Citation: Ma Nan, Zeng Xianghua. Cu2O-Catalyzed Green Oxidative Terminal Alkynes Homocoupling without Bases[J]. Chinese Journal of Organic Chemistry, ;2018, 38(6): 1556-1561. doi: 10.6023/cjoc201712038 shu

Cu2O-Catalyzed Green Oxidative Terminal Alkynes Homocoupling without Bases

  • Corresponding author: Zeng Xianghua, xianghuazeng@mail.zjxu.edu.cn
  • Received Date: 27 December 2017
    Revised Date: 31 January 2018
    Available Online: 11 June 2018

    Fund Project: the National Natural Science Foundation of Zhejiang Province LY17B030011Project supported by the National Natural Science Foundation of Zhejiang Province (No. LY17B030011) and the Jiaxing Science and Technology Project (No. 2015AY11014)the Jiaxing Science and Technology Project 2015AY11014

Figures(4)

  • A high efficient method for the synthesis of 1, 3-diynes derivatives which employed terminal alkynes as the substrates and copper(I) oxide as the catalyst was developed. This method possessed the character of base-free and mild reaction conditions. The reaction mechanism was also studied. Furthermore, this reaction could be magnified to gram scale and the catalyst of copper(I) oxide could be recycled.
  • 加载中
    1. [1]

      (a) Lerch, M. L. ; Harper, M. K. ; Faulkner, D. J. J. Nat. Prod. 2003, 66, 667.
      (b) Lechner, D. ; Stavri, M. ; Oluwatuyi, M. ; Perda-Miranda, R. ; Gibbons, S. Phytochemistry 2004, 65, 331.
      (c) Constable, C. P. ; Towers, G. H. N. Planta Med. 1989, 55, 35.
      (d) Zhou, Y. Z. ; Ma, H. Y. ; Chen, H. ; Qiao, L. ; Yao, Y. ; Cao, J. Q. ; Pei, Y. H. Chem. Pharm. Bull. 2006, 54, 1455.
      (e) Ladika, M. ; Fisk, T. E. ; Wu, W. W. ; Jons, S. D. J. Am. Chem. Soc. 1994, 116, 12093.
      (f) Mayer, S. F. ; Steinreiber, A. ; Orru, R. V. A. ; Faber, K. J. Org. Chem. 2002, 67, 9115.
      (g) Zeni, G. ; Panatieri, R. B. ; Lissner, E. ; Menezes, P. H. ; Braga, A. L. ; Stefani, H. A. Org. Lett. 2001, 3, 819.
      (h) Stüts, A. Angew. Chem., Int. Ed. Engl. 1987, 26, 320.

    2. [2]

      (a) Gholami, M. ; Tykwinski, R. R. Chem. Rev. 2006, 106, 4997.
      (b) Baxter, P. N. W. ; Dali-Youcef, R. J. Org. Chem. 2005, 70, 4935.
      (c) Marsden, J. A. ; Haley, M. M. J. Org. Chem. 2005, 70, 10213.

    3. [3]

      (a) Cataldo, F. In Polyynes: Synthesis Properties, and Applications, CRC Press/Taylor & Francis, Boca Raton, Florida, 2005.
      (b) Diederich, F. ; Stang, P. J. ; Tykwinski, R. R. Acetylene Chemistry: Chemistry, Biology and Material Science, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, 2005.

    4. [4]

      Crowley, J. D.; Goldup, S. M.; Lee, A. L.; Leigh, D. A.; McBurney, R. T. Chem.Soc.Rev. 2009, 38, 1530.  doi: 10.1039/b804243h

    5. [5]

      Glaser, C. Ber.Dtsch.Chem.Ges. 1869, 2, 422.  doi: 10.1002/(ISSN)1099-0682

    6. [6]

      Chen, L.; Lemma, B. E.; Rich, J. S.; Mack, J. Green Chem. 2014, 16, 1101.  doi: 10.1039/C3GC41847B

    7. [7]

      Mo, G.; Tian, Z.; Li, J.; Wen, G.; Yang, X. Appl. Organomet.Chem. 2015, 29, 231.  doi: 10.1002/aoc.v29.4

    8. [8]

      (a) Leyva-Pérez, A. ; Doménech, A. ; Al-Resayes, S. I. ; Corma, A. ACS Catal. 2012, 2, 121.
      (b) Peng, H. ; Xi, Y. ; Ronaghi, N. ; Dong, B. ; Akhmedov, G. N. ; Shi, X. J. Am. Chem. Soc. 2014, 136, 13174.

