6, 129.2, 128.3, 127.8 (overlap), 120.0, 117.5, 114.6; HRMS calcd for C20H15N2O [M+H]+ 299.1179, found 299.1188.
(8-Methyl-2-phenylimidazo[1, 2-a]pyridin-3-yl)(phen-yl)methanone (3n): 19 mg, 12% yield [under conditions A, eluent: V(EtOAc):V(PE)=5:95, with 59% of 4n iso-lated], white solid. m.p. 139~140 ℃ (lit.[13d] m.p. 140~143 ℃); 1H NMR (400 MHz, CDCl3) δ: 9.41 (d, J=6.8 Hz, 1H), 7.50~7.48 (m, 2H), 7.34~7.31 (m, 3H), 7.24~7.22 (m, 1H), 7.12~7.06 (m, 5H), 7.01 (t, J=6.8 Hz, 1H), 2.74 (s, 3H); 13C NMR (100 MHz, CDCl3) δ: 187.5, 154.6, 147.7, 138.8, 134.3, 131.6, 130.3, 129.5, 128.2, 128.1, 127.8, 127.7, 127.5, 126.0, 120.5, 114.7, 17.2; HRMS calcd for C21H17N2O [M+H]+ 313.1335, found 313.1331.
(7-Methyl-2-phenylimidazo[1, 2-a]pyridin-3-yl)(phen-yl)methanone (3o): 33 mg, 21% yield [under conditions A, eluent: V(EtOAc):V(PE)=10:90, with 43% of 4o iso-lated], white solid. m.p. 135~137 ℃ (lit.[13d] m.p. 137~140 ℃); 1H NMR (400 MHz, CDCl3) δ: 9.45 (d, J=7.2 Hz, 1H), 7.57 (s, 1H), 7.50~7.48 (m, 2H), 7.31~7.29 (m, 2H), 7.26~7.22 (m, 1H), 7.14~7.05 (m, 5H), 6.94 (dd, J=7.2, 1.6 Hz, 1H), 2.52 (s, 3H); 13C NMR (100 MHz, CDCl3) δ: 187.1, 155.3, 147.9, 140.9, 138.8, 134.1, 131.6, 130.2, 129.5, 128.2, 127.7, 127.5, 119.8, 117.2, 116.1, 21.6; HRMS calcd for C21H17N2O [M+H]+ 313.1335, found 313.1336.
(6-Methyl-3-phenylimidazo[1, 2-a]pyridin-2-yl)(phen-yl)methanone (3p): 59 mg, 38% yield [under conditions A, eluent: V(EtOAc):V(PE)=10:90, with 57% of 4p iso-lated], white solid. m.p. 160~161 ℃ (lit.[13d] m.p. 156~158 ℃); 1H NMR (400 MHz, CDCl3) δ: 9.37 (s, 1H), 7.70 (d, J=9.2 Hz, 1H), 7.50 (d, J=7.6 Hz, 2H), 7.37 (d, J=8.8 Hz, 1H), 7.31 (d, J=7.6 Hz, 2H), 7.24 (d, J=7.2 Hz, 1H), 7.12~7.07 (m, 5H), 2.44 (s, 3H); 13C NMR (100 MHz, CDCl3) δ: 187.3, 154.9, 146.4, 138.8, 134.2, 132.1, 131.7, 130.2, 129.6, 128.1, 127.7 (one signal missing due to overlap), 126.2, 124.6, 119.9, 116.7, 18.5; HRMS calcd for C21H17N2O [M+H]+ 313.1335, found 313.1338.
(5-Methyl-2-phenylimidazo[1, 2-a]pyridin-3-yl)(phen-yl)methanone (3q): 136 mg, 87% yield [under conditions A, eluent: V(EtOAc):V(PE)=10:90], yellow oil. 1H NMR (400 MHz, CDCl3) δ: 7.82~7.80 (m, 2H), 7.71 (d, J=8.8 Hz, 1H), 7.48~7.46 (m, 2H), 7.42~7.36 (m, 2H), 7.27~7.24 (m, 2H), 7.16~7.14 (m, 3H), 6.78 (d, J=7.2 Hz, 1H), 2.43 (s, 3H); 13C NMR (100 MHz, CDCl3) δ: 188.0, 150.2, 147.8, 138.3, 137.9, 133.7, 133.3, 130.4, 129.4, 128.4, 128.1, 128.0, 127.6, 120.5, 115.3, 115.0, 22. 4; HRMS calcd for C21H16N2ONa [M+Na]+ 335.1155, found 335.1149.
