Citation: Cai Zhengjun, Gao Jianbao, Li Bai, Zhong Yuan, Feng Xing, Xue Jijun, Jiang Xianxing. Application of [4+2]Cycloaddition Reaction of Tetrazine with Cyclooctyne in the Construction of Pyridazine Structure with Axial Chirality[J]. Chinese Journal of Organic Chemistry, ;2018, 38(5): 1138-1146. doi: 10.6023/cjoc201712039 shu

Application of [4+2]Cycloaddition Reaction of Tetrazine with Cyclooctyne in the Construction of Pyridazine Structure with Axial Chirality

  • Corresponding author: Xue Jijun, jiangxx5@mail.sysu.edu.cn Jiang Xianxing, xuejj@lzu.edu.cn
  • Received Date: 27 December 2017
    Revised Date: 29 January 2018
    Available Online: 11 May 2018

    Fund Project: Project supported by the National Natural Science Foundation of China (Nos. 91413107, 21432003), the Thousand Young Talents Program and the Fundamental Research Funds for the Central Universities of China (No. lzujbky-2014-61)the National Natural Science Foundation of China 21432003the Thousand Young Talents Program and the Fundamental Research Funds for the Central Universities of China lzujbky-2014-61the National Natural Science Foundation of China 91413107

Figures(4)

  • The application of [4+2] cycloaddition reaction of tetrazine with cyclooctyne in the construction of pyridazine structure with axial chirality was studied. The inverse electronic demand Diels-Alder reaction of tetrazine bearing bulky groups with macrocyclic tension's cyclooctyne could take place under catalyst-free conditions in dichloromethane. The reaction underwent a six-membered bridged transition state, gently release a molecule of nitrogen to get axial chiral pyridazine structure. The transformation of the reaction can be determined by the change of color. The reaction could get potential axial chiral pyridazine structure with high yiled (95%) under mild conditions.
  • 加载中
    1. [1]

      Bringmann, G.; Gulder, T.; Gulder, T. A.; Breuning, M. Chem. Rev. 2010, 111, 563.
       

    2. [2]

      Bringmann, G.; Price Mortimer, A. J.; Keller, P. A.; Gresser, M. J.; Garner, J.; Breuning, M. Angew. Chem., Int. Ed. 2005, 44, 5384.  doi: 10.1002/(ISSN)1521-3773

    3. [3]

      Christ, F.; Voet, A.; Marchand, A.; Nicolet, S.; Desimmie, B. A.; Marchand, D.; Bardiot, D.; Van der Veken, N. J.; Van Remoortel, B.; Strelkov, S. V. Nat. Chem. Biol. 2010, 6, 442.  doi: 10.1038/nchembio.370

    4. [4]

      Kozlowski, M. C.; Morgan, B. J.; Linton, E. C. Chem. Soc. Rev. 2009, 38, 3193.  doi: 10.1039/b821092f

    5. [5]

      Chen, Y.; Yekta, S.; Yudin, A. K. Chem. Rev. 2003, 103, 3155.  doi: 10.1021/cr020025b

    6. [6]

      Noyori, R.; Takaya, H. Acc. Chem. Res. 1990, 23, 345.  doi: 10.1021/ar00178a005

    7. [7]

      Zamfir, A.; Schenker, S.; Freund, M.; Tsogoeva, S. B. Org. Biomol. Chem. 2010, 8, 5262.

    8. [8]

      Cardoso, F. S.; Abboud, K. A.; Aponick, A. J. Am. Chem. Soc. 2013, 135, 14548.  doi: 10.1021/ja407689a

    9. [9]

      Fernández, E.; Guiry, P. J.; Connole, K. P.; Brown, J. M. J. Org. Chem. 2014, 79, 5391.

    10. [10]

      Knöpfel, T. F.; Aschwanden, P.; Ichikawa, T.; Watanabe, T.; Carreira, E. M. Angew. Chem. 2004, 116, 6097.  doi: 10.1002/ange.200461286

    11. [11]

      Milhau, L.; Guiry, P. J. Synlett 2011, 383.
       