    9. [9]

      (a) Fan, X. ; Li, N. ; Shen, T. ; Cui, X. -M. ; Lv, H. ; Zhu, H. -B. ; Guan, Y. -H. Tetrahedron 2014, 70, 256.
      (b) Yin, K. ; Li, C. -J. ; Li, J. ; Jia, X. -S. Appl. Organomet. Chem. 2011, 25, 16.
      (c) Navale, B. S. ; Bhat, R. G. RSC Adv. 2013, 3, 5220.
      (d) Zhang, S. ; Liu, X. ; Wang, T. Adv. Synth. Catal. 2011, 353, 1463.
      (e) Jia, X. ; Yin, K. ; Li, C. ; Li, J. ; Bian, H. Green Chem. 2011, 13, 2175.
      (f) Balaraman, K. ; Kesavan, V. Synthesis 2010, 3461.
      (g) Kusuda, A. ; Xu, X. -F. ; Wang, X. ; Tokunaga, E. ; Shibata, N. Green Chem. 2011, 13, 843.
      (h) Adimurthy, S. ; Malakar, C. C. ; Beifuss, U. J. Org. Chem. 2009, 74, 5648.
      (i) Yin, K. ; Li, C. ; Li, J. ; Jia, X. Green Chem. 2011, 13, 591.
      (j) Wang, D. ; Li, J. ; Li, N. ; Gao, T. ; Hou, S. ; Chen, B. Green Chem. 2010, 12, 45.
      (k) Kabalka, G. W. ; Wang, L. ; Pagni, R. M. Synlett 2001, 108.
      (l) Li, Y. -N. ; Wang, J. -L. ; He, L. -N. Tetrahedron Lett. 2011, 52, 3485.
      (m) Sagadevan, A. ; Charpe, V. P. ; Hwang, K. C. Catal. Sci. Technol. 2016, 6, 7688.
      (n)Sagadevan, A. ; Lyu, P. -C. ; Hwang, K. C. Green Chem. 2016, 18, 4526.
      (o) Oishi, T. ; Katayama, T. ; Yamaguchi, K. ; Mizuno, N. Chem. Eur. J. 2009, 15, 7539.
      (p) Oishi, T. ; Yamaguchi, K. ; Mizuno, N. ACS Catal. 2011, 1, 1351.
      (q) Zhu, Y. ; Shi, Y. Org. Biomol. Chem. 2013, 11, 7451.
      (r) Kamata, K. ; Yamaguchi, S. ; Kotani, M. ; Yamaguchi, K. ; Mizuno, N. Angew. Chem., Int. Ed. 2008, 47, 2407.

    10. [10]

      Allen, S. E.; Walvoord, R. R.; Padilla-Salinas, R.; Kozlowski, M. C. Chem.Rev. 2013, 113, 6234.  doi: 10.1021/cr300527g

    11. [11]

      Yin, W.; He, C.; Chen, M.; Zhang, H.; Lei, A. Org.Lett. 2009, 11, 709.  doi: 10.1021/ol8027863

    12. [12]

      Ye, R.; Zhukhovitskiy, A. V.; Deraedt, C. V.; Toste, F. D.; Somorjai, G. A. Acc.Chem.Res. 2017, 50, 1894.  doi: 10.1021/acs.accounts.7b00232

    13. [13]

      Tang, B.-X.; Fang, X.-N.; Kuang, R.-Y.; Wu, J.-H.; Chen, Q.; Hu, S.-J.; Liu, Y.-L. Appl.Organomet.Chem. 2016, 30, 943.  doi: 10.1002/aoc.v30.11

    14. [14]

      Su, L.; Dong, J.; Liu, H.; Sun, M.; Qiu, R.; Zhou, Y.; Yin, S.-F. J. Am.Chem.Soc. 2016, 138, 12348.  doi: 10.1021/jacs.6b07984

    15. [15]

      Xu, H.; Wu, K.; Tian, J.; Zhu, L.; Yao, X. Green Chem. 2018, 20, 793.  doi: 10.1039/C7GC03120C

    16. [16]

      Theunissen, C.; Evano, G. Org.Lett. 2014, 16, 4488.  doi: 10.1021/ol502030y

    17. [17]

      Chinchilla, R.; Najera, C. Chem.Soc.Rev. 2011, 40, 5084.  doi: 10.1039/c1cs15071e

  • 加载中
    1. [1]

      Huasen LuShixu SongQisen JiaGuangbo LiuLuhua Jiang . Advances in Cu2O-based Photocathodes for Photoelectrochemical Water Splitting. Acta Physico-Chimica Sinica, 2024, 40(2): 2304035-0. doi: 10.3866/PKU.WHXB202304035

    2. [2]

      Qiang ZHAOZhinan GUOShuying LIJunli WANGZuopeng LIZhifang JIAKewei WANGYong GUO . Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 885-894. doi: 10.11862/CJIC.20230435

    3. [3]

      Lili Jiang Shaoyu Zheng Xuejiao Liu Xiaomin Xie . Copper-Catalyzed Oxidative Coupling Reactions for the Synthesis of Aryl Sulfones: A Fundamental and Exploratory Experiment for Undergraduate Teaching. University Chemistry, 2025, 40(7): 267-276. doi: 10.12461/PKU.DXHX202408004

    4. [4]