(2-(4-Chlorophenyl)imidazo[1, 2-a]pyridin-3-yl)(phen-yl)methanone (3r): 38 mg, 23% yield [under conditions B, eluent: V(EtOAc):V(PE)=10:90, with 41% of 4r iso-lated], white solid. m.p. 133~135 ℃ (lit.[13d] m.p. 132~134 ℃); 1H NMR (400 MHz, CDCl3) δ: 9.53 (s, 1H), 7.80 (s, 1H), 7.61~7.43 (m, 3H), 7.33~7.26 (m, 3H), 7.14~7.07 (m, 5H); 13C NMR (100 MHz, CDCl3) δ: 187.2, 153.5, 147.4, 138.5, 134.5, 132.5, 132.0, 131.4, 129.6, 129.4, 128.3, 128.0 (overlap), 120.1, 117.5, 114.8; HRMS calcd for C20H14ClN2O [M+H]+ 333.0789, found 333.0794.
(4-Bromophenyl)(2-(4-bromophenyl)imidazo[1, 2-a]py-ridin-3-yl)methanone (3s): 41 mg, 18% yield [under condi-tions B, eluent: V(EtOAc):V(PE)=10:90, with 56% of 4s isolated], white solid. m.p. 212~215 ℃; 1H NMR (400 MHz, CDCl3) δ: 9.50 (d, J=6.8 Hz, 1H), 7.80 (d, J=8.8 Hz, 1H), 7.56 (t, J=8.0 Hz, 1H), 7.36 (d, J=8.0 Hz, 2H), 7.30~7.27 (m, 4H), 7.18 (d, J=8.0 Hz, 2H), 7.12 (t, J=6.8 Hz, 1H); 13C NMR (100 MHz, CDCl3) δ: 185.8, 153.7, 147.6, 137.3, 132.8, 131.6, 131.2, 131.1, 131.0, 129.7, 128.3, 127.0, 123.2, 119.8, 117.6, 115.0; HRMS calcd for C20H13Br281N2O [M+H]+ 456.9369, found 456.9366.
(6-Bromo-3-phenylimidazo[1, 2-a]pyridin-2-yl)(phenyl)-methanone (4a): 117 mg, 62% yield [under conditions B, eluent: V(EtOAc):V(PE)=10:90, with 33% of 3a iso-lated], yellow solid. m.p. 191~194 ℃; 1H NMR (400 MHz, CDCl3) δ: 8.19 (s, 1H), 8.15 (d, J=7.6 Hz, 2H), 7.63 (d, J=9.6 Hz, 1H), 7.56~7.48 (m, 6H), 7.43 (t, J=7.6 Hz, 2H), 7.34 (d, J=9.2 Hz, 1H); 13C NMR (100 MHz, CDCl3) δ: 189.8, 142.3, 140.6, 137.6, 132.8, 130.7, 130.3, 129.7, 129.6, 129.2, 128.1, 127.6, 124.0, 119.8, 108.9 (one signal missing due to overlap); HRMS calcd for C20H14Br-79N2O [M+H]+ 377.0284, found 377.0290.
(6-Bromo-3-(2, 4-dichlorophenyl)imidazo[1, 2-a]pyridin-2-yl)(phenyl)methanone (4i): 89 mg, 40% yield [under conditions A, eluent: V(EtOAc):V(PE)=10:90, with 47% of 3i isolated], yellow solid. m.p. 149~151 ℃; 1H NMR (400 MHz, CDCl3) δ: 8.23 (d, J=7.6 Hz, 2H), 7.83 (s, 1H), 7.68 (d, J=9.6 Hz, 1H), 7.60 (d, J=1.6 Hz, 1H), 7.56 (t, J=7.6 Hz, 1H), 7.48~7.44 (m, 3H), 7.43~7.38 (m, 2H); 13C NMR (100 MHz, CDCl3) δ: 189.3, 142.6, 141.7, 137.2, 136.9, 135.6, 134.2, 132.9, 130.7, 130.2, 130.0, 128.2, 127.9, 125.7, 125.2, 124.3, 119.9, 109.2; HRMS calcd for C20H11Br81Cl2N2ONa [M+Na]+ 468.9304, found 468.9306.