    12. [12]

      Ramírez-López, P.; Ros, A.; Romero-Arenas, A.; Iglesias-Sigüenza, J.; Fernández, R.; Lassaletta, J. M. J. Am. Chem. Soc. 2016, 138, 12053.  doi: 10.1021/jacs.6b07972

    13. [13]

      Miyaji, R.; Asano, K.; Matsubara, S. J. Am. Chem. Soc. 2015, 137, 6766.  doi: 10.1021/jacs.5b04151

    14. [14]

      Hornillos, V.; Ros, A.; Ramírez-López, P.; Iglesias-Sigüenza, J.; Fernández, R.; Lassaletta, J. M. Chem. Commun. 2016, 52, 14121.  doi: 10.1039/C6CC08997F

    15. [15]

      Ramirez-Lopez, P.; Ros, A.; Estepa, B.; Fernández, R.; Fiser, B.; Gómez-Bengoa, E.; Lassaletta, J. M. ACS. Catal. 2016, 6, 3955.  doi: 10.1021/acscatal.6b00784

    16. [16]

      Zhang, J.-W.; Xu, J.-H.; Cheng, D.-J.; Shi, C.; Liu, X.-Y.; Tan, B. Nat. Commun. 2016, 7, 10677.  doi: 10.1038/ncomms10677

    17. [17]

      Zhang, L.; Zhang, J.; Ma, J.; Cheng, D.-J.; Tan, B. J. Am. Chem. Soc. 2017, 139, 1714.  doi: 10.1021/jacs.6b09634

    18. [18]

      Fan, X.; Ge, Y.; Lin, F.; Yang, Y.; Zhang, G.; Ngai, W. S. C.; Lin, Z.; Zheng, S.; Wang, J.; Zhao, J. Angew. Chem., Int. Ed. 2016, 55, 14046.  doi: 10.1002/anie.v55.45

    19. [19]

      Karver, M. R.; Weissleder, R.; Hilderbrand, S. A. Bioconjugate Chem. 2011, 22, 2263.  doi: 10.1021/bc200295y

    20. [20]

      Wu, H.; Yang, J.; Šečkutė, J.; Devaraj, N.K. Angew. Chem., Int. Ed. 2014, 53, 5805.  doi: 10.1002/anie.201400135

    21. [21]

      Boger, D. L. Tetrahedron 1983, 39, 2869.  doi: 10.1016/S0040-4020(01)92154-4

    22. [22]

      Zheng, S.-C.; Wu, S.; Zhou, Q.; Chung, L. W.; Ye, L.; Tan, B. Nat. Commun. 2017, 8, 15238.  doi: 10.1038/ncomms15238

    23. [23]

      Ahmed, A.; Bragg, R. A.; Clayden, J.; Lai, L. W.; McCarthy, C.; Pink, J. H.; Westlund, N.; Yasin, S. A. Tetrahedron 1998, 54, 13277.  doi: 10.1016/S0040-4020(98)00814-X

    24. [24]

      Rana, S.; Haque, R.; Santosh, G.; Maiti, D. Inorg. Chem. 2013, 52, 2927.  doi: 10.1021/ic302611a

    25. [25]

      Belaud-Rotureau, M.; Castanet, A.-S.; Nguyen, T. H.; Mortier, J. Aust. J. Chem. 2016, 69, 307.  doi: 10.1071/CH15398

    26. [26]

      Henlin, J.; Duchêne-Roger, F.; Desmet-Beaufort, C.; Levens, N.; Fauchère, J.; Boutin, J.; Nicolas, J. Chem. Biol. Drug. Des. 2001, 57, 419.

    27. [27]

      Wang, D.; Chen, W.; Zheng, Y.; Dai, C.; Wang, L.; Wang, B. Heterocycl. Commun. 2013, 19, 171.

    28. [28]

      Garcia-Hartjes, J.; Dommerholt, J.; Wennekes, T.; van Delft, F. L.; Zuilhof, H. Eur. J. Org. Chem. 2013, 3712.