      Simin Fang Wei Huang Guanghua Yu Cong Wei Mingli Gao Guangshui Li Hongjun Tian Wan Li . Integrating Science and Education in a Comprehensive Chemistry Design Experiment: The Preparation of Copper(I) Oxide Nanoparticles and Its Application in Dye Water Remediation. University Chemistry, 2024, 39(8): 282-289. doi: 10.3866/PKU.DXHX202401023

    5. [5]

      Kaihui HuangDejun ChenXin ZhangRongchen ShenPeng ZhangDifa XuXin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-0. doi: 10.3866/PKU.WHXB202407020

    6. [6]

      Meng Lin Hanrui Chen Congcong Xu . Preparation and Study of Photo-Enhanced Electrocatalytic Oxygen Evolution Performance of ZIF-67/Copper(I) Oxide Composite: A Recommended Comprehensive Physical Chemistry Experiment. University Chemistry, 2024, 39(4): 163-168. doi: 10.3866/PKU.DXHX202308117

    7. [7]

      Jichao XUMing HUXichang CHENChunhui WANGLeichen WANGLingyi ZHOUXing HEXiamin CHENGSu JING . Construction and hydrogen peroxide-activated chemodynamic activity of ferrocene?benzoselenadiazole conjugate. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1495-1504. doi: 10.11862/CJIC.20250144

    8. [8]

      Yi YangXin ZhouMiaoli GuBei ChengZhen WuJianjun Zhang . Femtosecond transient absorption spectroscopy investigation on ultrafast electron transfer in S-scheme ZnO/CdIn2S4 photocatalyst for H2O2 production and benzylamine oxidation. Acta Physico-Chimica Sinica, 2025, 41(6): 100064-0. doi: 10.1016/j.actphy.2025.100064

    9. [9]

      Xiaotong LUPan ZHANGZijie ZHAOLei HUANGHongwei ZUOLili LIANG . Antitumor and antibacterial activities of pyridyl Schiff base indium and dysprosium complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1523-1532. doi: 10.11862/CJIC.20250073

    10. [10]

      Zixuan Zhao Miao Fan . “Carbon” with No “Ester”: A Boundless Journey of CO2 Transformation. University Chemistry, 2025, 40(7): 213-217. doi: 10.12461/PKU.DXHX202409040

    11. [11]

      Chaolin MiYuying QinXinli HuangYijie LuoZhiwei ZhangChengxiang WangYuanchang ShiLongwei YinRutao Wang . Galvanic Replacement Synthesis of Graphene Coupled Amorphous Antimony Nanoparticles for High-Performance Sodium-Ion Capacitor. Acta Physico-Chimica Sinica, 2024, 40(5): 2306011-0. doi: 10.3866/PKU.WHXB202306011

    12. [12]

      Zeyu LiuWenze HuangYang XiaoJundong ZhangWeijin KongPeng WuChenzi ZhaoAibing ChenQiang Zhang . Nanocomposite Current Collectors for Anode-Free All-Solid-State Lithium Batteries. Acta Physico-Chimica Sinica, 2024, 40(3): 2305040-0. doi: 10.3866/PKU.WHXB202305040

    13. [13]

      Junjian WangQingquan YuShunyao LiuYuke ChenXiaoyu LiuGuodong LiXiaoyan LiuHong LiuWeijia Zhou . Laser-Induced Carbonization of Hydroxyapatite Sandwich Paper for Inkless Printing. Acta Physico-Chimica Sinica, 2024, 40(4): 2304024-0. doi: 10.3866/PKU.WHXB202304024

    14. [14]

      CCS Chemistry | 超分子活化底物自由基促进高效选择性光催化氧化

      . CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -.

    15. [15]

      Yinjie XuSuiqin LiLihao LiuJiahui HeKai LiMengxin WangShuying ZhaoChun LiZhengbin ZhangXing ZhongJianguo Wang . Enhanced Electrocatalytic Oxidation of Sterols using the Synergistic Effect of NiFe-MOF and Aminoxyl Radicals. Acta Physico-Chimica Sinica, 2024, 40(3): 2305012-0. doi: 10.3866/PKU.WHXB202305012

    16. [16]

      Zhiquan ZhangBaker RhimiZheyang LiuMin ZhouGuowei DengWei WeiLiang MaoHuaming LiZhifeng Jiang . Insights into the Development of Copper-Based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-0. doi: 10.3866/PKU.WHXB202406029

    17. [17]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    18. [18]

      Dongheng WANGSi LIShuangquan ZANG . Construction of chiral alkynyl silver chains and modulation of chiral optical properties. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 131-140. doi: 10.11862/CJIC.20240379

    19. [19]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    20. [20]

      Zhilian Liu Wengui Wang Hongxiao Yang Yu Cui Shoufeng Wang . Ideological and Political Education Design for the Synthesis of Irinotecan Drug Intermediate 7-Ethyl Camptothecin. University Chemistry, 2024, 39(2): 89-93. doi: 10.3866/PKU.DXHX202306012

Metrics
  • PDF Downloads(22)
  • Abstract views(1370)
  • HTML views(194)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return