(6-Bromo-3-(4-nitrophenyl)imidazo[1, 2-a]pyridin-2-yl)(phenyl)methanone (4J): 30 mg, 14% yield [under con-ditions A, eluent: V(EtOAc):V(PE)=15:85, with 29% of 3J isolated], yellow solid. m.p. 211 ℃; 1H NMR (400 MHz, CDCl3) δ: 8.42~8.40 (m, 2H), 8.22~8.20 (m, 2H), 8.17 (dd, J=1.6, 0.8 Hz, 1H), 7.79~7.76 (m, 2H), 7.69 (dd, J=9.6, 0.8 Hz, 1H), 7.61~7.57 (m, 1H), 7.50~7.47 (m, 2H), 7.43 (dd, J=9.6, 1.6 Hz, 1H); 13C NMR (100 MHz, CDCl3) δ: 189.4, 148.2, 142.8, 141.5, 137.1, 134.5, 133.2, 131.4, 130.8, 130.4, 128.3, 126.6, 124.4, 123.5, 120.1, 109.2; HRMS calcd for C20H12Br81N3O3Na [M+Na]+ 445.9934, found 445.9913.
1-(6-Bromo-3-phenylimidazo[1, 2-a]pyridin-2-yl)-2-methylpropan-1-one (4k): 14 mg, 8% yield [under condi-tions A, eluent: V(EtOAc):V(PE)=5:95, with 65% of 3k isolated], yellow solid. m.p. 132~133 ℃; 1H NMR (400 MHz, CDCl3) δ: 8.08 (d, J=5.6 Hz, 1H), 7.60~7.56 (m, 1H), 7.37~7.35 (m, 4H), 7.32~7.25 (m, 1H), 3.88 (heptet, J=6.8 Hz, 1H), 2.45 (d, J=6.8 Hz, 3H), 1.20 (t, J=6.8 Hz, 6H); 13C NMR (100 MHz, CDCl3) δ: 202.2, 142.2, 139.8, 139.2, 130.2, 129.8, 129.5, 128.1, 124.7, 124.2, 119.6, 108.6, 36.8, 21.5, 18.7; HRMS calcd for C18H17Br79N2ONa [M+Na]+ 379.0416, found 379.0419.
1-(6-Bromo-3-(p-tolyl)imidazo[1, 2-a]pyridin-2-yl)-2, 2-dimethylpropan-1-one (4l): 39 mg, 21% yield [under con-ditions A, eluent: V(EtOAc):V(PE)=5:95, with 52% of 3l isolated], yellow oil. 1H NMR (400 MHz, CDCl3) δ: 8.02 (dd, J=1.6, 0.8 Hz, 1H), 7.55 (dd, J=9.6, 0.8 Hz, 1H), 7.36~7.31 (m, 4H), 7.27 (dd, J=9.6, 2.0 Hz, 1H), 2.45 (s, 3H), 1.45 (s, 9H); 13C NMR (100 MHz, CDCl3) δ: 203.4, 141.4, 140.0, 139.4, 130.2, 129.8, 129.0, 128.8, 125.3, 124.0, 119.6, 108.3, 44.8, 27.1, 21.5; HRMS calcd for C19H20Br79N2O [M+H]+ 371.0754, found 371.0743.
(6-Bromo-3-phenylimidazo[1, 2-a]pyridin-2-yl)(phen-yl)methanone (4m): 125 mg, 84% yield [under conditions B, eluent: V(EtOAc):V(PE)=10:90, with 14% of 3m isolated], white solid. m.p. 122~124 ℃; 1H NMR (400 MHz, CDCl3) δ: 8.17~8.15 (m, 2H), 8.08 (d, J=7.2 Hz, 1H), 7.73 (d, J=9.2 Hz, 1H), 7.55~7.46 (m, 6H), 7.45~7.41 (m, 2H), 7.30~7.29 (m, 1H), 6.83 (t, J=7.2 Hz, 1H); 13C NMR (100 MHz, CDCl3) δ: 190.3, 143.9, 140.1, 137.8, 132.6, 130.8, 130.4, 129.2, 129.1, 129.0, 128.3, 128.1, 126.0, 124.1, 119.1, 113.7; HRMS calcd for C20H14N2ONa [M+Na]+ 321.0998, found 321.0995.