    29. [29]

      Bloom, S.; Knippel, J. L.; Holl, M. G.; Barber, R.; Lectka, T. Tetrahedron 2014, 55, 4576.  doi: 10.1016/j.tetlet.2014.05.093

    30. [30]

      Chen, W.-X.; Wang, D.-Z.; Dai, C.-F.; Hamelberg, D.; Wang, B.-H. Chem. Commun. 2012, 48, 1736.  doi: 10.1039/C2CC16716F

  • 加载中
    1. [1]

      Xilin Zhao Xingyu Tu Zongxuan Li Rui Dong Bo Jiang Zhiwei Miao . Research Progress in Enantioselective Synthesis of Axial Chiral Compounds. University Chemistry, 2024, 39(11): 158-173. doi: 10.12461/PKU.DXHX202403106

    2. [2]

      Renxiao Liang Zhe Zhong Zhangling Jin Lijuan Shi Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024

    3. [3]

      Ke QIAOYanlin LIShengli HUANGGuoyu YANG . Advancements in asymmetric catalysis employing chiral iridium (ruthenium) complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2091-2104. doi: 10.11862/CJIC.20240265

    4. [4]

      Conghao Shi Ranran Wang Juli Jiang Leyong Wang . The Illustration on Stereoisomers of Macrocycles Containing Multiple Chiral Centers via Tröger Base-based Macrocycles. University Chemistry, 2024, 39(7): 394-397. doi: 10.3866/PKU.DXHX202311034

    5. [5]

      Ruiying WANGHui WANGFenglan CHAIZhinan ZUOBenlai WU . Three-dimensional homochiral Eu(Ⅲ) coordination polymer and its amino acid configuration recognition. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 877-884. doi: 10.11862/CJIC.20250052

    6. [6]

      Chi Li Jichao Wan Qiyu Long Hui Lv Ying XiongN-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016

    7. [7]

      Hanxue LIUShijie LIMeng RENXuling XUEHongke LIU . Design and antitumor properties of dehydroabietic acid functionalized cyclometalated iridium(Ⅲ) complex. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1483-1494. doi: 10.11862/CJIC.20250031

    8. [8]

      Dongheng WANGSi LIShuangquan ZANG . Construction of chiral alkynyl silver chains and modulation of chiral optical properties. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 131-140. doi: 10.11862/CJIC.20240379

    9. [9]

      Ling Fan Meili Pang Yeyun Zhang Yanmei Wang Zhenfeng Shang . Quantum Chemistry Calculation Research on the Diels-Alder Reaction of Anthracene and Maleic Anhydride: Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 133-139. doi: 10.3866/PKU.DXHX202309024

    10. [10]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    11. [11]

      Tingyu Zhu Hui Zhang Wenwei Zhang . Exploration and Practice of Ideological and Political Education in the Course of Experiments on Chemical Functional Molecules: Synthesis and Catalytic Performance Study of Chiral Mn(III)Cl-Salen Complex. University Chemistry, 2024, 39(4): 75-80. doi: 10.3866/PKU.DXHX202311011

    12. [12]

      Jin Tong Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113

    13. [13]

      Qiuting Zhang Fan Wu Jin Liu Zian Lin . Chromatographic Stationary Phase and Chiral Separation Using Frame Materials. University Chemistry, 2025, 40(4): 291-298. doi: 10.12461/PKU.DXHX202405174

    14. [14]

      Lili Jiang Shaoyu Zheng Xuejiao Liu Xiaomin Xie . Copper-Catalyzed Oxidative Coupling Reactions for the Synthesis of Aryl Sulfones: A Fundamental and Exploratory Experiment for Undergraduate Teaching. University Chemistry, 2025, 40(7): 267-276. doi: 10.12461/PKU.DXHX202408004

    15. [15]

      Yan KongWei WeiLekai XuChen Chen . Electrochemical Synthesis of Organonitrogen Compounds from N-integrated CO2 Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2307049-0. doi: 10.3866/PKU.WHXB202307049

    16. [16]

      Haiying Wang Andrew C.-H. Sue . How to Visually Identify Homochiral Crystals. University Chemistry, 2024, 39(3): 78-85. doi: 10.3866/PKU.DXHX202309004

    17. [17]

      Keying Qu Jie Li Ziqiu Lai Kai Chen . Unveiling the Mystery of Chirality from Tartaric Acid. University Chemistry, 2024, 39(9): 369-378. doi: 10.12461/PKU.DXHX202310091

    18. [18]

      Guilan He Yaofeng Yuan . 手性二茂铁双膦配体Xyliphos的合成及应用. University Chemistry, 2025, 40(8): 130-137. doi: 10.12461/PKU.DXHX202409122

    19. [19]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074

    20. [20]

      Yanhui Zhong Ran Wang Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017

Metrics
  • PDF Downloads(36)
  • Abstract views(3030)
  • HTML views(982)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return