(8-Methyl-3-phenylimidazo[1, 2-a]pyridin-2-yl)(phen-yl)methanone (4n): 119 mg, 76% yield [under conditions B, eluent: V(EtOAc):V(PE)=5:95, with 7% of 3n iso-lated], yellow solid. m.p. 127~129 ℃; 1H NMR (400 MHz, CDCl3) δ: 8.17-8.15 (m, 2H), 8.23 (d, J=7.6 Hz, 1H), 7.92 (d, J=6.8 Hz, 1H), 7.49~7.43 (m, 5H), 7.42~7.36 (m, 3H), 7.05 (d, J=6.8 Hz, 1H), 6.72 (t, J=6.8 Hz, 1H); 13C NMR (100 MHz, CDCl3) δ: 190.2, 144.6, 139.7, 137.8, 132.5, 131.0, 130.4, 129.4, 129.1, 128.9, 128.7, 128.0, 124.5, 121.8, 113.8, 17.2 (one signal missing due to overlap); HRMS calcd for C21H16N2ONa [M+Na]+335.1155, found 335.1143.
(7-Methyl-3-phenylimidazo[1, 2-a]pyridin-2-yl)(phen-yl)methanone (4o): 120 mg, 77% yield [under conditions B, eluent: V(EtOAc):V(PE)=15:85, with 13% of 3o isolated], yellow oil. 1H NMR (400 MHz, CDCl3) δ: 8.15~8.13 (m, 2H), 7.95 (d, J=7.2 Hz, 1H), 7.52~7.45 (m, 6H), 7.44~7.38 (m, 3H), 6.65 (dd, J=7.2, 1.6 Hz, 1H), 2.41 (s, 3H); 13C NMR (100 MHz, CDCl3) δ: 190.4, 144.4, 139.9, 138.0, 137.1, 132.5, 130.7, 130.4, 129.1, 128.9, 128.7, 128.4, 128.0, 123.2, 117.1, 116.5, 21.4; HRMS calcd for C21H17N2O [M+H]+ 313.1335, found 313.1339.
(6-Methyl-2-phenylimidazo[1, 2-a]pyridin-3-yl)(phen-yl)methanone (4p): 90 mg, 58% yield [under conditions B, eluent: V(EtOAc):V(PE)=15:85, with 18% of 3p iso-lated], white solid. m.p. 156~158 ℃; 1H NMR (400 MHz, CDCl3) δ: 8.16 (d, J=7.2 Hz, 2H), 7.83 (s, 1H), 7.63 (d, J=9.2 Hz, 1H), 7.54~7.49 (m, 5H), 7.47~7.45 (m, 1H), 7.42 (t, J=7.2 Hz, 2H), 7.13 (d, J=9.6 Hz, 1H), 2.28 (s, 3H); 13C NMR (100 MHz, CDCl3) δ: 190.3, 143.1, 140.0, 138.0, 132.5, 130.7, 130.4, 129.4, 129.1, 129.0, 128.8, 128.5, 128.0, 123.6, 121.3, 118.4, 18.5; HRMS calcd for C21H17N2O [M+H]+ 313.1335, found 313.1334.
(3-(4-Chlorophenyl)imidazo[1, 2-a]pyridin-2-yl)(phen-yl)methanone (4r): 68 mg, 41% yield [under conditions B, eluent: V(EtOAc):V(PE)=10:90, with 23% of 3r iso-lated], yellow oil. 1H NMR (400 MHz, CDCl3) δ: 8.19 (s, 2H), 8.03 (s, 1H), 7.73 (d, J=7.2 Hz, 1H), 7.62~7.36 (m, 7H), 7.29 (s, 1H), 6.86 (s, 1H); 13C NMR (100 MHz, CDCl3) δ: 190.1, 144.0, 140.2, 137.7, 135.2, 132.7, 131.8, 130.8, 129.3, 128.1, 127.7, 126.7, 126.3, 123.8, 119.1, 114.1; HRMS calcd for C20H14ClN2O [M+H]+ 333.0789, found 333.0798.
(4-Bromophenyl)(3-(4-bromophenyl)imidazo[1, 2-a]py-ridin-2-yl)methanone (4s): 128 mg, 56% yield [under con-ditions B, eluent: V(EtOAc):V(PE)=10:90, with 18% of 3s isolated], yellow solid. m.p. 162~165 ℃; 1H NMR (400 MHz, CDCl3) δ: 8.15~8.13 (m, 2H), 8.02 (d, J=6.8 Hz, 1H), 7.73 (d, J=9.2 Hz, 1H), 7.67 (d, J=8.4 Hz, 2H), 7.61 (d, J=8.4 Hz, 2H), 7.44 (d, J=8.4 Hz, 2H), 7.34~7.30 (m, 1H), 6.87 (t, J=6.8 Hz, 1H); 13C NMR (100 MHz, CDCl3) δ: 188.7, 144.0, 139.8, 136.4, 132.4, 132.3, 132.0, 131.4, 128.1, 128.0, 127.1, 126.4, 123.83, 123.80, 119.3, 114.2; HRMS calcd for C20H12Br281N2ONa [M+Na]+ 478.9188, found 478.9190.
2, 2-Dimethyl-1-(3-(p-tolyl)imidazo[1, 2-a]pyridin-2-yl)propan-1-one (4t): 73 mg, 50% yield [under conditions B, eluent: V(EtOAc):V(PE)=5:95], yellow solid. m.p. 98~100 ℃; 1H NMR (400 MHz, CDCl3) δ: 7.80 (d, J=7.2 Hz, 1H), 7.54 (d, J=9.2 Hz, 1H), 7.25~7.21 (m, 4H), 7.11~7.07 (m, 1H), 6.62 (t, J=6.8 Hz, 1H), 2.33 (s, 3H), 1.38 (s, 9H); 13C NMR (100 MHz, CDCl3) δ: 203.8, 143.0, 139.5, 139.0, 130.3, 129.7, 128.6, 126.0, 125.4, 124.0, 118.9, 113.2, 44.7, 27.3, 21.5; HRMS calcd for C19H21N2O [M+H]+ 293.1648, found 293.1657.
Supporting Information Copies of 1H NMR and 13C NMR spectra of compounds 3 and 4. The Supporting In-formation is available free of charge via the Internet at http://sioc-journal.cn/
-
-
[1]
(a) Zhu, Y. -P. ; Fei, Z. ; Liu, M. -C. ; Jia, F. -C. ; Wu, A. -X. Org. Lett. 2013, 15, 378.
(b) Zhu, Y. -P. ; Liu, M. -C. ; Cai, Q. ; Jia, F. -C. ; Wu, A. -X. Chem. -Eur. J. 2013, 19, 10132.
(c) Gao, Q. ; Liu, S. ; Wu, X. ; Zhang, J. ; Wu, A. Org. Lett. 2015, 17, 2960. -
[2]
(a) Huo, C. ; Tang, J. ; Xie, H. ; Wang, Y. ; Dong, J. Org. Lett. 2016, 18, 1016.
(b) Roslan, I. I. ; Ng, K. -H. ; Chuah, G. -K. ; Jaenicke, S. Adv. Synth. Catal. 2016, 358, 364.
(c) Ma, L. ; Wang, X. ; Yu, W. ; Han, B. Chem. Commun. 2011, 47, 11333.
(d) Wang, X. ; Ma, L. ; Yu, W. Synthesis 2011, 2445.
(e) Cao, H. ; Liu, X. ; Liao, J. ; Huang, J. ; Qiu, H. ; Chen, Q. ; Chen, Y. J. Org. Chem. 2014, 79, 11209.
(f) Zhan, H. ; Zhao, L. ; Liao, J. ; Li, N. ; Chen, Q. ; Qiu, S. ; Cao, H. Adv. Synth. Catal. 2015, 357, 46 -
[3]
(a) Monir, K. ; Bagdi, A. K. ; Mishra, S. ; Majee, A. ; Hajra, A. Adv. Synth. Catal. 2014, 356, 1105.
(b) Mishra, S. ; Monir, K. ; Mitra, S. ; Hajra, A. Org. Lett. 2014, 16, 6084. -
[4]
Zhu, Y.; Li, C.; Zhang, J.; She, M.; Sun, W.; Wan, K.; Wang, Q.; Yin, B.; Liu, P.; Li, J. Org. Lett. 2015, 17, 3872. doi: 10.1021/acs.orglett.5b01854
-
[5]
(a) Nguyen, T. B. ; Corbin, M. ; Retailleau, P. ; Ermolenko, L. ; Al-Mourabit, A. Org. Lett. 2015, 17, 4956.
(b) Nguyen, T. B. ; Ermolenko, L. ; Retailleau, P. ; Al-Mourabit, A. Org. Lett. 2016, 18, 2177. -
[6]
(a) Couty, F. ; Evano, G. In Comprehensive Heterocyclic Chemistry Ⅲ, Vol. 11, Eds. : Katritzky, A. R. ; Ramsden, C. A. ; Scriven, E. F. V. ; Taylor, R. J. K., Elsevier, Oxford, 2008, pp. 409~499.
(b) Bagdi, A. K. ; Santra, S. ; Monir, K. ; Hajra, A. Chem. Commun. 2015, 51, 1555.
(c) Dymińska, L. Bioorg. Med. Chem. 2015, 23, 6087.
(d) Enguehard-Gueiffier, C. ; Gueiffier, A. Mini-Rev. Med. Chem. 2007, 7, 888. -
[7]
(a) Mizushige, K. ; Ueda, T. ; Yukiiri, K. ; Suzuki, H. Cardiovasc. Drug Rev. 2002, 20, 163.
(b) Igawa, H. ; Takahashi, M. ; Kakegawa, K. ; Kina, A. ; Ikoma, M. ; Aida, J. ; Yasuma, T. ; Kawata, Y. ; Ashina, S. ; Yamamoto, S. ; Kundu, M. ; Khamrai, U. ; Hirabayashi, H. ; Nakayama, M. ; Nagisa, Y. ; Kasai, S. ; Maekawa, T. J. Med. Chem. 2016, 59, 1116.
(c) Trabanco, A. A. ; Tresadern, G. ; Macdonald, G. J. ; Vega, J. A. ; Lucas, A. I. ; Matesanz, E. ; García, A. ; Linares, M. L. ; Diego, S. A. A. ; Alonso, J. M. ; Oehlrich, D. ; Ahnaou, A. ; Drinkenburg, W. ; Mackie, C. ; Andrés, J. I. ; Lavreysen, H. ; Cid, J. J. Med. Chem. 2012, 55, 2688.
(d) Gladysz, R. ; Adriaenssens, Y. ; Winter, H. D. ; Joossens, J. ; Lambeir, A. ; Augustyns, K. ; Veken, P. V. J. Med. Chem. 2015, 58, 9238. -
[8]
(a) Song, G. ; Zhang, Y. ; Li, X. Organometallics 2008, 27, 1936.
(b) John, A. ; Shaikh, M. M. ; Ghosh, P. Dalton Trans. 2009, 10581.
(c) Ke, C. -H. ; Kuo, B. -C. ; Nandi, D. ; Lee, H. M. Organometallics 2013, 32, 4775. -
[9]
(a) Stasyuk, A. J. ; Banasiewicz, M. ; Cyrański, M. K. ; Gryko, D. T. J. Org. Chem. 2012, 77, 5552.
(b) Mutai, T. ; Sawatani, H. ; Shida, T. ; Shono, H. ; Araki, K. J. Org. Chem. 2013, 78, 2482.
(c) Firmansyah, D. ; Ciuciu, A. I. ; Hugues, V. ; Blanchard-Desce, M. ; Flamigni, L. ; Gryko, D. T. Chem. -Asian J. 2013, 8, 1279.
(d) Furukawa, S. ; Shono, H. ; Mutai, T. ; Araki, K. ACS Appl. Mater. Interfaces 2014, 6, 16065.
(e) Nagarajan, N. ; Velmurugan, G. ; Prakash, A. ; Shakti, N. ; Katiyar, M. ; Venuvanalingam, P. ; Renganathan, R. Chem. -Asian J. 2014, 9, 294.
(f) Yao, C. ; Xue, Z. ; Lian, M. ; Xu, X. ; Zhao, J. ; Zhou, G. ; Wu, Y. ; Yu, D. ; Wong, W. -Y. J. Organomet. Chem. 2015, 784, 31. -
[10]
(a) Kang, S. ; Kim, R. Y. ; Seo, M. J. ; Lee, S. ; Kim, Y. M. ; Seo, M. ; Seo, J. J. ; Ko, Y. ; Choi, I. ; Jang, J. ; Nam, J. ; Park, S. ; Kang, H. ; Kim, H. J. ; Kim, J. ; Ahn, S. ; Pethe, K. ; Nam, K. ; No, Z. ; Kim, J. J. Med. Chem. 2014, 57, 52935.
(b) Hirayama, T. ; Okaniwa, M. ; Banno, H. ; Kakei, H. ; Ohashi, A. ; Iwai, K. ; Ohori, M. ; Mori, K. ; Gotou, M. ; Kawamoto, T. ; Yokota, A. ; Ishikawa, T. J. Med. Chem. 2015, 58, 8036.
(c) Moraski, G. C. ; Miller, P. A. ; Bailey, M. A. ; Ollinger, J. ; Parish, T. ; Boshoff, H. I. ; Cho, S. ; Anderson, J. R. ; Mulugeta, S. ; Franzblau, S. G. ; Miller, M. J. ACS Infect. Dis. 2015, 1, 85.
(d) Li, R. ; Wang, H. ; Li, Y. ; Wang, Z. ; Wang, X. ; Wang, Y. ; Ge, Z. ; Li, R. Eur. J. Med. Chem. 2015, 93, 381.
(e) Jaramillo, C. ; de Diego, J. E. ; Hamdouchi, C. ; Collins, E. ; Keyser, H. ; Sánchez-Martínez, C. ; del Prado, M. ; Norman, B. ; Brooks, H. B. ; Watkins, S. A. ; Spencer, C. D. ; Dempsey, J. A. ; Anderson, B. D. ; Campbell, R. M. ; Leggett, T. ; Patel, B. ; Schultz, R. M. ; Espinosa, J. ; Vieth, M. ; Zhang, F. ; Timm, D. E. Bioorg. Med. Chem. Lett. 2004, 14, 6095.
(f) Sanfilippo, P. J. ; Urbanski, M. ; Press, J. B. ; Dubinsky, B. ; Moore, J. B. J. Med. Chem. 1988, 31, 2221. -
[11]
(a) Starrett, J. E. Montzka, T. A. ; Crosswell, A. R. ; Cavanagh, R. L. J. Med. Chem. 1989, 32, 2204.
(b) Anderson, M. ; Beattie, J. F. ; Breault, G. A. ; Breed, J. ; Byth, K. F. ; Culshaw, J. D. ; Ellston, R. P. A. ; Green, S. ; Minshull, C. A. ; Norman, R. A. ; Pauptit, R. A. ; Stanway, J. ; Thomas, A. P. ; Jewsbury, P. J. Bioorg. Med. Chem. Lett. 2003, 13, 3021. -
[12]
Podergajs, S.; Stanovnik, B.; Tišler, M. Synthesis 1984, 263.
-
[13]
For representative examples, see:(a) Wang, H.; Wang, Y.; Liang, D.; Liu, L.; Zhang, J.; Zhu, Q. Angew. Chem., Int. Ed. 2011, 50, 5678.
(b) Mohan, D. C.; Rao, S. N.; Adimurthy, S. J. Org. Chem. 2013, 78, 1266.
(c) Reddy, K. R.; Reddy, A. S.; Shankar, R.; Kant, R.; Das, P. Asian J. Org. Chem. 2015, 4, 573.
(d) Kaswan, P.; Pericherla, K.; Saini, H. K.; Kumar, A. RSC Adv. 2015, 5, 3670.
(e) Kaswan, P.; Pericherla, K.; Rajnikant; Kumar, A. Tetrahedron 2014, 70, 8539.
(f) Xing, M.-M.; Xin, M.; Shen, C.; Gao, J.-R.; Jia, J.-H.; Li, Y.-J. Tetrahedron 2016, 72, 4201.
(g) Meng, X.; Zhang, J.; Chen, B.; Jing, Z.; Zhao, P. Catal. Sci. Technol. 2016, 6, 890.
(h) Yan, R.-L.; Yan, H.; Ma, C.; Ren, Z.-Y.; Gao, X.-A.; Huang, G.-S.; Liang, Y.-M. J. Org. Chem. 2012, 77, 2024. -
[14]
(a) Tian, X. ; Song, L. Wang, Manman. ; Lv, Z. ; Wu, J. ; Yu, W. ; Chang, J. Chem. -Eur. J. 2016, 22, 7617.
(b) Liu, J. ; Wei, W. ; Zhao, T. ; Liu, X. ; Wu, J. ; Yu, W. ; Chang, J. J. Org. Chem. 2016, 81, 9326. -
[15]
Li, J. ; Zhu, Y. ; Li, C. ; Liu, P. ; Wang, Y. CN 105801575, 2016[Chem. Abstr. 2016, 165, 274501. ]
-
[16]
CCDC 1539194(3a) and 1539195(4s) contain the supplementary crystallographic data for this paper. These data are provided free of charge by The Cambridge Crystallographic Data Centre.
-
[17]
(a) King, L. C. J. Am. Chem. Soc. 1944, 66, 894.
(b) Pearson, R. G. J. Am. Chem. Soc. 1947, 69, 3100.
-
[1]
-
Table 1. Optimization of reaction conditions for diamination of chalcone (2a) with 5-bromo-2-aminopyridine (1a)a

Entry Base Solvent T/℃ Yieldb/% 3a 4a 1 NaHCO3 1, 4-Dioxane Reflux 0 0 2 NaHCO3 MeCN Reflux 0 0 3 NaHCO3 DMSO 80 0 0 4 NaHCO3 DCE Reflux 46 25 5 NaHCO3 Toluene Reflux 92 Trace 6 K2CO3 Toluene Reflux 89 Trace a Optimal reaction conditions (Entry 5): 1a (2 mmol), 2a (0.5 mmol), I2 (1 mmol), NaHCO3 (2.25 mmol), toluene (5 mL), reflux. b Isolated yields Table 2. Substrate scope for imidazo[1, 2-a]pyridine synthesis under conditions Aa

Entry R1 R2 R3 Yieldb/% 3 4 1 5-Br Ph Ph 92 (3a) Trace (4a) 2 5-Cl Ph Ph 88 (3b) Trace (4b) 3c 3, 5-Br2 Ph Ph 54 (3c) Trace (4c) 4 5-Br 4-MeC6H4 Ph 88 (3d) Trace (4d) 5 5-Br 4-MeOC6H4 Ph 60 (3e) Trace (4e) 6 5-Br 4-ClC6H4 Ph 85 (3f) Trace (4f) 7 5-Br 4-BrC6H4 Ph 81 (3g) Trace (4g) 8 5-Br 2-Furyl Ph 71 (3h) Trace (4h) 9 5-Br 2, 4-Cl2C6H3 Ph 47 (3i) 40 (4i) 10 5-Br 4-NO2C6H4 Ph 29 (3j) 14 (4j) 11 5-Br 4-MeC6H4 iPr 65 (3k) 8 (4k) 12 5-Br 4-MeC6H4 tBu 52 (3l) 21 (4l) 13 H Ph Ph 27 (3m) 49 (4m) 14 3-Me Ph Ph 12 (3n) 59 (4n) 15 4-Me Ph Ph 21 (3o) 43 (4o) 16 5-Me Ph Ph 38 (3p) 57 (4p) 17 6-Me Ph Ph 87 (3q) 0 (4q) aConditions A: 1 (2 mmol), 2 (0.5 mmol), I2 (1 mmol), NaHCO3 (2.25 mmol), toluene (5 mL), reflux; b isolated yields; c41% of the ketone was recovered Table 3. Substrate scope for imidazo[1, 2-a]pyridine synthesis under conditions Ba

Entry R1 R2 R3 Yieldb/% 4 3 1c H Ph Ph 73 (4m) 18 (3m) 2 H Ph Ph 84 (4m) 14 (3m) 3d H Ph Ph 53 (4m) 35 (3m) 4 3-Me Ph Ph 76 (4n) 7 (3n) 5 4-Me Ph Ph 77 (4o) 13 (3o) 6 5-Me Ph Ph 58 (4p) 18 (3p) 7e 6-Me Ph Ph 0 (4q) 43 (3q) 8 H 4-ClC6H4 Ph 41 (4r) 23 (3r) 9 H 4-BrC6H4 4-BrC6H4 56 (4s) 18 (3s) 10f H 4-MeC6H4 tBu 50 (4t) Trace (3t) 11 5-Br Ph Ph 62 (4a) 33 (3a) 12 5-Br 4-NO2C6H4 Ph 35 (4j) 14 (3j) 13 5-Br 4-MeC6H4 iPr 44 (4k) 26 (3k) a Conditions B: 1 (2 mmol), 2 (0.5 mmol), I2 (1 mmol), K2CO3 (2.25 mmol), DCE (5 mL), reflux; b isolated yields; c NaHCO3 was used as base; d KOH was used as base; e 40% of the ketone was recovered; f 42% of the ketone was recovered. -
扫一扫看文章
计量
- PDF下载量: 13
- 文章访问数: 1169
- HTML全文浏览量: 119

下载:
下载: